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1. Introduction

Low-energy scattering observables of two baryons are essential to determine the baryon-

baryon interactions which are important inputs for (hyper-)nuclear physics. Theoretical studies

of the strangeness S = −2 two-baryon system where possibility of the H-dibaryon is discussed

[1, 2] are significant because experimental data are quite limited. However it has been thought

to be impossibly difficult to solve the dynamics of quarks and gluons from QCD because of its

non-perturbative nature at low-energies.

Lattice QCD approach enables us to tackle the problem non-perturbatively by numerical simu-

lations. In the framework, M. Lüscher firstly proposed to relate the energy E of a two-particle state

in a finite box to the elastic scattering phase δ (E) in the continuum [3]. The relation is derived

by using the asymptotic behavior of the two-particle Nambu-Bethe-Salpeter (NBS) wave function

ψ(r), if the range of the interaction is sufficiently smaller than the size of the box.

An alternative approach to the hadron interactions from lattice QCD has been proposed [4, 5]

and has been extensively developed by the HAL QCD Collaboration [6, 7, 8, 9, 10, 11, 12, 13, 14],

called the HAL QCD method. In the method, we define the energy-independent and non-local

potential U(r,r′) from ψ(r) which obeys the Schrödinger type equation in a finite box. Using the

obtained U which receives only weak finite volume effect, we can simply calculate the scattering

phase shifts and bound state spectra in infinite space to compare the results with experimental data.

A further advantage of the HAL QCD method is that it can be generalized straightforwardly

to the case of inelastic scatterings. As discussed in the next section, we straightforwardly con-

struct the coupled channel Schrödinger equation once all corresponding NBS wave functions are

obtained. Once such a potential is constructed in the finite volume, we can calculate any scattering

observebles which one needs by solving the Schrödinger equation in the infinite volume.

The BB interactions in the flavor SU(3) limit have been studied systematically in full QCD

simulations on the lattice by the HAL QCD method for several masses of the pseudo-scalar meson

mPS = 470−1170 MeV [9]. In such situation, the H-dibayon was found in flavor singlet state for

all quark masses. In this paper, we investigate the BB interaction in the H-dibaryon channel with

the explicit SU(3) breaking on the basis of the coupled channel HAL QCD method developed in

our previous works[7, 14].

2. Coupled channel BB potentials

In this section, we briefly define coupled channel potentials in the HAL QCD method follow-

ing Ref. [7] considering the S =−2 BB system as ΛΛ ↔ NΞ ↔ ΣΣ inelastic scatterings.

We first introduce the normalized 4-pt correlation function R in channel c defined as

Rc
Id
(~r, t) ≡ 〈0 | Bc1

(~x+~r, t)Bc2
(~x, t)I d(t0 = 0)|0〉

√

Zc1
Zc2

exp[−(mc1
+mc2

)t]
= ∑

n

ψc
Wn
(~r)e−∆W c

n tA
Wn

d + · · · , (2.1)

where ∆W c
n =Wn−mc1

−mc2
with the total energy Wn and baryon mass mci

, and A
Wn

d = 〈Wn|I d(0)|0〉.
The ellipses in Eq.(2.1) denote inelastic contributions from channels which we are not considering.

The equal-time NBS wave function ψc
Wn

is embedded in the R-function. An interpolating operator

Bc j
(~x, t) with a channel index, c, and particle index, j = 1,2, denotes a local composite operator for

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
8
8

Strangeness S =−2 two-baryon system with physical masses Kenji Sasaki

octet baryons with its wave-function renormalization factor
√

Zc j
. The corresponding asymptotic

momentum kc
i in the center-of-mass (CM) frame is defined through the relation,

Wn =
√

m2
c1
+(kc

n)
2 +
√

m2
c2
+(kc

n)
2. (2.2)

In the non-relativistic approximation valid at low energies, we can replace the kinetic energy

term in the equation with the time derivative as

− ∂

∂ t
Rc

Id
(~r, t) = ∑

n

∆W c
n ψc

Wn
(~r)e−∆WntA

Wn

d , (2.3)

with which we obtain the Schrödinger type equation,

(

− ∂

∂ t
−Hc

0

)

Rc
Id
(~r, t) =

∫

d3r′U c
e(~r,~r

′)∆c
eRe

Id
(~r′, t), (2.4)

where H0
c = − ∇2

2µc and ∆c
e = exp[−(me1

+me2
)t]/exp[−(mc1

+mc2
)t]. If we go beyond the non-

relativistic approximation, higher-order time-derivatives appear, which we will not consider in this

paper. In order to control the non-locality of the potential, the derivative expansion is carried out

as U(~r,~r′) = (VLO(~r)+VNLO(~r)+ · · · )δ (~r−~r′), where NnLO term is of O(~∇n) and its convergence

has been confirmed for the NN case [8].

The flavor structures of baryons are given as

S = 0 I = 1/2 : p = [ud]u, n = [ud]d

S =−1 I = 1 : Σ+ =−[us]u, Σ− =−[ds]d, Σ0 =− 1√
2
([ds]u+[us]d)

S =−1 I = 0 : Λ = 1√
6
([sd]u+[us]d −2[du]s)

S =−2 I = 1/2 : Ξ0 = [su]s, Ξ− = [sd]s

(2.5)

where a square bracket stands for an antisymmetric combination. Focusing on the H-dibaryon

channel in the S =−2 system, we only consider the I = 0 channel due to the Fermi-Dirac statistics

of two baryons. They are defined as

(ΛΛ)I=0 = ΛΛ, (NΞ)I=0 =

√

1

2

(

pΞ−−nΞ0
)

, (ΣΣ)I=0 =

√

1

3

(

Σ+Σ−+Σ−Σ+−Σ0Σ0
)

. (2.6)

The relation between particle basis and SU(3) basis is given by SU(3) coefficients as

∣
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∣
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〉

(2.7)

for 1S0(I = 0) (H-dibaryon) channel.

3. Lattice setup

We employ N f = 2+ 1 gauge configurations are generated with the Iwasaki gauge action

at β = 1.82 and nonperturbatively O(a)-improved Wilson quark action with csw = 1.11 on the

3
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Table 1: Baryon masses in units of MeV.

particle N Λ Σ Ξ

mass [MeV] 956 ± 11 1124 ± 3 1206 ± 4 1330 ± 1

L3 ×T = 963 ×96 lattice. The hopping parameters for light (ud) and strange quarks are choosen as

(κud ,κs) = (0.126117,0.124790) corresponding to mπ ≃ 146 MeV and mK ≃ 525 MeV with a−1 ≃
2.33 GeV (a ≃ 0.085fm). The total statistics used in this report amounts to 200 configurations × 4

rotations × 20 wall sources. This lattice setup brings about the almost physical point simulation of

the BB interaction on the large lattice volume of (8.2fm)4 where a finite volume effects of the BB

potential could be neglected. The calculated baryon masses in this setup are listed in Tab. 3.

Quark propagators are calculated in consideration of the spatial wall source by imposing

Coulomb gauge fixing at t0 = 0 with the Dirichlet boundary condition in temporal direction at

t = 48. The forward and backward propagations of baryon 4-pt correlator are averaged and four

rotated gauge configurations are used to reduce the statistical errors. An average over the cubic

group is taken for the sink operator to project on the S-wave in the BB wave function.

4. Results and discussions

We now present our results of coupled channel BB potentials in strangeness S = −2 sector.

The potential matrix elements V i
js are calculated by using the NBS wave functions at t = 10 1.
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Figure 1: The ΛΛ(red), NΞ(blue) and ΣΣ(green) potentials are shown in the left panel. The ΛΛ-NΞ(red),

ΛΛ-NΞ(blue) and NΞ-ΣΣ(green) transition potentials are shown in the right panel.

Potentials in 1S0 with S = −2 and I = 0, in which ΛΛ, NΞ and ΣΣ channels are coupled, are

shown in Fig. 1. In the left panel, we find that all diagonal elements of the potential matrix have

a repulsive core at short distances, whose strength, however, strongly depends on its state. On the

other hand, an attractive pocket appears only in two diagonal elements, V ΛΛ
ΛΛ and V NΞ

NΞ, where

V NΞ
NΞ has relatively weaker repulsive core than V ΛΛ

ΛΛ does, while V ΣΣ
ΣΣ is totally repulsive in

1We will increase t to suppress inelastic contributions, as statistical errors will be decreased in future.
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the whole range of r. Among the off-diagonal elements given in the right panel in Fig. 1, V ΛΛ
NΞ is

smaller than other two, so that the decay rate from NΞ to ΛΛ may be rather suppressed.
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Figure 2: Potential matrix in the SU(3) basis for 1S0 with S =−2 (I = 0). The diagonal elements, V 1
1(blue),

V 8
8(green) and V 27

27(red) are shown in the left panel, while panel off-diagonal ones, V 1
8(blue), V 1

27(red)

and V 8
27(green) in the right panel.

It is instructive to observe the potentials in the basis of the SU(3) irreducible representations

which is obtained by using Clebsch-Gordan coefficients given in eq. (2.7). The potential matrix in

the SU(3) basis for 1S0 (I = 0) is given in Fig. 2. As in the case of the SU(3) limit [9], the diagonal

element for the flavor singlet state, V 1
1, is strongly attractive, while V 8

8 is repulsive at all distances

with relatively large statistical errors. The attractive nature of the flavor singlet basis is consistent

with the absence of the quark Pauli blocking effect and the attractive color-magnetic interaction

for quarks predicted in Ref. [15]. For the potential in 27-plet basis, we find a familiar shape of

potential to nuclear potential, a short-range repulsive core is surrounded by an attractive pocket.

It is easily understood because the NN (1S0) channel belongs to the same multiplet in the SU(3)

symmetric limit.

Transition potentials between different SU(3) bases are effective measure for the symmetry

breaking effects because such a transition never happens if we consider the exact flavor symmetry.

The right panel in Fig. 2 shows that off-diagonal potentials are consistent to be zero within errorbars

in whole region, so that the symmetry breaking effects might not be so large even in the nearly

physical point simulation.
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Figure 3: Effective ΛΛ and NΞ coupled channel potential. The original potentials by three-channel calcu-

lation are also shown for comparison.

Up to this point, we look over the potential matrix in the H-dibaryon channel which is not

suitable to calculate any scattering observables due to large statistical noises. To reduce the errors,

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
8
8

Strangeness S =−2 two-baryon system with physical masses Kenji Sasaki

we attempt to evaluate an effective coupled channel potential by integrating out the ΣΣ state. The

effective potential is valid below the ΣΣ threshold up to non-locality error. Under this situation, the

effective potential matrix Ṽ i
j is obtained as

(

Ṽ ΛΛ
ΛΛ (~r) Ṽ ΛΛ

NΞ (~r)∆ΛΛ
NΞ

Ṽ NΞ
ΛΛ (~r)∆NΞ

ΛΛ Ṽ NΞ
NΞ (~r)

)

≃
(

(− ∂
∂ t
−HΛΛ

0 )RΛΛ
IΛΛ

(~r, t) (− ∂
∂ t
−HΛΛ

0 )RΛΛ
INΞ

(~r, t)

(− ∂
∂ t
−HNΞ

0 )RNΞ
IΛΛ

(~r, t) (− ∂
∂ t
−HNΞ

0 )RNΞ
INΞ

(~r, t)

)(

RΛΛ
IΛΛ

(~r, t) RΛΛ
INΞ

(~r, t)

RNΞ
IΛΛ

(~r, t) RNΞ
INΞ

(~r, t)

)−1

. (4.1)

Fig. 3 shows the effective ΛΛ and NΞ coupled channel potential. Although the effective ΛΛ

potential is similar to the original one, the effective NΞ potential becomes deeper comparing to the

original NΞ potential and its errorbars are largely reduced. Transition potential, whose errorbars

are also reduced considerably, is relatively stronger than the original one at short distances. The

main differences can be only seen in r < 0.7fm which means that the channel truncation effects

would emerge in high momentum scattering regions.
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Figure 4: Preliminary results of ΛΛ and NΞ scattering phase shifts. The result with the potential at t = 9 is

given in the left panel, while one at t = 10 is in the right panel

Fig. 4 shows the ΛΛ and NΞ phase shifts by using the channel truncated potentials. We find

that there is qualitatively equivalent resutlts between the phase shift at t = 9 and t = 10. The results

show that there is a clear resonance just below the NΞ threshold. Since inclusion of ΣΣ channel

effects could not affect very much for low energy ΛΛ phase shifts, these results implicate that a

deeply bound H-dibayon state would not be generated even in more sophisticated calculations.

5. Conclusions

We have investigated S = −2 BB interactions from lattice QCD employing N f = 2+1 gauge

configurations with (96a)4 and a ≃ 0.085fm lattice, where mπ ≃ 146 MeV and mK ≃ 525 MeV.

Baryon potentials have been calculated by the coupled channel HAL QCD method with consider-

ations of not only spacial but also temporal correlations of baryon 4-pt correlation functions which

involves the equal-time NBS wave functions.

We find that both the ΛΛ and NΞ potentials in the 1S0 channel have a long-range attractive

pocket and a short-range repulsive core. The strength of repulsive core of NΞ potential is rather

6
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weaker than that of ΛΛ one. We also find that the potential in flavor singlet 1S0 channel, which is

obtained with a help of SU(3) CG coefficients, is strongly attractive which is a similar consequence

of the consistent quark model. Since the obtained potentials are largely fluctuated to calculate

several observables, we perform a provisional calculation of coupled ΛΛ and NΞ effective poten-

tials. The effective potentials which could be valid in the region where the energy is small enough

from the ΣΣ threshold yield the clear resonance behavior of the ΛΛ phase shift just below the NΞ

threshold.

The results in this paper are still very preliminary but further investigations will be performed

with high statistics data.
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