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1. The Knizhnik Zamolodchikov Equation

Let us quickly remind ourselves of the most basic set-up for the KZ equations.

• We consider a free Lie algebraL of wordsw, in a two-letter alphabet on lettersa,b, and
assign a co-product

∆w= ∑
uv=w

u⊗v≡ ∑
u⊂w

u⊗w/u

to such words. We allow foru or v to be the full wordw, and identify the /0 with the unitI,
Iw= wI= w.

• Evaluation of iterated integrals: we can assign to such words iterated integrals in two differ-
ential forms, saydz/z↔ a anddz/(1−z)↔ b, which we assign to the two lettersa,b. This
gives a natural mapφ : L → C such that

φ(w1�w2) = φ(w1)φ(w2),

the evaluation of words is an algebra homomorphism for the shuffle algebra.

• The KZ equation for us simply is

dF(z)
dz

=

(
a
z
+

b
1−z

)

F(z).

The differential forms in it have poles at 0,1,∞. It pays to compare solutions regular at 0
with solutions regular at 1.

• The associatorΦ compares solutions regular at 0 with solutions regular at 1,and is hence a
constant series in multi-commutators:

Φ = 1+ζ (2)[a,b]+ζ (3)([a, [a,b]]− [b, [a,b]]) + . . . .

Note that the KZ equation is a linear differential equations. It evaluates differential forms in a
manner such that the shuffle product structure is preserved.

2. Generalized version

We now want to generalize the above set-up so as to be flexible enough to incorporate Dyson–
Schwinger equations (DSE). For them, we still have a Hopf algebra structure, an associated Lie
algebra structure such that the dual of the Hopf algebra of graphs is the universal enveloping algebra
of that Lie algebra, and we have Feynman rules and the renormalization group equation (RGE).
These structures combine so that we can interpret DSE as generalized KZ equations, by allowing
for non-linearity and quasi shuffles. We need

• A suitable Lie algebraL of graphs , with skeleton graphs -graphs free of subdivergences-
playing the rôle of countably many lettersa,b, · · ·.
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• A generalization to non-linear KZ equations, for example for the combinatorial DSE

X(g2) = 1−g2B+

(
1

X(g2)

)

,

we can set
dF(z)

dz
=−g2a

(
∞

∑
j=0

F�Θ j

)

dz
z

as a generalized KZ equation (which was solved for Yukawa theory in [3]). The RGE ensures
that for renormalized Feynman rulesΦR,

ΦR(w1�Θ w2) = ΦR(w1)ΦR(w2),

which expresses the familiar fact that the leading logs are determined by the renormalization
parts, while the non-leading terms can be captured via multi-commutators (see below) or in
terms of a quasi-shuffle product

au1�Θ bu2 = a(u1�Θ bu2)+b(au1�Θ u2)+Θ(a,b)(u1�Θ u2),

with Θ a commutative and associative map which assigns a new letterto any pair of letters.

The sum over Feynman graphs which appears as a solution of a combinatorial DSE then
dualizes to a series in the dual universal enveloping algebra U (L ) for a Lie algebraL .
Terms of highest order in the leading log expansion -elements of maximal coradical degree-
correspond to highest symmetric powers inU (L ), while the linear terms (in lnS/S0) are
dual to elements ofL ⊂ U (L ), and can be filtered themselves according to the lower
central series filtration ofL , such that angle dependence is relegated to commutators, asin
the example below (see also [4] for a review of these properties of field theory).

• This formally gives generalized associators involving multi-commutators and images ofΘ:

∼ 1+q1
1
2

ζ (2)[a,b]+q2ΦΘ(a,b)+ . . . ,qi ∈Q.

So what isΘ(a,b)? A general answer is given in [2], based on the analysis in [4], and an
example is below.

• For full DSE we have iterated integrals of one forms replacedby renormalized Feynman rules
for graphs with subgraphs. An exhaustive classification of Dyson–Schwinger equations as
combinatorial fixed point equations and generators of sub-Hopf algebras, covering all known
applications in physics, has been given by Loïc Foissy [5].

• In analogy to KZ, the question then is what is the structure of∑Γ ΦR(Γ)Γ?

3. Hall series

A crucial ingredient to tackle such questions is the study ofHall series.
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• Start with the Lie algebraL of graphsΓ whose universal enveloping algebraU (L ) is the
dual of a Hopf algebraH with coproduct

∆Γ = ∑
γ⊂Γ

γ ⊗Γ/γ .

• It has a lower central series filtration:L acquires a descending series of sub-algebrasL =

L1DL2DL3D . . ., whereLn+1 is generated by all[x,y] with x∈ L andy∈ Ln.

• For this, there is a Hall basis: lexicographical ordering ofall elements inL , for example, let
x1 < x2 < .. . < [x1,x2]< .. . (it does not matter which ordering we take as long as we choose
one). We then define[x,x′] to be a (Hall) basis element ofL iff both,

1. x,x′ ∈ L are (Hall) basis elements withx< x′,

2. if x′ = [x′′,x′′′], thenx≥ x′′

are fulfilled.

• This then provides next-to· · · to leading log expansions filtered by ’quasi’-ness (Θ) and
multi-commutators [2].

We now mainly want to exhibit an example. For that, we have to first consider the structure of
Green functions in QFT.

4. Structure of a Green function

Here, we summarize the results of [6, 7].

• Our first concern is the decomposition of variables into couplingsg and kinematical variables
L,θ ,θ0. Here,L = lnS/S0 fixes a scale renormalized atS0, dimensionless variablesθ ,θ0

(’angles’) are provided by scalar-products of external vectors or mass squares measured in
units ofSor S0 to completely specify the kinematics and renormalization conditions.

GR({g},L,{θ ,θ0}) = 1±ΦR
L,{θ ,θ0}

(Xr({g})) (4.1)

with

Xr = 1±∑
j

g jBr ; j
+ (XrQ j(g)),

bBr ; j
+ = 0. This is

• Hochschild closedness:
’B+ acts as it would append a first letter.’

• Then, for kinematic renormalization schemes, the group law⋆ of the Hopf algebra of graphs
is compatible with the additive character of scale variables L:

• ΦR
L1+L2,{θ ,θ0}

= ΦR
L1,{θ ,θ0}

⋆ΦR
L2,{θ ,θ0}

. This is the RGE ([6, 7]).
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• We have an angle and scale separation ([7]):

ΦR(L,{ θ ,θ0}) = Φ−1
fin ({θ0}⋆ΦR

1−scale(L)⋆Φfin({θ}).

In general, in these variables, we have renormalized Feynman rules as forest sums using
Symanzik polynomialsψ ,φ :

ΦR
Γ(L,{θ ,θ0}) =

∫

PE−1(R+)

forestsum
︷︸︸︷

∑
f

(−1)| f |
ln

S
S0

φΓ/ f ψ f+φ0
f ψΓ/ f

φ0
Γ/ f ψ f+φ0

f ψΓ/ f

ψ2
Γ/ f ψ

2
f

ΩΓ
︸︷︷︸

(E−1)−form

where we now have written scales and angles as arguments, notas subscripts. These are well
defined thanks to the marvellous properties of graph polynomials which spill over also to non-
scalar theories [7, 8].
Note thatΦR

Γ is a polynomial inL when evaluated on any finite graphΓ, and that the term linear in
L is given as

ΦR,1
Γ ({θ ,θ0}) =

∫

PE−1(R+)
∑

f

(−1)| f |
1

ψ2
Γ/ f ψ

2
f

φΓ/ f ψ f
(

φΓ/ f ψ f +φ0
f ψΓ/ f

)ΩΓ

We factored a scaleS/S0 from all second Symanzik polynomials.
But how do we finally get some quasi-shuffleΘ?

5. Periods for co-commutative elements

Here, we present an example which is also studied in [4]. We consider the following (combi-
nation of) graphs inφ4

4 .

Γ3 = , Γ4 , = Γ43 = , Γ34a = , Γ34b = .

s34 = Γ43+
1
2
(Γ34a+Γ34b)

c34 = Γ43−
1
2
(Γ34a+Γ34b)

p34 = Γ43+
1
2
(Γ34a+Γ34b−Γ3Γ4)

∆(s34) = s34⊗ I+ I⊗s34+ ⊗ + ⊗

∆(c34) = c34⊗ I+ I⊗c34+ ⊗ − ⊗

∆(p34) = p34⊗ I+ I⊗ p34.

• Look ats34 which is of co-radical degree two. Clearly,

ΦR(s34) = c1
3c1

4L2+c1
s34

L.
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• In general,c1
s34

≡ c1
p34

is not a period but rather a complicated function ofθ ,θ0.

• Assume that we subtract atθ = θ0. c1
s34

could still depend onθ . Alas

c1
s34

=
∫

PΓ

(

1
2

1

ψ2
Γ34a

+
1
2

1

ψ2
Γ34b

+
1

ψ2
Γ43

−
φΓ3ψΓ4 +φΓ4ψΓ3

ψ2
Γ4

ψ2
Γ3
[φΓ3ψΓ4 +φΓ4ψΓ3]

)

ΩΓ

=

∫

PΓ

(

1
2

1

ψ2
Γ34a

+
1
2

1

ψ2
Γ34b

+
1

ψ2
Γ43

−
1

ψ2
Γ4

ψ2
Γ3

)

ΩΓ.

All angle dependence has been eliminated.

• This is thenΦR◦Θ(w3,w4), simply a new period which represents the new letterΘ(w3,w4).
Erik Panzer promises me that his methods [9] will produce this number in due time.

• All completely symmetric insertions of primitive graphs result in integrands involving only
first graph polynomial and define periods corresponding to such new letters.

It remains to consider anti-symmetric insertions of graphs, corresponding to (multi-)commutators.

6. Angle dependence in commutators

• For anti-cocommutative elements likec34 angle dependence remains,

ΦR(c34) = c1
34(θ)L.

• A simple computation reveals

c1
34(θ) =

∫

PΓ

(

1
2

1

ψ2
Γ34a

+
1
2

1

ψ2
Γ34b

−
1

ψ2
Γ43

−
φΓ4ψΓ3 −φΓ3ψΓ4

ψ2
Γ4

ψ2
Γ3
[φΓ3ψΓ4 +φΓ4ψΓ3]

)

ΩΓ. (6.1)

Angle dependence is relegated to anti-cocommutativity. This is true in general [4].

So let us summarize: assume we computeΓ43 say.

We decompose:

Γ43 =
1
2
(p34+c34+Γ3Γ4) .

The product term gives the contribution 60ζ (3)ζ (5)L2, which has its home in the symmetric
square ofL , considered as an element ofU (L ).

p34 gives a new period which we are waiting for. Andc34 ≡ c34(θ) ∈ L2, /∈ L3, carries all
the angle dependence ofc1

Γ34
. This opens a vast arena of questions for algebraic geometry

to be answered in the future. It also shows how beautiful and well-organized the arena of
special functions is which describes any finite order in quantum field theory.
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