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We consider three spin systems in the parallel magnetic fields and present some of possible exact

solutions. In addition, we discuss an analogue of the Rabi problem for three-spin system. In order

to do this, we reduce the problem of three coupled spins, an 8-level system, to a problem of a

3-level system in an effective field. We explicitly construct the evolution operator of the system in

two special cases: when the fields and interaction are the same in all the spins but with a arbitrary

time-dependence of the fields, and when the spins are subjected to a circular magnetic field (the

Rabi problem). Some applications of these results are discussed.
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1. Introduction

Lattice models of interacting spins have applications in many physical problems,e.g., in con-
densed matter and quantum computation and information. Models, in which the interaction is
restricted to the neighbors (e.g., the Ising model), attract a lot of attention dueto their relative
simplicity and, at the same time, due to their capability to describe a lot of important physical phe-
nomena. For example, the two-dimensional square-lattice Ising model is usedto describe phase
transitions and so on. The model of a one-dimensional chain of spins, with finite elements, and
each spin interacting only with its nearest neighbors, can be used to describe a system of coupled
quantum dots. Recently this problem has attracted attention due to the possibility of such a sys-
tem to be used in the implementation of quantum computations [1]. The system of twocoupled
quantum dots (two-qubit system) can be used to implement a universal quantum gate [2], i.e., any
quantum algorithm can be performed using this system. The problem of threecoupled spins has
a direct application in the implementation of quantum error correction process[3]. Therefore, the
study of three coupled quantum dots, in different configurations (linearand circular), besides of its
theoretical interest, has a lot of practical application. It turns out that placing such system in an
external electromagnetic field, one can control both interaction functions and transitions between
possible quantum states of the system. The simplest case when magnetic fields applied to each spin
of the system are parallel is already enough to implement any quantum gate [2]. The obtaining of
a group of universal quantum gates demands the implementation of operators of two interacting
spins. Besides, in order to this system be capable to accomplish a universal operation, it is neces-
sary and sufficient that the evolution of this system be capable to entangle an initial product state
[4]. Once this entanglement characteristic is present in the evolution of systems described by the
Hamiltonian (1.1), the study of the exact solutions of this equation representsan important problem
in the analysis of the universal quantum gates and, especially, in the manipulation of quantum dots
[1].

In this work, we consider two and three-qubit spin systems in the parallel magnetic fields and
present some of their exact solutions. In addition, we discuss an analogue of the Rabi problem for
three-spin system.

1.1 General

A one-dimensional chain ofn interacting spins, immerses in a magnetic fieldB and coupled
with neighborhoods by a Heisenberg interaction, can be described by theHamiltonian

H =
n

∑
i=1

BiΣi +
1
2

n−1

∑
i=1

Ji(i+1)Γi(i+1)+
1
2

J1,nΓ1n ,

Σk = I⊗(k−1)⊗σ ⊗ I⊗(n−k), Γi j = Σi ·Σ j , (1.1)

whereI is the 2×2 identity, I⊗n the tensor product ofn matricesI , σ = (σ1,σ2,σ3) are the Pauli
matrices,Bi = Bi(t) the intensity of the magnetic field in thei-th spin, andJi j are interaction func-
tions between thei and j neighborhoods [5]. The case whenJ1,n 6= 0 represents the identification of
the extremes (circular chain) andJ1,n = 0 the linear chain. Some important commutation relations
are

[
Σm

i ,Σ
n
j

]
= 2iδmnεi jkΣm

k ,
[
Σm

i ,Σ
m
j

]

+
= 2δi j . (1.2)
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Although the matricesΓmn do not commute with netherΣm andΣn, it is possible to see that

[Γmn,Σm+Σn] = 0 . (1.3)

As a consequence, anyΓ jk and, consequently, the interaction terms in the Hamiltonian (1.1),
commute with the rotationRn in any directionn̂,

[

Γ jk,Rn

]

= 0 , n̂2 = 1,

Rn(θ) = exp

(

− iθ
2

n̂·
n

∑
i=1

Σi

)

=
n

∏
i=1

exp

(

− iθ
2

n̂ ·Σi
)

. (1.4)

In the case ofparallel fields, with arbitrary time-dependence, the HamiltonianH preserves,
not only the total angular momentumJ2, but also the projection of the angular momentum in the
direction of the fields. Due to the rotational invariance (1.4), we can apply arotation and brinĝn to
thez direction. So, without loose of generality, we can choosen̂ = (0,0,1) and jz as a conserved
quantity

[
J2,H

]
= [ jz,H] = 0, Ji =

1
2

Σi , J =
n

∑
i=1

Ji , jz =
1
2

n

∑
i=1

Σi
3 . (1.5)

So, using as a bases eigenvectors ofjz (arranged in a descending order of their eigenvalues), the
HamiltonianH takes a block diagonal form, composed byn+1 blocks with thek-th block describ-
ing a system of(n!/(n−k+1)! (k−1)!) levels,k= 1, . . . ,n+1. This procedure permits to reduce
the problem ofn coupled spins (the corresponding system is 2n-levels) to a set ofn+1 uncoupled
systems where the most complex element is an!/((n/2)!)2-level system.

The case withBi = 0 , all Ji j = J andJ1,n 6= 0 (closed chain) can be exactly solved, and the
general case can be treated using approximation or numerical methods by the help of Bethe ansatz
[6]. As was already mention, we are going to study exactly solutions forn = 2 andn = 3 and
parallel time dependent fields.

1.2 Two coupled spins

In the casen= 2 the Hamiltonian (1.1) reads

H = B1Σ1
3+B2Σ2

3+
1
2

J12Γ12 ,

Σ1 = σ ⊗ I , Σ2 = I ⊗σ , Γ12 = Σ1 ·Σ2 .

The projection of the angular momentumjz can assume the values 1,0,−1. So the problem
can be reduced to a 2!= 2-level system. It can be viewed explicitly by writing the eigenvectors of
jz

| jz = 1〉= |00〉 , | jz =−1〉= |11〉 ,
| jz = 0〉= {|10〉 , |01〉} , |l ,k〉= |l〉⊗ |k〉 ,

|0〉=
(

1
0

)

, |1〉=
(

0
1

)

. (1.6)
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From (1.6) we can see that, in this case, we can arrange thejz-base in order that it coincide with
the canonical base, and, consequently, the HamiltonianH is already in the block diagonal form

H =






h jz=1 0 0
0 h jz=0 0
0 0 h jz=−1




 , h jz=0 =

(

B−− J
2 J

J −B−− J
2

)

,

h jz=±1 =
J
2
±B+, B± = B1±B2 . (1.7)

The special case of parallel fields was treated in Ref. [2], and in case of circular symmetric
fields, i.e.,

B1 = B2 = (Bcosωt,Bsinωt,B0) , B,B0,ω = const.,

in Ref. [7]. In fact, the latter case represents a generalization of the Rabi problem for two coupled
spins. Here there appear two different resonance frequencies. The above results have a special
interest in the description of two coupled quantum dots [2], in particular, in the theoretical modeling
of universal quantum gates [8, 1], which are fundamental elements in theconstruction of quantum
computers.

2. Three coupled spins

Although all the quantum algorithms can be implemented using only systems with one and
two spins, the study of three spins system is a fundamental element in the implementation of error
correction algorithms [3]. The Hamiltonian for three spins coupled in a triangular configuration
and subjected to a magnetic field in thezdirection can be written as:

H = BiΣi
3+

1
2

(
J12Γ12+J23Γ23+J13Γ13) ,

Σ1 = σ ⊗ I ⊗ I , Σ2 = I ⊗σ ⊗ I , Σ3 = I ⊗ I ⊗σ , Γi j = Σi ·Σ j .

We choose the state space for such a system as the direct-product space of the state spaces of
individual spins, i.e., we consider the canonical base|Θi〉 (i = 1,2,3, ...,8) composed by the vectors

|Θ1〉 = |000〉 , |Θ2〉= |001〉 , |Θ3〉= |010〉 , |Θ4〉= |011〉 ,
|Θ5〉 = |100〉 , |Θ6〉= |101〉 , |Θ7〉= |110〉 , |Θ8〉= |111〉 , (2.1)

where the above notation indicates|i jk〉= |i〉⊗ | j〉⊗ |k〉, i, j,k= 0,1, and{|0〉 , |1〉} are defined in
(1.6). More explicitly

|Θ1〉=











1
0
0
...
0











, |Θ2〉=











0
1
0
...
0











, . . . , |Θ8〉=











0
0
...
0
1











, (2.2)

i.e., then-th row of the base vector|Θn〉 is equal to unity and all other entries are zero.
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For this system the total spin operator (1.5) isJ= 1
2

(
Σ1+Σ2+Σ3

)
(we setℏ= 1 in this study).

The z components of the angular momentum operatorsJi =
1
2Σi , i = 1,2,3, satisfy eigenvalues

equations

J1z|Θ1,2,3,4〉 =
1
2
|Θ1,2,3,4〉 , J1z|Θ5,6,7,8〉=−1

2
|Θ5,6,7,8〉 ,

J2z|Θ1,2,5,6〉 =
1
2
|Θ1,2,5,6〉 , J2z|Θ3,4,7,8〉=−1

2
|Θ3,4,7,8〉 ,

J3z|Θ1,3,5,7〉 =
1
2
|Θ1,3,5,7〉 , J3z|Θ2,4,6,8〉=−1

2
|Θ2,4,6,8〉 . (2.3)

The quantum dynamics of this system is governed by the Schrödinger equation i∂t |Ψ〉 =
H |Ψ〉, with

|Ψ(t)〉= ∑
i, j,k={0,1}

ϑi jk |i jk〉=
8

∑
µ=1

υµ(t)
∣
∣Θµ

〉
=









υ1(t)
υ2(t)

...
υ8(t)









, (2.4)

wherei, j,k = 0,1 and the vector|Ψ(t)〉 has been wrote as a linear combination of the computa-
tional basis (2.1,2.2).

The projection of the angular momentumjz can assume the values 3/2,1/2,−1/2,−3/2. So,
the problem can be reduced to two (uncoupled) 3!/2! = 3-level systems. It can be view explicitly
by writing the eigenvectors of ˆz as

| jz = 3/2〉= |000〉 , | jz =−3/2〉= |111〉 ,
| jz = 1/2〉= {|100〉 , |010〉 , |001〉} ,

| jz =−1/2〉= {|011〉 , |101〉 , |110〉} .

In this case, the transformation matrix between thejz and canonical base (2.1,2.2) has the form

T = T+ = T−1 =






I3×3 0 0
0 σ1 0
0 0 I3×3




 ,

and the Hamiltonian assumes the form

THT =








h3/2 0 0 0
0 h1/2 0 0
0 0 h−1/2 0
0 0 0 h−3/2








,
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where

h1/2 =






B01+
1
2J11 J23 J13

J23 B10− 1
2J10 J12

J13 J12 −B11− 1
2J01




 ,

h−1/2 =






B11− 1
2J01 J12 J13

J12 −B10− 1
2J10 J23

J13 J23 −B01+
1
2J11




 ,

h±3/2 =±B00+
1
2
J00 , (2.5)

and the notation

Bmn = B1+(−1)mB2+(−1)nB3 ,

Jmn = J12+(−1)mJ13+(−1)nJ23 ,

are introduced. The exact solution of the above problem can then be obtained by solving the two
uncoupled 3-level problems with an effective Hamiltonian given byh±1/2. In what follow we study
the above system for some special choice of fields and interaction functions.

2.1 Symmetric case

In the symmetric case, i.e., the case whenBi(t)≡ B(t) andJnm(t)≡ J(t), we have

H = 2B jz+
1
2

J
(
Γ12+Γ23+Γ13) .

In this case, as it follows from (2.5),h1/2 = h−1/2, so that the problem is reduced to a 3-level system
problem.

Due to relation (1.3), the evolution operatorUS in the case under consideration can be written
as

US= R3exp

[

−i
JI

2

(
Γ12+Γ23+Γ13)

]

, R3 = exp

(

−iBI

3

∑
i=1

Σi
3

)

,

JI (t) =
∫

J(t)dt, BI (t) =
∫

B(t) dt .

The first term inUS is just a rotation in thez direction. Using now relation (1.2) and the
definition ofΓmn it is possible to see that

(
Γ12+Γ23+Γ13)2

= 9I ,

whereI is the 8×8 identity matrix. So the evolution operator assumes the form

US(t) =
3

∏
k=1

[

cosBI (t)− iΣk
3sinBI (t)

]

×
{

cos

[
3
2

JI (t)

]

− i
3

(
Γ12+Γ23+Γ13)sin

[
3
2

JI (t)

]}

.
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For a system of three coupled quantum dots the interaction function can be controlled by external
fields [8]. So, once this function is fixed, the above expression can be used to determine an external
field which provides any given quantum state. In particular, one can determine the fields by using
a maximally entangled pure state (e.g., a GHZ state [9]). The preparation of such kind of states is a
fundamental element in the implementation of error correction algorithms for quantum information
process.

2.2 Analogue of the Rabi problem for three-spin system

We consider the case when three spins are subject to the Rabi field, i.e., a constant magnetic
field B0 and perpendicular to it a rotating field,

B = (Bcosωt, Bsinωt, B0) . (2.6)

In this case, the Hamiltonian assumes the form

H = 2BJ+
1
2

J
(
Γ12+Γ23+Γ13) .

Once rotations commute with the interaction terms, we can use arotating coordinate system
that rotates with the field, similar to the usual Rabi problem [10]. So, after therotation

Rz(ωt) = exp(−iωt jz) , (2.7)

the Hamiltonian becomes

H ′ = R−1
z HRz− iR−1

z Ṙz = 2B′J+
1
2

J
(
Γ12+Γ23+Γ13) ,

B′ =
(
B,0,B′

0

)
, B′

0 = B0−
ω
2
.

We can now to align the constant fieldB′ with thez direction, applying a second rotation

Ry(θ) = exp

(

− i
2

θ
3

∑
i=1

Σi
2

)

, tanθ =
B
B′

0
.

In this new frame we have

H ′′ = R−1
y H ′Ry = 2B′′J+

1
2

J
(
Γ12+Γ23+Γ13) ,

B′′ =
(
0,0,B′′

0

)
,
(
B′′

0

)2
=
(
B′

0

)2
+B2 ,

and the new Hamiltonian becomes

H ′′ = 2B′′
0 jz+

1
2

J
(
Γ12+Γ23+Γ13) .

The result coincides with the above considered symmetric case. Thus, the evolution operator
of the problem under consideration can be written as

U(t, t0) = Rz(t)Ry(θ)U ′′(t, t0)R
−1
y (θ)

︸ ︷︷ ︸

=Ry(−θ)

R−1
z (t0)

︸ ︷︷ ︸

=I⊗3

= Rz(t)Ry(θ)U ′′(t, t0)Ry(−θ) , (2.8)
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with U ′′ given by1 the equation

U ′′ =
3

∏
k=1

(

cosB′′
0t − iΣk

3sinB′′
0t
)

×
[

cos

(
3
2

JI

)

− i
3

(
Γ12+Γ23+Γ13)sin

(
3
2

JI

)]

.

Of course the conservation of the projection of the angular momentum takes place only in the
rotation frame and not in the original one. However, the total angular momentum J2 is an integral
of motion in both frames.

The eigenstates of the operatorJ2, with eigenvaluej ( j +1) and j = 1/2 are

|1〉= 1√
2
[|110〉− |011〉] , |2〉= 1√

2
[|101〉− |011〉] ,

|3〉= 1√
2
[|100〉− |001〉] , |4〉= 1√

2
[|010〉− |001〉] ,

while for j = 3/2 they read

| jz =−3/2〉= |111〉 , | jz = 3/2〉= |000〉 ,

| jz =−1/2〉= 1√
3
[|011〉+ |101〉+ |110〉] ,

| jz = 1/2〉= 1√
3
[|001〉+ |010〉+ |100〉] .

Using the evolution operator, we can, for example, determine the external field that provides
the maximum for the transition amplitude between the states| jz = 3/2〉 and| jz =−3/2〉. Transi-
tion amplitude of these states is

‖〈111|U |000〉‖2 =
1
16

(sinθ)6 [sin(α)−sin(3α)]2 ,

with U given by (2.8) and

tanθ =
B

B0−ω/2
, α =

√

(B0−ω/2)2+B2(t − t0) .

The resonance of this transition occurs in the usual Rabi frequency

sinθ = 1⇒ ω = 2B0 ,

in the instant
t − t0 =

π
2B

.

Using the procedure developed in Ref. [7], the above results can be used to determine external
fields in order to obtain the maximal probability amplitude for some other states. Of course, due
to the momentum angular conservation, these amplitudes are non zero only forstates with the
sameJ2. In case of quantum dots, these transitions can be used, for example, in the production of
multimode field devices, which have applications in quantum optics (see, e.g., [11]).

1Here we sett = t − t0.
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3. Conclusion

We show how the general problem ofn coupled spin, i.e., a 2n-level system, can be reduced to
n+1 uncoupled system where the most complex element is, at most, an!/((n/2)!)2-level system.
After that, we use this procedure to reduce the problem of three coupled spins, an 8-level system,
to a problem of a 3-level system in an effective field. We explicitly construct the evolution operator
of the system for two special cases: when the fields and interaction are thesame in all the spins
(the symmetric case), but with a arbitrary time-dependence in the field, and when the spins are
subjected to a circular magnetic field (the Rabi problem). In the first case, the results can be used
to establish the conditions of the fields that permit obtain a maximum entangled state (e.g., a GHZ
state [9]) from an initial product state, what can be used to determine the best filed configuration
to implement an error correction algorithm. The second case can be used to explicitly calculate the
resonance frequencies of the system.
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