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1. Introduction

Monte Carlo simulations of QCD at nonzero chemical potential are strongly hindered by the
sign problem, as the complex fermion determinant prohibits the use of importance sampling meth-
ods. Most known methods to circumvent the sign problem in QCD have a computational cost that
grows exponentially with the volume. An alternative that has recently caught a lot of attention is the
complex Langevin (CL) method [1]. The CL stochastic differential equation uses the drift gener-
ated by the complex fermion action to evolve the complexified gauge configurations in the SL(3,C)
gauge group. After equilibration, and if a number of conditions are met [2], the time evolution of
these configurations should reproduce the correct QCD results for gauge invariant observables.

Although the sign problem in QCD is particularly serious in four dimensions, it is already
present in lower dimensions. In this talk we present a study on the viability of the CL method
in 0+1d, where the sign problem is mild, and in 1+1d in the strong coupling limit where the sign
problem is quite large in some regions of parameter space depending on the chemical potential,
quark mass, temperature and spatial volume.

2. Partition function and Dirac operator

We consider the strong coupling partition function

Z =
∫ [

∏
x

∏
ν

dUx,ν

]
detD({Ux,ν}) (2.1)

with d-dimensional staggered Dirac operator

Dxy = mδxy +
1
2

[
eµUx,0δx+0̂,y− e−µU−1

y,0 δx−0̂,y

]
+

1
2

d−1

∑
i=1

ηi(x)
[
Ux,iδx+î,y−U−1

y,i δx−î,y

]
(2.2)

for a quark of mass m at chemical potential µ and antiperiodic boundary conditions in the temporal
direction. The staggered phases are ην = (−1)x0+x1+...+xν−1 , ν̂ is a unit step in direction ν , and we
set the lattice spacing a = 1. At zero µ the determinant of the Dirac operator is real and positive in
SU(3), but at nonzero real µ the operator is no longer antihermitian, as D(µ)† =−D(−µ), and its
determinant becomes complex.

3. Complex Langevin evolution

We represent the gauge links using the Gell-Mann parameterization

U = exp
[

i∑
a

zaλa

]
, (3.1)

with Gell-Mann matrices λa and eight complex parameters za for U ∈ SL(3,C).
According to the CL equation, the discrete time evolution of Ux,ν in SL(3,C) is given by the

rotation [1]

Ux,ν(t +1) = Rx,ν(t)Ux,ν(t), (3.2)
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where in the stochastic Euler discretization Rx,ν ∈ SL(3,C) is given by

Rx,ν = exp
[

i∑
a

λa(εKa,x,ν +
√

ε ηa,x,ν)

]
, (3.3)

with drift term

Ka,x,ν =−Da,x,ν(S) =−∂αS(Ux,ν → eiαλaUx,ν)|α=0, (3.4)

real Gaussian noise ηa,x,ν with variance 2, fermion action S = − logdetD and discrete Langevin
time step ε .

4. Gauge cooling

Previous studies using the CL method have shown that incorrect results are obtained when
the simulation wanders off too far in the imaginary direction. In gauge theories it was suggested
to counter this problem using gauge cooling, where the SL(3,C) gauge invariance of the theory is
used to keep the trajectories as closely as possible to the SU(3) group [3].

A general gauge transformation of the link Ux,ν is given by

Ux,ν → Gx Ux,ν G−1
x+ν̂

(4.1)

with Gx ∈ SL(3,C). Gauge cooling corresponds to the minimization of the unitarity norm

||U ||= ∑
x,ν

tr
[
U†

x,νUx,ν +
(
U†

x,νUx,ν
)−1−2

]
(4.2)

over all Gx, which is usually done via steepest descent.
Clearly, observables are invariant under gauge transformations and so is the drift term in the

CL equation. However, as the noise distribution in the CL equation is not invariant under SL(3,C)
gauge transformations, the gauge cooling and Langevin steps do not commute, which leads to
different trajectories in configuration space when cooling is introduced. Although this is exactly
the aim of the cooling procedure, it is still an open question whether or under what conditions this
procedure leads to the correct QCD expectation values (see also [4] for recent developments).

5. QCD in 0+1 dimensions

We first consider 0+1d QCD where the determinant of the Dirac operator (2.2) can be reduced
to the determinant of a 3×3 matrix [5]

detD ∝ det
[
eµ/T P+ e−µ/T P−1 +2cosh(µc/T ) 13

]
(5.1)

with Polyakov line P = ∏t U(t) and effective mass µc = arsinh(m). The partition function is then
a one-link integral of detD over P without gauge action. As analytic results [5, 6], as well as
numerical solutions using subsets [7], are available in this case, the correctness of the numerical
results obtained with the CL method can be verified.
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Figure 1: Quark density and chiral condensate as a function of µ/T for m = 0.1: data (top row) and
statistical significance of the deviation between numerical and analytical results (bottom row).
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Figure 2: Density of the value of the determinant in the complex plane for µ/T = 1 and m = 0.1 for the
uncooled (left) and cooled (right) cases.

Note that some modified models for 0+1d QCD were already solved using the CL method,
including a one-link formulation with mock-gauge action [8] and a U(Nc) theory in the spectral
representation [9].

In 0+1d QCD gauge transformations (4.1) simplify to

P→ GPG−1, (5.2)

only depending on a single G ∈ SL(3,C). It is easy to show that in this case maximal cooling,
i.e. minimizing (4.2), is achieved by the similarity transformation diagonalizing P. We found that
cooling typically reduces the unitarity norm by about two orders of magnitude.

In Fig. 1 we show the results for the quark density and chiral condensate as a function of
µ/T for m = 0.1. Below the data we show the statistical significance of the deviation between
the numerical result y and the analytical result yth, i.e. |y− yth|/σy. For the uncooled results the
deviation is far too large to be attributed to statistical fluctuations and we conclude that the CL
method introduces a systematic error. After cooling, however, the CL results are in agreement with
the theoretical predictions within the statistical accuracy (except for µ ≈ 0.7 where the deviation is
still somewhat too large for the chiral condensate). Gauge cooling seems absolutely necessary to
get the correct result, even in this one-dimensional gauge theory.

To illustrate the effect of gauge cooling on the SL(3, C) trajectories we show how the density
of the determinant in the complex plane is affected by cooling in Fig. 2. The effect is quite dramatic,
as the origin, which is inside the distribution without cooling, is clearly avoided when cooling is
applied. Avoiding the singular drift at the origin could be a necessary condition for the complex
Langevin to yield the correct result [2, 10].
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Figure 3: Distribution of the real part of the chiral condensate (left) and quark number density (right) at
µ/T = 1 and m = 0.1 in the uncooled (red) and cooled (blue) cases.
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Figure 4: Quark density (left) and chiral condensate (right) as a function of the chemical potential for
m = 0.1,0.5,1.0,2.0. We compare uncooled (red) and cooled (blue) CL results with subset results (line).

Another known signal for problems in the CL method is the existence of skirts in the distri-
bution of the (real part of the) observables [11]. This is illustrated in Fig. 3. Without cooling the
observables have very wide skirts, hinting at a polynomial decay, while after cooling very sharp
exponential fall offs are observed.

Note that in the 0+1d case we can also parameterize the Polyakov line in its diagonal repre-
sentation with two complex parameters. The numerical results obtained with the CL method in
this representation agree with the analytical predictions. This is consistent with the above results as
gauge cooling also brings the Polyakov line to its diagonal form in the Gell-Mann parameterization.

6. QCD in 1+1 dimensions

A more stringent test of the CL method is provided by 1+1d QCD where the sign problem
is more severe. The staggered Dirac operator is given in (2.2) and in this work we restrict our
simulations to the strong coupling case. The complex Langevin equations are given in Sec. 3 and
the gauge cooling procedure in Sec. 4.

All results shown here are preliminary and were obtained on a 4×4 lattice. We are currently
performing further evaluation runs for lattices of size Ns×Nt = 4×{2,6,8,10}, 6×{2,4,6,8} and
8×{2,4,6,8}.

To validate the CL method we compare our CL measurements with results obtained using the
subset method [12, 13]. As can be seen in Fig. 4, the results of the bare or uncooled CL are not
consistent with the subset data, in all cases considered. After cooling the situation is much im-
proved and the large mass CL simulations agree very well with the subset results over the complete
µ-range. However, for the smallest mass value (m = 0.1), even the cooled CL does not produce
correct results over a large range of µ values. Furthermore, a close inspection of the m = 0.5 re-
sults also shows a significant deviation. Clearly, the CL does not work for light quarks even after
applying full gauge cooling.
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Figure 5: Density distribution of the determinant value for µ = 0.07 (top) and µ = 0.25 (bottom) in the
uncooled (left) and cooled (right) case.

10-6

10-5

10-4

10-3

10-2

10-1

100

101

-20 -15 -10 -5  0  5  10  15  20

d
is

tr
ib

u
ti

o
n

chiral condensate  Σ

Σ=2.058(3)
Σ=2.232(2)
Σ=2.23(1)

µ=0.07

uncooled
cooled

10-6

10-5

10-4

10-3

10-2

10-1

100

-20 -15 -10 -5  0  5  10  15  20

d
is

tr
ib

u
ti

o
n

chiral condensate  Σ

Σ=1.931(3)
Σ=2.177(3)
Σ=2.20(1)

µ=0.15

uncooled
cooled

10-6

10-5

10-4

10-3

10-2

10-1

100

-20 -15 -10 -5  0  5  10  15  20

d
is

tr
ib

u
ti

o
n

chiral condensate  Σ

Σ=1.597(3)
Σ=1.801(3)
Σ=2.10(1)

µ=0.23

uncooled
cooled

Figure 6: Distribution of the real part of the chiral condensate for µ = 0.07,0.15,0.23 for m = 0.1 without
(red) and with (blue) cooling.

To investigate why gauge cooling does not work for small masses, we look at its effect on
the density distribution of the determinant for m = 0.1. In Fig. 5 we see that for µ = 0.07, where
the CL results seem correct, cooling significantly changes the distribution: it squeezes the density
along the real axis while also pushing it away from the origin. For µ = 0.25, however, cooling has
very little effect: the fireball is somewhat shifted to the right but its shape remains approximately
unchanged and the origin is still inside the distribution. The CL results are thus incorrect when
cooling is unable to change the distribution substantially, such that it still contains the origin and
remains broad in the imaginary direction.

We also looked at the effect of cooling on the distribution of the observables. This is illustrated
in Fig. 6, which shows the distribution of the real part of the chiral condensate for increasing chem-
ical potential, without and with cooling for m = 0.1. The uncooled distribution always displays
skirts, with a decay that is fairly independent of µ . With gauge cooling we observe that the skirt
vanishes for small chemical potentials, but as it is increased the skirts gradually reappear, signaling
that the results of the CL method gradually become untrustworthy for light quarks, even in the
presence of cooling, as we move into the region that has a substantial sign problem.
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7. Conclusions

In this work we have shown that in 0+1d QCD the results obtained with the complex Langevin
method deviate significantly from the analytical predictions when no gauge cooling is applied.
After introducing gauge cooling the correct results are recovered.

In 1+1d QCD at strong coupling the uncooled CL method yields wrong results for any mass
and chemical potential. When applying gauge cooling the results are rectified for heavy quarks, but
for light quarks the results remain incorrect for a significant range of the chemical potential.

Gauge cooling seems absolutely necessary, although not sufficient in some cases. As the
quarks get lighter and the sign problem larger, gauge cooling no longer works properly. The results
were validated by comparing with subset measurements, but signals for wrong convergence are also
available within the CL method itself, such as skirts in observable distributions, and distributions of
the determinant that contain the origin and are broad in the imaginary direction, even after cooling.

From our study we conclude that much remains to be understood about the complex Langevin
method and its applicability to QCD. Several suggestions presented in the literature such as changes
of variables [14] or using different cooling norms or gauge fixing conditions [15] should be inves-
tigated. We are currently validating the CL method for light quarks on larger lattices and in the
presence of a gauge action, as it is believed that the CL method performs better in the weak cou-
pling regime. Several unanswered questions remain: does the CL method work when the sign
problem is large and how well can we trust its results considering that its degradation seems to
happen gradually and not in an on-off way?
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