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1. Introduction

A wide collection of data is currently available for studies of the Underlying Event (UE) in
hadronic collisions. These are related to measurements performed at the CDF and the CMS exper-
iment at different collision energies related to the hadronic activity as a function of the scale of the
hard scattering. The peculiarity of these data lies on the fact, that they extend the usual UE anal-
ysis strategy, as described in [1], in order to disentangle the different contributions coming from
parton shower, multiparton interactions (MPI) and beam remnants. This is performed by dividing
the transverse region in two parts, according to their charged particle content: the one with larger
activity is labelled as "Trans MAX", while the one with less activity is called "Trans MIN". New
tunes, obtained with such detailed data, can properly describe the energy dependence of the UE
and improve the prediction power at higher collision energies, e.g. 13 TeV as in the coming LHC
phase.
In addition, recent data from CMS [2, 3] allow a study of the hardest part of the MPI, namely
events with two hard scatterings inside the same collision: this occurrence is generally called Dou-
ble Parton Scattering (DPS). By tuning event generators to these data, it is possible to estimate the
contribution of DPS to be included in the available models, in order to best describe the measure-
ments. The DPS contribution is generally quantified in the current models by σeff [4] value. The
lower σeff is, the higher is the absolute cross section of a DPS event.

In Section 2, results are shown for the UE-based tunes while in Section 3, the DPS-based tunes
are described. Finally, the compatibility between UE and DPS tunes is also checked and studied.
Section 4 is dedicated to the conclusions.

2. UE tunes

By using CDF data [5] measured in pp̄ collisions at different energies, 300, 900 and 1960
GeV, and CMS data [6] in pp collisions at 7000 Gev, new tunes have been extracted by the CMS
Collaboration, with the machinery provided by the RIVET [7] and the PROFESSOR [8] software.
They have used measurements of multiplicity and pT sum of charged particles with pT > 0.4 GeV
in |η | < 0.8, in the Trans MIN and Trans MAX regions. A new tune has been extracted with the
PYTHIA 6 [9] event generator, with the use of the CTEQ6L1 PDF set [10], and two new tunes have
been measured with PYTHIA 8, with two different PDF sets, CTEQ6L1 and HERAPDF1.5LO
[11]. The parameters, which have been varied in the tuning procedure, are related to the MPI
contribution, the matter overlap distribution and the quantity of colour reconnection. The new
tunes are able to better describe UE data at all energies and they are considered more reliable for
extraction of predictions at higher energy, i.e. 13 TeV, for the coming data taking at LHC. Figure
1 and 2 show comparisons of charged particle multiplicities at 900 and 7000 GeV in the Trans
MIN region with predictions obtained with old and new tunes of, respectively, PYTHIA 6 and
PYTHIA 8. The plots clearly show that the description of data obtained with the new tunes is
much better than the one provided by the old tunes, especially when going at low energy collisions.
The whole collection of results and comparisons is widely documented in [12]. The new tunes also
offer a very satisfying description of other observables measured in the central region, like energy
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flow or particle multiplicity as a function of η , while some tension with the data is still present for
the same quantities, measured in the forward region.
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Figure 1: CDF data for pp̄ at 900 GeV and CMS data for pp collisions at 7 TeV: density of charged particles
with pT > 0.5 GeV/c and |η | < 0.8 in the “transMIN” region as defined by the leading charged particle,
as a function of pmax

T . The data are compared with PYTHIA 6 tune Z2*, Tune Z2*lep and the new CMS
PYTHIA 6 tune.
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Figure 2: CDF data for pp̄ at 900 GeV and CMS data for pp collisions at 7 TeV: density of charged particles
with pT > 0.5 GeV/c and |η |< 0.8 in the “transMIN” region as defined by the leading charged particle, as a
function of pmax

T . The data are compared with PYTHIA 8 Tune 4C and the two new CMS PYTHIA 8 tunes
using CTEQ6L1 and the HERAPDF1.5LO.

3. DPS tunes

DPS observables are used for tuning as measured at the CMS experiment, in the W+dijet [2]
and in the four-jet channels [3]. In particular, the four-jet channel selects an exclusive scenario with
exactly four jets in the region |η | < 4.7, associated in pairs, as follows:

• Hard jet pair: 2 jets with pT > 50 GeV
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• Soft jet pair: 2 jets with pT > 20 GeV

This scenario has been measured in low pile-up data recorded in 2010 by the CMS experiment.
Absolute differential cross sections have been measured as a function of pT and η of the single
jets; they show that only a proper admixture of ME and UE contributions can describe well the
measurements [3]. Normalized differential cross sections have been also measured as a function of
correlation observables between the jets in the final state. The correlation observables are defined
as follows:

• the azimuthal angular differences between the jets belonging to the soft pair

∆φsoft = |φ(jetsoft1)−φ(jetsoft2)|; (3.1)

• the balance in transverse momentum of the two soft jets

∆
rel
soft pT =

|~pT (jetsoft1)+ ~pT (jetsoft2)|
|~pT (jetsoft1)|+ |~pT (jetsoft2)|

; (3.2)

• the azimuthal angle ∆S between the two dijet pairs, defined as:

∆S = arccos
(

~pT (jethard1 , jethard2) · ~pT (jetsoft1 , jetsoft2)

|~pT (jethard1 , jethard2)| · |~pT (jetsoft1 , jetsoft2)|

)
, (3.3)

where jetsoft1 ,(jetsoft2) and jethard1 ,(jethard2) stand for the leading (subleading) soft and hard jet
pairs, respectively. Figure 3 shows the measurements of the normalized cross section as a function
of the correlation observables, compared to predictions obtained with different event generators,
implementing different ME interfaced with PS and UE simulation. The PYTHIA 8 [13] and
HERWIG ++ [14] event generators simulate Leading Order (LO) 2→2 processes, SHERPA [15]
and MADGRAPH [16] generate LO 2→3 and 2→4 diagrams, respectively, while POWHEG [17]
produces Next-to-Leading-Order (NLO) 2→2 processes, with an additional parton included at LO
in the ME. The PS and UE contributions are simulated with the most updated tunes. Predictions
from POWHEG are shown with and without the contribution of MPI. The measurements of the
correlation observables show that, while ∆φ and ∆rel

soft pT are well described by all predictions which
include MPI, the shape of ∆S is more problematic to describe: none of the predictions is able to
properly reproduce the data. In particular, the predictions from POWHEG without the simulation
of MPI are far below the data at low values, where a DPS contribution is expected.

This is the motivation for tuning these observables in order to get the best description of
DPS-sensitive measurements. The shape of ∆rel

soft pT and ∆S have been considered in the tune,
with the same choice of parameters, as done for the UE. New tunes have been obtained with the
PYTHIA 8 generator: one, CDPSP8S1-4j, which has varied only the overlap matter distribution
function, leaving the other parameters equal to the Tune 4C, and one, CDPSP8S2-4j, which has
considered all four UE parameters. Figure 4 shows the measurements, compared to the predictions
obtained with PYTHIA 8 Tune 4C, with PYTHIA 8 Tune 4C with no MPI simulated and with
PYTHIA 8 CDPSP8S1-4j. It can be seen that the agreement progressively improves when going
from predictions without MPI until the new tune which simulates the MPI contribution that fits the
data best.
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Figure 3: Normalized differential cross sections as a function of ∆φso f t (left), ∆S (middle), ∆rel
soft pT (right),

compared to the predictions of POWHEG, MADGRAPH, SHERPA, PYTHIA 8 and HERWIG ++. A
comparison with the POWHEG predictions interfaced with the parton shower PYTHIA 6 tune Z2’ without
MPI is also shown.
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Figure 4: CMS data on the normalized distributions of the correlation observables ∆S (left) and ∆rel pT

(right) measured in 4-jet production compared with PYTHIA 8 Tune 4C, Tune 4C with no MPI, and the new
PYTHIA 8 tune.

In order to test the compatibility among UE- and DPS-based tunes, σeff values measured
in all tunes have been compared: results are shown in Table 1. While UE-based tunes, 4C,
CUETP8S1-CTEQ6L1 and CUETP8S1-HERAPDF1.5LO, predict a relatively high value of σeff,
around 28-30 mb, translating into a low DPS contribution, in DPS-based tunes, CDPSTP8S1-4j and
CDPSTP8S2-4j, σeff is lower with values around 19-22 mb. The DPS component, which describes
the four-jet measurements best, turns out to be higher than the one predicted by the UE tunes.
In addition, UE data [18] have been compared to predictions obtained with the DPS-based tunes:
they have shown an agreement only in some regions of the phase space, with an underestimation of
the lower part of the spectrum [12]. Results indicate that the description of softer and harder parts
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of the MPI within the same framework still shows some tension and might need some additional
refinement.

Table 1: Values of σeff obtained for each PYTHIA 8 tune. The values of the old Tune 4C, the new UE
tunes, CUETP8S1-CTEQ6L1 and CUETP8S1-HERAPDF1.5LO, and the new DPS tunes, CUETP8S1-4j
and CDPSTP8S2-4j, are compared. The uncertainties are obtained from the Professor eigentunes and express
the value of σeff to a variation of the χ2 of the fit by one unit, with respect to the best tune.

PYTHIA 8 Tune PYTHIA 8 σeff value (mb)

4C 30.3
CUETP8S1-CTEQ6L1 27.8+1.2

−1.3
CUETP8S1-HERAPDF1.5LO 29.1+2.3

−2.0
CDPSTP8S1-4j 21.3+1.2

−1.6
CDPSTP8S2-4j 19.0+4.7

−3.0

4. Conclusions

New tunes have been measured by the CMS Collaboration in order to best describe the energy
dependence of UE data: measurements of charged particle multiplicity and pT sum have been used
as measured at the CDF experiment at 300, 900 and 1960 GeV and at the CMS experiment at 7000
GeV. A new set of UE parameters is available for PYTHIA 6, when the CTEQ6L1 PDF set is
used, and two new sets have been released for PYTHIA 8, when respectively the CTEQ6L1 PDF
set and the HERAPDF1.5LO are used. They offer a very good description of observables in the
central region, like energy flow and particle multiplicity as a function of pseudorapidity, but some
discrepancies are still present for measurements in the forward region.
Cross sections of jet spectra and correlation observables have been measured at the CMS experi-
ment in a four-jet scenario: they have shown that a proper admixture of ME and UE contribution
is crucial for a good description of the data. For the description of the correlation observables, the
MPI contribution is strictly necessary in the simulation. New tunes have been constructed based on
the four-jet correlation observables, bringing to values of σeff around 19-22 mb. These are lower
with respect to new UE-based tunes which are around 28-30 mb. This indicates a slight tension in
the description of softer and harder MPI within the same framework.
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