
P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Accelerated composite distribution function
methods for computational fluid dynamics using
GPU

Matthew R. Smith1

National Cheng-Kung University

No. 1, University Road, Tainan, Taiwan.

E-mail: msmith@mail.ncku.edu.tw

Yen-Chih Chen

National Cheng-Kung University

No. 1, University Road, Tainan, Taiwan.

E-mail: johnchen83@yahoo.com.tw

The Kinetic Theory of Gases has long been established as a useful tool for the solution of modern

Computational Fluid Dynamics (CFD) problems. Together with the Finite Volume Method, such

approaches have been popular in CFD for over 30 years, with techniques such as the Equilibrium

Flux Method (EFM) or Kinetic Flux Vector Splitting (KFVS), Equilibrium Interface Method

(EIM) together with more recent developments. One of the disadvantages to using such an

approach are the expensive exponential (exp(-x2)) and error function (erf(x))evaluations often

associated with the moments taken around the distribution functions for the computation of

interface fluxes. One common approach for avoiding such expenses is to employ discrete

velocities in the flux calculation, taking moments around these rather than a continuous

distribution function. In this talk we will discuss how we can approximate the governing particle

velocity distribution function with a series of Composite Distribution Functions (CDF’s) - made

of more than one distribution function – to simplify the moment equations. The resulting

expressions are then applied to multi-dimensional computation using Graphics Processing Units

(GPU’s), to which the application is well suited due to the simplicity of the flux expressions and

locality of the schemes. Very high levels of speedup are demonstrated using C2075 (Fermi) and

newer Kepler GPU architectures when compared to modern Xeon E5 processing cores.

2013 International Workshop on Computational Science and Engineering (IWCSE 2013)

October 14-17, 2013

Taipei, Taiwan

1 Speaker

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 2

1. Introduction

The Finite Volume Method (FVM) has risen in popularity to become one of the cornerstone

methods in Computational Fluid Dynamics (CFD). The goal of the Finite Volume Method is the

numerical solution of a set of governing Partial Differential Equations (PDE) in integral form

(without source terms):
𝑑

𝑑𝑡
∫𝑈𝑑𝑉 +∫𝐹𝑑𝑆 = 0 (1)

where U is a vector of conserved quantities and F is a vector of the fluxes of conserved

quantities. Using the divergence theorem, it is possible to use differencing in time to obtain an

expression for the update of the average value of the conserved quantity after a discrete time:

�̅�𝑘+1 = �̅�𝑘 −
∆𝑡

𝑉
∑ 𝐹𝑖
𝑁
𝑖=1 �̂� ∙ 𝐴 (2)

where Fi is the flux across surface i of the cell volume being examined. Hence, the problem

reduces to the evaluation of the flux F across cell surfaces. There are many ways of computing

this – however, the approach can generally be divided into two methods: (i) Flux Difference

splitting, and (ii) Flux Vector Splitting. This work will focus on the latter approach, with states

that the net flux across any surface seperating two states can be broken down into some linear

contribution from either side:

 𝐹𝑖 = 𝐹𝐿
+ + 𝐹𝑅

− (3)

where FL
+ is the contribition from the left hand side of the interface (moving right) and FR

- is the

contribution from the right hand side (moving left). Such fluxes are often overly dissipative and

cannot capture many of the waves resulting from the interaction of the left and right hand states.

However, these fluxes possess a unique advantage over flux difference methods because each

contribution from the left and right hand side can be computed independently of each other,

resulting in a highly local scheme.

Many modern engineering applications are multi-scaled and require high resolution (i.e.

a large number of finite volumes) in order to achieve a suitable solution. Hence, in many instances,

parallel computing is required to obtain a solution in a reasonable turnaround time. While

conventional computing systems are quite expensive, in both terms of capital and power related

expenses, the use of Graphics Processing Units (GPU’s) for general scientific computing has

provided a cheaper alternative. Through the use of GPU devices, we can achieve a compute

density and power efficiency which is not easily obtained using conventional architectures.

However, since the GPU device continues to focus on rendering and drawing related operations,

which are SIMD (Single Instructions on Multiple Data elements) centered, care must be taken

when implementing any scientific algorithm on the device. For this reason, algorithms which are

highly local (i.e. the flux splitting formulations presented here) perform very well on GPU

devices.

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 3

2. Kinetic Vector Splitting

2.1 Background

The approaches used to determine the formulation of the split fluxes described above are

varied – several mathematical models, integral-balanced approaches [1] and kinetic-theory based

[2] formulations have been investigated. This work will focus on the latter approach – which is

to obtain the fluxes of conserved quantities by taking moments around a governing molecular

velocity probability distribution function. In one dimensional form, these fluxes can be described

by the integral expressions:

𝐹+ = ∫ 𝑓(𝑣𝑛)𝑣𝑛𝑈(𝑣𝑛)
∞

0
𝑑𝑣𝑛 𝐹

− = ∫ 𝑓(𝑣𝑛)𝑣𝑛𝑈(𝑣𝑛)
0

−∞
𝑑𝑣𝑛 (4)

where vn is the particle velocity normal to the interface and f is our governing molecular velocity

probability distribution function. In the case where our gas is assumed to be in thermal

equilibrium, our velocity distribution function is the Maxwell-Boltzman distribution, given in one

dimensional form as:

𝑓(𝑣𝑛) =
1

√2𝑅𝑇𝜋
exp (

−(𝑣𝑛−𝑣𝑛̅̅̅̅)
2

2𝑅𝑇
) (5)

This is the core of both Pullin’s EFM [2] and Mandal et al.’s KFVS [3]. The resulting

evaulation of the integrals in Equations 4 results in a series of expressions involving the error

function (erf) and the exponential function (exp). The evaluation of these terms is non trivial,

computationally intensive and is often performed using advanced series expansions. There are

several works which have been performed examining non-equilibrium distribution functions – as

required for real gas flows governed by the Navier-Stokes equations – however, this research will

focus on the limit of thermal equilibrium.

2.2 Composite Distribution Functions for Flux Splitting

The concept behind the proposed schemes is that any distribution function can be

approximated through the sum of a large number of simpler distribution functions:

𝑓(𝑣) ≈ ∑ 𝑤𝑖𝑓
∗(𝑎𝑖)

𝑁
𝑖=1 (6)

where w is a weighting function and a is a property of the new distribution function and is related

to the particle velocity v. Our “simpler” distribution function f* can be chosen almost arbitrarily

– however, there are several restrictions which follow directly from the conservation of

macroscopic properties. The first requirement is that our sum of distribution functions equates to

a mathematically correct statement – that is, the chance that a particle has a velocity between

negative infinity and positive infinity must be unity:

∫ ∑ 𝑤𝑖𝑓
∗(𝑎𝑖)

𝑁
𝑖=1

∞

−∞
𝑑𝑣 = 1 (7)

 This statement is equivilent to a conservation of mass statement for our approximations.

The second restriction is equivilent to the conservation of momentum – the average particle

velocity for both the original distribution function and the sum of weighted simple distribution

functions should be identical:

∫ ∑ 𝑣 ∙ 𝑤𝑖𝑓
∗(𝑎𝑖)

𝑁
𝑖=1

∞

−∞
𝑑𝑣 = �̅� (8)

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 4

It is quite trivial to show that Equation 8 leads to the same requirements as Equation 7, as

will be discussed in up-coming sections. The final restriction is that the total energy of particles

is the same for both the approximated sum of distribution functions and our original. According

to the theorem of equipitartion of energy, the total thermal energy (not accounting bulk kinetic

energy) can be calculated as:

∫ ∑ (𝑣 − �̅�)2 ∙ 𝑤𝑖𝑓
∗(𝑎𝑖)

𝑁
𝑖=1

∞

−∞
𝑑𝑣 = 𝑅𝑇 (9)

Regardless of our choice of N or f*, we must control our choices for the values of w and a in order

to ensure that the restrictions listed in Equations 7-9 are enforced.

2.2.1 Multiple Uniform Distribution Functions

The simplest place to begin when searching for an ideal simple particle velocity

probability distribution function is the uniform distribution as given by the equation:

𝑓∗(𝑣) = {
1

2𝑎
, 𝑣 > �̅� − 𝑎 𝑎𝑛𝑑 𝑣 < �̅� + 𝑎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

where a is effectivly a thermal velocity and acts as the bounds for our uniform distribution

function. In this instance, the restrictions for the choice of a and w are easily shown to be:

∫ ∑ 𝑤𝑖𝑓
∗(𝑎𝑖)

𝑁
𝑖=1

∞

−∞
𝑑𝑣 = ∑ 𝑤𝑖

𝑁
𝑖=1 = 1 (11)

∫ ∑ (𝑣 − �̅�)2 ∙ 𝑤𝑖𝑓
∗(𝑎𝑖)

𝑁
𝑖=1

∞

−∞
𝑑𝑣 = ∑ ∫ (𝑣 − �̅�)2𝑤𝑖𝑓

∗(𝑎)
�̅�+𝑎

�̅�−𝑎
𝑑𝑣 =𝑁

𝑖=1 𝑅𝑇 (12)

The expression in Equation 12 can be evaluated to show that:

 ∑
𝑎𝑖
2𝑤𝑖

3
𝑁
𝑖=1 = 𝑅𝑇 (13)

These rules must be satisfied when choosing a and w if the schemes are to be equivilent to the

result obtained by EFM or KFVS. There are an infinite number of choices which satisfy these

criteria, however – hence error analysis can be used to determine an optimal choice. These values

depend heavily on the number of approximating distribution functions to use, which is also a

variable which can be changed by the user. In the case where 2 approximating uniform

distribution functions are used, sample values of w = [1/6, 5/6] and a = [3/2(3)1/2, 3/2]s1/2 can be

used. The forward split fluxes – written here for reference only – are:

𝐹𝑖
+ = 𝑤𝑖

[

 𝜌 (

𝑎𝑖

4
+
�̅�

2
+
�̅�2

𝑎𝑖
)

𝜌 (
(𝑎𝑖+�̅�)

3

6𝑎𝑖
)

𝜌 (
(𝑎𝑖+�̅�)

2(4𝐸𝑖𝑛+(𝑎𝑖+�̅�)
2)

16𝑎𝑖
)]

 (14)

This is (in essence) a surface split equivilent of the volumetric fluxes computed by Ferguson et

al. [4] disregarding volumetric effects in the flux computation. These fluxes are first order

accurate in both time – higher order implementation may be performed by computing gradients

of split fluxes and performing reconstructions at cell interfaces.

2.2.2 Multiple Linear (Triangular) Distribution Functions

 The rate at which multiple uniform distribution functions approach the Maxwell-Boltzmann

distribution is limited – this can be improved by increasing the order of the approximating

probability distribution function. The logical progression is a symmetrical form which is a linear

function of velocity in the form:

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 5

𝑓(𝑣) =

{

 −
𝑏𝑖

𝑎𝑖
(𝑣 − �̅�) + 𝑏𝑖, �̅� ≤ 𝑣 ≤ �̅� + 𝑎𝑖

𝑏𝑖

𝑎𝑖
(𝑣 − �̅�) + 𝑏𝑖, �̅� − 𝑎𝑖 ≤ 𝑣 ≤ �̅�

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (15)

 The same restrictions described in Equations 7-9 are still required to make the approximation

valid. The weighting restriction described in Equation 11 holds regardless of the choice of

approximating distribution function so long as it is a mathematically valid one. Evaluation of the

energy conservation restriction integral provided in Equation 9 leads to the restriction:

∑
𝑎𝑖
2𝑤𝑖

6
𝑁
𝑖=1 = 𝑅𝑇 (16)

 The forward fluxes based on the linear distribution shown above in Equation 15 is written

for reference below:

𝐹𝑖
+ = 𝑤𝑖

[

 𝜌 (−

1

6𝑎𝑖
2
(�̅� − 𝑎𝑖)

3 + �̅�)

𝜌 (−
1

12𝑎𝑖
2
(�̅� − 𝑎𝑖)

4 + �̅�2 + 𝑠2)

𝜌𝑒𝑖𝑛 (−
1

6𝑎𝑖
2
(�̅� − 𝑎𝑖)

3 + �̅�) +
1

2
𝜌 (−

1

20𝑎𝑖
2
(�̅� − 𝑎𝑖)

5 + �̅�3 + 3�̅�𝑠2)]

 (17)

 In the case where 2 approximating uniform distribution functions are used, again a large

number of possible options are available for selecting the weighting and thermal bound values.

For example, sample values of w = [1/6, 5/6] and a = [3/2(3)1/2, 3/2]s1/2 can be used for

simulation. For the sake of reference, we shall refer to the use of a linearly varying distribution

function as the basis for flux computation as the Triangular Equilibrium Distribution Method

(TEFM).

2.3 Error Analysis

 Predicting the error in the use of a sum of approximating distribution functions can be

performed in a large number of ways. As a starting point, we can make several assumptions: (i)

that our composite distribution employs two triangular distributions f1
* and f2

* with weights w1

and w2 respectively, and (ii) we compute the error over the entire distribution based on the integral

the difference squared. This equation can be represented by the expressions:

𝐸 = ∫ (𝑓(𝑐) − 𝑤1𝑓1
∗(𝑐) − 𝑤2𝑓2

∗(𝑐))
2
𝑑𝑐

𝑎1
0

+ ∫ (𝑓(𝑐) − 𝑤2𝑓2
∗(𝑐))

2
𝑑𝑐

𝑎2
𝑎1

+ ∫ 𝑓2(𝑐)𝑑𝑐
∞

𝑎2
 (18)

𝐸 =
1

4√𝜋𝑠
+
𝑤1

2

3𝑎1
+
𝑤2

2

3𝑎2
−

2𝑤1𝑠

√2𝜋𝑎1
2 (𝑒𝑥𝑝 (−

𝑎1
2

2𝑠2
) − 1) −

𝑤1

𝑎1
𝑒𝑟𝑓 (

𝑎1

√2𝑠
) (19)

−
2𝑤2𝑠

√2𝜋𝑎2
2 (𝑒𝑥𝑝 (−

𝑎2
2

2𝑠2
) − 1) −

𝑤2

𝑎2
𝑒𝑟𝑓 (

𝑎2

√2𝑠
) +

𝑤1𝑤2

𝑎2
(1 −

𝑎1

3𝑎2
)

 These expressions may be used to evaulate the likeness of our composite distribution

function to our original. For the two composite functions shown in Figure 1, the error values are

described in Table 1. For the weights and thermal bounds shown in the previous section, the error

integral evaluates to approximately 4.3e-4 s/m. Through inspection of the error function above, it

can be seen a local minimum for integral error occurs near the region a1 = 2s – evaluating the

integral error associated with this value (and its corresponding value for a2) leads to an error of

5.9e-5 s/m, which is a significant improvement. Hence, the error is very sensistive to selection of

thermal bounds for any given weighting values. The local minima containing this value (for given

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 6

Figure 1: The original (dimensionless) one dimensional Maxwell-Boltzmann distribution function and several sample

composite triangular distribution functions using [Left] w = [2/3, 1/3], a = [31/2, 2(3)1/2], and [Right] w = [2/3, 1/3], a

= [2, 101/2].

Case Weights (w) Thermal Bounds

(as-1)

Error

1 [2/3, 1/3] [31/2, 2(3)1/2] 0.000437

2 [2/3, 1/3] [2, 101/2] 0.000059

Table 1: Sample weights, thermal bounds and error for several selections of thermal bounds.

values of w) can also be located through the use of a Newton-Raphson scheme with an expression

of the form:

𝑎1,𝑛𝑒𝑤 = 𝑎1 −
𝐸′(𝑎1)

𝐸′′(𝑎1)
 (20)

 However, care must be taken when using this approach. The global minimum (i.e. root) of

the expression shown in Equation 19 is located outside of the bounds of possible values

determined by the restrictions placed on our thermal bounds for the conservation equations listed

in Equations 7-9. Another means of determining the error associated with the use of a composite

distribution function is through comparison of the Finite Volume results for simulated test cases,

which shall be covered in following sections.

2.4 Implementation for GPU using CUDA

The Compute Unified Device Architecture, or CUDA, is a programming model developed by

NVIDIA for the purpose of allowing general computing tasks to be performed on NVIDIA

graphics processing units. Several authors have successfully applied CUDA to performing

kinetic-theory based simulation tasks using GPU devices [5,6] with significant performace gains

due to the high locality of such schemes. The parallelization of the proposed vector split FVM

can be performed in two steps:

1. By the parallelization across cells – i.e. allocate a thread to each cell (or multiple cells to

each thread) - for embarassingly parallel computation of split fluxes F+ and F-.

2. Following computation across all cells and synchronization, parallization across cells for

the computation of the change in conserved quantities U through contributions of fluxes

across the cell surfaces.

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 7

3. A third (optional) parallelization across cells for computation of gradients for higher

order implementation.

 The parallelization using CUDA is obtained through the creation of multiple CUDA kernels.

These kernels may either by __global__ (may be called from the host) or __device__ kernels, i.e.

able to be called only from within a kernel running on the GPU. The total work to be performed

in parallel is broken down into blocks of threads, which is then further broken down into warps

of threads which are sent to Streaming Multi Processors (SMP’s) on the GPU for computation.

Hence, to ensure that no threads are idle, the resolution of the grid should be evenly divisible by

both the number of threads per warp (32) and the number of threads per block. In the current

studies, simulations are limited to resolutions which obey this restriction.

 Any implementation of a general computing algorithm using CUDA and GPU devices

requires the use of global memory on the GPU device. This memory is physically and

conceptually seperated from the host (CPU’s) memory and thus (i) memory must be allocated on

both seperately, (ii) information required for computation must be copied between the GPU and

the CPU using the PCI-E slot, and (iii) memory must be freed seperately. Due to the limited

bandwidth of the PCI-E slot, this work focuses on use of the GPU as the sole computing entity.

Hence, the model shown in the code fragment in Figure 2 is used for the implementation. A while

loop – used for transient analysis of the unsteady equations – is used within the main() function

executed on the host. Within the while loop, three kernels (for first order analysis) are launched

sequentially – the parallel computation of fluxes in the x direction (GPU_Calc_X_Fluxes), y

direction (GPU_Calc_Y_Fluxes) and finally computation of the state after time t + dt

(GPU_Calc_U_from_G).

// setup execution parameters

 dim3 threads(Ntx, Nty);

 dim3 grid(Nbx, Nby);

 dim3 grid_flux(Nbx+1, Nby+1);

 //GPU calculation

 for (int t = 1; t <= NO_STEPS; t++){

 GPU_Calc_X_Fluxes<<<grid_flux,threads>>>(d_P, d_F, d_Fp, d_Fm);

 GPU_Calc_Y_Fluxes<<<grid_flux,threads>>>(d_P, d_G, d_Gp, d_Gm);

 GPU_Calc_U_from_F_and_G<<<grid, threads>>>(d_U, d_P, d_F, d_G);

 }

 --

__global__ void GPU_Calc_X_Fluxes(float *d_P, float *d_F, float *d_Fp, float *d_Fm){

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 int j = blockDim.y * blockIdx.y + threadIdx.y;

 if((i <= Nx) && (j < Ny)){

 GPU_Calc_F_from_P(d_P, d_Fp, d_Fm, i, j);

 }

}

Figure 2: Sample codes for [Top] the transient computation, and [Bottom] the GPU kernel for computing fluxes. A

device function (GPU_Calc_F_from_P) is used for flux computation.

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 8

Figure 3: [Left] Sum of error squared for density comparing single and dual composite linear (triangular) distribution

functions computed against the EFM solution. [Right] Comparison of the first and second order (spatial accuracy)

extension of the TEFM scheme using the MINMOD limiter for the one dimensional shock tube problem.

Figure 4: [Top Left] Initial conditions for the two dimensional shock interaction problem. Coloured contours of density

for [Top, Right] EFM, and composite distribution functions using two [Bottom, Left] uniform distribution functions

(UEFM) and [Bottom, Right] triangular distribution functions (TEFM).

Processor / GPU Test 1 Test 2 Test 3 Average (s)

Intel Xeon

E5-2670 (1 core)

2727.91 2703.16 2719.25 2716.773

Xeon E5-2670 + 1x

Tesla C2075

7.82 7.83 7.83 7.827

Intel i3 +

1x GTX-670

9.33 9.28 9.19 9.267

Table 2: Performance comparison between a single core of an Intel Xeon (E5-2670) CPU against several NVIDIA

GPU devices. The test is for a three dimensional blast wave problem of resolution 80x80x80 (~0.5 million cells) for

1000 time steps using the TEFM solver.

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 9

3. Results

3.1 Sod’s Shock Tube

A commonly used test for the compressible Euler equations for ideal gas flows is Sod’s one

dimensional shock tube problem [7]. In this problem, a tube of dimensionless length unity is

seperated into two parts at x = 0.5 by an infinitely thin diaphram. The conditions on each side of

the interface are [ρ,U,P]=[10,0,10] and [1,0,1] on the left and right hand sides respectively. The

diaphragm is removed at t = 0 and the resulting gas motion computed. Results for TEFM using

two distribution functions is compared to the analytical solution and are shown in Figure 3. The

sum of difference squared computed against the target solution (that using EFM) is also shown in

Figure 3 for both a single triangular distribution function and the sum of two weighted triangular

distributions. Regardless of the number of approximating distribution functions, the greatest

errors occur in regions of the flow where gradients are high, with the greatest error occuring in

the contact surface for a single distribution function and the shock wave for two distributions. The

error is also seen to decrease when using two approximating distributions as compared to one,

with a decrease in error of between 5 to 10 times in the shock and contact surface region. The

maximum error for either a single or composite approximating distribution function does not

exceed 0.2 percent when compared against the EFM solution.

3.2 Two Dimensional Shock Bubble Interaction Problem

 The two dimensional simulation of a shock wave interaction with a region of different

density has been previously used to test various qualitities of a solver [8] and is used here to

compare the differences between the benchmark solution (EFM) and sevearl composite

distribution functions using both uniform distribution (UEFM) and linear (triangular) distribution

(TEFM) models. The initial conditions for the two dimensional problem are in Figure 4. The top

and bottom boundaries are reflective, full slip surfaces with left and right hand boundaries treated

using diriclet conditions. The MINMOD limiter is used for all flux reconstructions at cell

interfaces. All simulations are performed using 1280x640 cells in the x and y directions

respectively. With regard to the CUDA implementation, all kernels employed two dimensional

thread blocks of 16x16 threads per block, resulting in a total of 3200 blocks of threads to be

computed per time step. The GNU compiler was employed with –O3 optimization on all

computations.

The simulation results are also shown in Figure 4. As expected, a travelling shock wave (from

left to right) impacts with the low density / high temperature bubble. The difference in temperature

results in a difference of wave speeds, resulting in a complex series of shocks, expansions and

contact surfaces. The locations of most of the key features of the flow is identical for EFM, UEFM

and TEFM. The dissipative nature of the solution is less apparent due to the second order

extension, with all three solutions being very similar in nature. From these results, we conclude

that either UEFM or TEFM are acceptable approximations to the original Equilibrium Flux

Method.

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 10

3.3 Parallel Performance using GPU

The computational time required for the single-core CPU and single-device GPU simulations

were recorded for a three dimensional blast wave problem using 80x80x80 (approximately 0.5

million) cells. The resulting times are presented in Table 2. For the tests, we employed several

different CPUs – the Intel Xeon E5-2670, and the Intel i3-3220, all using a single core – and

several GPU devices – the Nvidia C2075 Tesla, and the Nvidia GeForce GTX-670. The C2075

is a Fermi architecture device containing 448 CUDA computing cores operating at 1.15GHz

with a memory bandwidth of 144 GB/s. The GTX-670 is a Kepler architecture based device,

containing 1344 CUDA computing cores operating at 0.98 GHz with a memory bandwidth of

approximately 192 GB/s. The comparison between the high-end system performance

(Xeon+Tesla GPU) and the low-end system performance (i3 + GTX GPU) reveals a speedup of

approximately 340 times and 293 times respectively when compared to the computational time

required for a single Xeon core. These reported times are for the TEFM solver – the comparitive

(i.e. GPU-CPU) performance for the UEFM solver is very similar to TEFM, meaning both

methods are readily applied to GPU computation. The high performance is a result of the large

degree to which vectorization is applied to the flux and state computation. In addition, careful

and extensive use of registers are used to ensure reduced communications with global memory,

providing a very high degree of performance.

4. Conclusions

Presented is the investigation into the use of Composite Distribution Functions (CDF’s) for the

approximation of the governing Maxwell-Boltzmann equilibrium particle velocity distribution

function for use in Computational Fluid Dynamics (CFD) simulations. The original continuous

distribution is replaced with a sum of weighted distribution functions which are simpler than the

original distribution functions, with the goal of providing a computationally more efficient

scheme. The resulting schemes, the TEFM and UEFM schemes, are shown to be approximately

10% faster than EFM alone. These schemes are then extended to parallel computation using

Graphics Processing Units (GPUs’), reporting speedups of approximately 340 times using a

C2075 Tesla GPU and 290 times using a GTX-670 when solving a three dimensional

benchmark problem. Results are shown for a two dimensional shock bubble interaction

problem, demonstrating that the GPU implementation is effective and that the proposed

approximations to the governing distribution provide almost equivilent results. Future research

will involve extension of the schemes to both multiple GPU and multiple CPU with explicit

AVX intrinsic parallelization.

Acknowledgements

The corresponding author would like to acknowledge financial assistance made by Taiwan’s

National Science Council (NCS) through grants NSC 99-2221-E-492-005-MY3 and NSC 102-

2221-E-006-115. We would also like to thank Acer for their valuable support through the

loaning of workstations and GPU equipment for testing.

P
o
S
(
I
W
C
S
E
2
0
1
3
)
0
6
8

Accelerated Composite Functions on GPU Matthew R. Smith

 11

References

[1] F.-A. Kuo, M.R. Smith, C.-W. Hsieh, C.-Y. Chou and J.-S. Wu, GPU acceleration for general

conservation equations and its application to several engineering problems, Computers and Fluids,

45[1]: pp. 147-154, 2011.

[2] D.I. Pullin, Direct simulation methods for compressible inviscid ideal-gas flow. Journal of

Computational Physics, 34, pp. 231-44, 1980.

[3] J.C. Mandal and S.M. Deshpande, Kinetic flux vector splitting for Euler equations, Computers

and Fluids, 23[2], pp. 447-478, 1994.

[4] A. Ferguson, M.R. Smith and J.-S. Wu, Accurate True Direction Solutions to the Euler Equations

Using a Uniform Distribution Equilibrium Method, CMES, 63[1]: pp. 79-100, 2010.

[5] M.R. Smith F.-A. Kuo, C.-Y. Chou, J.-S. Wu and H.M. Cave, Application of a Kinetic Theory

based solver of the Euler Equations using GPU, in Parallel Computational Fluid Dynamics: Recent

Advances and Future Directions, Edited by R. Biswas, Pg. 440-445, 2010.

[6] L.-S. Lin, H.-W. Chang, C.-A. Lin, Multi relaxation time lattice Boltzmann simulations of

transition in deep 2D lid driven cavity using GPU, Computers and Fluids, 80, pp. 381-387, 2013.

[7] G.A. Sod, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic

Conservation Laws". Journal of Computational Physics, 27: pp. 1–31, 1978.

[8] M. Čada, M. Torrilhon, Compact third-order limiter functions for finite volume methods, Journal

of Computational Physics, 228: pp. 4118–4145, 2009.

