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The framework of relativistic quantum-field theories requires Lorentz Invariance. Many theories
of quantum gravity, on the other hand, include violations of Lorentz Invariance at small scales
and high energies. This generates a lot of interest in establishing limits on such effects, and, if
possible, observing them directly. Gamma-ray observatories provide a tool to probe parts of the
parameter space of models of Lorentz Invariance Violation that is not accessible in terrestrial lab-
oratories and man-made accelerators. Transients, especially gamma-ray bursts, are a particularly
promising class of events to search for such phenomena. By combining cosmological distances
with high energy emission and short duration, emitting photons up to 30GeV in less than a sec-
ond, one can measure the energy dependence of the speed of photons to one part in 1016. We will
discuss the potential of HAWC to detect effects of the violation of Lorentz Invariance and place
its sensitivity in the context of existing limits.
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1. Introduction

The HAWC Observatory [1, 2], located at an elevation of 4100m on the volcano Sierra Negra
in Mexico, is expected to be capable of placing limits on certain classes of models for quantum
gravity that predict the violation of Lorentz Invariance.

Relativistic quantum field theory (RQFT) [3], like many modern theories, requires Lorentz
Invariance for consistency. The framework of perturbative RQFT is the basis for the successful
Standard Model of particle physics. On the other hand, it has not been possible so far to develop
a consistent theory that unifies gravity with RQFTs [4]. Nevertheless, models of Quantum Gravity
(QG) have been developed, many of which predict the violation of Lorentz Invariance either at very
high energies or very short distances [5]. In many cases, this can result in observable deviations
from standard theories [6].

It is typically expected for QG to manifest itself fully at the Planck Scale, set by the Planck
Mass mpl =

√
h̄c/G ≈ 1019 GeV. This makes it also a natural scale at which one expects Lorentz

Invariance to be broken. The Planck Scale is not accessible directly in the laboratory or in as-
trophysical objects in the contemporary universe. It is, however, reasonable to expect that small,
residual effects of QG could lead to an observable Lorentz Invariance Violation (LIV) in astro-
particle physics, in particular in observations of high energy gamma rays. One of the familiar
equations that can get modified is the dispersion relation for photons, resulting in an energy depen-
dent speed for the propagation of photons, instead of a constant speed of light in the vacuum c. The
leading term in the modified dispersion relation is [7]:

E2 ' p2c2

(
1+ξn

(
pc

EQG

)n
)
, (1.1)

with EQG being the energy scale for QG effects, normally the Planck scale, and ξn a dimensionless
expansion coefficient. Depending on details of the model, the leading term is linear (n = 1) or
quadratic (n = 2). Higher order leading terms are generally not considered. When quoting limits,
it is common to establish them for a combined scale variable E(n)

QG ≡ EQGξ
−1/n
n . The speed of

propagation of photons derived from eq. (1.1) is

v =
dE
dp
≈ c

(
1+

n+1
2

(
pc

E(n)
QG

)n
)
. (1.2)

The speed of photons is no longer constant, which means that photons emitted simultaneously
will arrive at the observer spread over a time ∆t, which depends on the spread of energy of the
photons produced and the distance to the source. For nearby sources, for example pulsars in our
galaxy, the curvature of the universe can be neglected when calculating the photon travel time and
one obtains for the time spread

∆t =
(n+1)d

2c
∆En(
E(n)

QG

)n ≈
(n+1)d

2c
En

max(
E(n)

QG

)n (1.3)

for the distance to source d and ∆En = En
max−En

min. In most cases, the energy range considered
spreads several orders of magnitude and one can approximate ∆En ≈ En

max.
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For photons traveling cosmological distances, for example those originating from Active Galac-
tic Nuclei (AGN) or Gamma Ray Bursts (GRB), one has to take into account the redshift of the
source and the non-trivial metric of the universe. The resulting expression for the time spread is [8]

∆t =
n+1

2
H−1

0
En

max(
E(n)

QG

)n

∫ z

0

(1+ z′)n

h(z′)
dz′ (1.4)

where h(z) =
√

ΩΛ +Ωm(1+ z)3. The cosmological parameters used in this paper are H0 =

70kms−1 Mpc−1, ΩΛ = 0.7, and Ωm = 0.3. Using the most recent results by Planck [9] does
not affect the HAWC reference scenarios significantly.

2. Limits on the Violation of Lorentz Invariance

Gamma ray observatories have used observations of pulsars, GRBs, and AGNs to set limits
on the scale of QG. A compilation of results can be found in [7], with additional results reported
in [11,15]. The precise estimate of the propagation delay is a non-trivial part of establishing limits
on LIV. A simplifying assumption one can make is that of simultaneous emission of all photons.
Doing this, one automatically over-estimates the contribution of LIV to the spread of arrival times
∆t, since one neglects the contribution of astrophysical effects in the source. Improvements in
modeling the source and more sophisticated analysis techniques can be used to obtain a better
estimate of the contribution of LIV and thereby set more stringent limits.

The current best limits on both the linear and quadratic term have been set by Fermi/LAT’s
observation of GRB090510 [12]. The limits set are E(1)

QG > 9.1 ·1019 GeV and E(2)
QG > 1.3 ·1011 GeV.

The observation of the flare of PKS 2155-304 on MJD 53944 by H.E.S.S provides the best
limits on LIV derived from the observation of AGNs [13]. The reported limit on the quadratic term
of E(2)

QG > 6.4 · 1010 GeV is within a factor of two of the curent best limit set by Fermi/LAT. The
joint analysis by H.E.S.S. and Fermi/LAT of the flaring of PG 1553+113 in April 2012 [14] shows
the potential of combining results from multiple observatories, even though the limits are slightly
worse than those H.E.S.S obtained from PKS 2155-304.

The best limits derived from pulsars have been set by VERITAS’ observation of the pulsation
of the Crab [16]. The limits reported are E(1)

QG > 1.7 ·1017 GeV [10] and E(2)
QG > 7 ·109 GeV [11].

3. Potential of HAWC for setting limits on LIV

We use the sources studied by other observatories in the analyses quoted in section 2 to con-
struct reference scenarios for the HAWC observatory and establish its potential to set limits on
LIV.

The scenario for setting limits on LIV from GRBs is motivated by the properties of the short
burst GRB090510 [17] and of the long burst GRB130427A [15]. Our reference scenario is a
short burst with ∆t = 1sec at a redshift of z = 1, with a maximum observed photon energy of
Emax = 100GeV, close to that of GRB130427A [15]. Such a burst is detectable by HAWC if it
occurs in its field of view [18]. The time spread and redshift assumed in this scenario are clearly
compatible with observed GRBs used to set limits on LIV [15, 17, 19]. In this scenario, it is
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possible for HAWC to set a limit of 4.9 · 1019 GeV for the linear term E(1)
QG and 1.1 · 1011 GeV

for E(2)
QG. Comparing these numbers with the limits reported in section 2 shows that HAWC can

set competitive limits even with very basic analysis techniques. Improvements to modeling and
analysis are expected to allow HAWC to set more stringent limits.

Our reference scenario for pulsars is motivated by the VERITAS observation of the Crab pul-
sar at energies up to 120GeV [16] and the limits on LIV derived from that observation [10,11]. We
assume a time spread ∆t = 1ms, a factor of 10 larger than used in the VERITAS limit. This arbi-
trary degradation of the resolved time spread was chosen since the potential of HAWC to observe
pulsations, and therefore details of the light curve, of the Crab Nebula has not yet been demon-
strated. The degenerated time resolution gets compensated by assuming an increased maximum
energy of Emax = 500GeV for a pulsar at a distance of 2kpc. Assuming the observation of such a
pulsar, HAWC could establish limits for the linear term E(1)

QG up to 1017 GeV and for the quadratic

term E(2)
QG of up to 9 · 109 GeV. The assumption of an increase in the observed Emax allows for an

improved limit on the quadratic term, despite the worsened limit on the time difference. One has to
assume that such a source, if it exists, will also be observed by Imaging Air Cherenkov Telescopes
(IACTs). It will remain to be seen if the HAWC’s ability to monitor a pulsar continuously will be
able to compensate for increased detail of observations by IACTs.

It is unlikely that HAWC will be able to improve on limits derived from the observation of
flaring AGNs by IACTs. The lower statistics of HAWC results in less detail in light curves, which
in turn results in a less stringent estimate of ∆t.

Of the sources considered here, one-shot transients like GRBs provide the most favourable
objects for setting stringent limits on LIV. HAWC can reach higher in energy than satellites like
Fermi and has a larger probability to see a GRB in its field of view than an IACT. Combining
observations by HAWC with satellite based observations has the potential to provide even better
limits on LIV. Pulsars have the advantage that they are long-lived and therefore reliably detectable,
even though HAWC’s ability to observe pulsation still has to be established. The large field of view
and high duty cycle of HAWC results in a large accumulated time on each source, which can make
up for the detail in the high statistics but time-limited observations by IACTs.

4. Conclusions

We developed scenarios establishing the potential of the HAWC Observatory to set limits
on LIV in models with modified speed of propagation of photons. Using observations of GRBs,
HAWC has the potential to set competitive limits. So far, we consider only very simple scenarios
and analysis techniques. We expect to improve the potential of HAWC in this area in the future.
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