
P
o
S
(
C
D
1
5
)
0
8
8

Hadronic uncertainties and isospin violation in
supersymmetric dark matter models

Lewis C. Tunstall∗
Albert Einstein Center for Fundamental Physics,
Institute for Theoretical Physics, University of Bern,
Sidlerstrasse 5, CH–3012 Bern, Switzerland
E-mail: tunstall@itp.unibe.ch

Andreas Crivellin
CERN Theory Division,
CH–1211 Geneva 23, Switzerland

Martin Hoferichter
Institute for Nuclear Theory, University of Washington,
Seattle, WA 98195-1550, USA

Massimiliano Procura
Fakultät für Physik, Universität Wien,
Boltzmanngasse 5, A–1090 Vienna, Austria

Current limits from dark matter direct-detection experiments place a powerful constraint on the
parameter space of the Minimal Supersymmetric Standard Model (MSSM). The interpretation
of these limits, however, depends sensitively on the hadronic uncertainties associated with the
scattering of supersymmetric dark matter particles off nucleons. For spin-independent scattering,
we review the role of 2- and 3-flavour chiral perturbation theory in the determination of these
hadronic uncertainties, and quantify the amount of isospin violation within several simplified
versions of the MSSM. In each case, we identify parameter-space configurations that produce
(almost) vanishing cross sections and examine the complementarity of constraints due to direct-
detection, flavour, and collider experiments. In the vicinity of these so-called blind spots, we find
that isospin violation may be much larger than typically expected in the MSSM.

The 8th International Workshop on Chiral Dynamics, CD2015
29 June 2015 - 03 July 2015
Pisa, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:tunstall@itp.unibe.ch


P
o
S
(
C
D
1
5
)
0
8
8

Hadronic uncertainties and isospin violation in supersymmetric dark matter models Lewis C. Tunstall

1. The Dark Matter Puzzle

There is nowadays a consensus of evidence from astrophysical observations [1,2] that the total
matter density in the Universe ΩM ≈ 0.3 is dominated by a component of non-baryonic origin. The
data imply that this exotic form of matter is cold, non-luminous (i.e. “dark”), and has a present-day
density of ΩDM ≈ 0.25. Among several possible candidates, weakly interacting massive particles
(WIMPs) have received considerable attention from both theorists and experimentalists.

The appeal of WIMP dark matter stems from the observation that the contribution to ΩDM

from a massive particle χ is determined (up to logarithmic corrections) by the χχ annihilation
cross-section σann into lighter particles,

Ωχ ≈
10−13 barn
〈σannv〉

, (1.1)

where v is the relative velocity of the incoming χs and 〈. . .〉 denotes a thermal average. If χ has
weak-strength interactions, then 〈σannv〉 is of the order of a picobarn and Ωχ can reproduce part or
all of the observed relic density ΩDM. Taken at face value,1 this so-called WIMP miracle provides
a surprising connection between dark matter and the electroweak scale, where solutions to the
hierarchy problem of the Standard Model (SM) are expected to give rise to new physics.

An explicit realisation of this picture occurs in the Minimal Supersymmetric SM (MSSM),
where softly-broken supersymmetry stabilises the electroweak scale, while an exact R-parity en-
sures that the lightest superpartner (LSP) is a stable neutralino (also denoted by χ) with electroweak
couplings and a mass in the range from tens to hundreds of GeV. If dark matter is composed of neu-
tralinos, then galactic rotation curves imply there should be a considerable flux of these particles
in the Milky Way. This opens up the possibility of detecting neutralinos directly using terres-
tial experiments, where e.g. the elastic scattering of neutralinos off nuclei may leave measurable
imprints in the recoil energy of the target. Although no conclusive signal has yet been found in
such direct detection experiments, the current exclusion limits from LUX [4], as well as upcoming
proposals like XENON1T [5] and LUX-ZEPLIN (LZ) [6], can lead to strong constraints on the
parameter space of the MSSM. The interpretation of these limits, however, depends sensitively on
the hadronic uncertainties associated with the χ–nucleon scattering cross-section.

Here we review the role of 2- and 3-flavour chiral perturbation theory in the determination of
these hadronic uncertainties (Sec. 2), and quantify the amount of isospin violation within several
simplified models of the MSSM (Sec. 3). This is a summary of a general analysis [7] concerning
parameter space regions where the χ–nucleon scattering cross-section is strongly suppressed. A
key feature of our work is that in the vicinity of these so-called blind spots [8, 9], isospin-violation
may be much larger than typically expected in the MSSM. Concluding remarks are given in Sec. 4.

2. Hadronic Matrix Elements and Neutralino-Nucleus Scattering

In general, the elastic scattering of the LSP off a nucleus N = A
ZX can involve spin-dependent

and spin-independent (SI) interactions. Focusing on the latter, the key observable of interest is the

1There are well known cases [3] where the estimate in (1.1) no longer applies.
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χ–N scattering cross-section at zero momentum transfer

σSI =
4µ2

χ

π
[Z fp +(A−Z) fn]

2 , (2.1)

where µχ = mχmN /(mχ + mN ) is the reduced mass of the χ–N system, and fp and fn are
effective SI couplings of the LSP to the proton and neutron respectively. For nucleons N, the χ–N
couplings fN are defined by

fN

mN
= ∑

q=u,d,s
f N
q Cq + f N

Q ∑
q=c,b,t

Cq , (2.2)

where Cq is the Wilson coefficient of the scalar operator mqχ̄χ q̄q while

mN f N
q = 〈N|mqq̄q|N〉 and f N

Q = 2
27(1− f N

u − f N
d − f N

s ) . (2.3)

Traditionally [10–12,30], the scalar matrix elements of the light quarks (2.3) have been deter-
mined by applying the Feynman-Hellmann theorem

〈N|mqq̄q|N〉= mq
∂mN

∂mq
(2.4)

to the chiral SU(3)L×SU(3)R expansion of the nucleon mass

mN = m0 + ∑
φ=π,K,η

cφ m2
φ +O(m3

π,K,η) , (2.5)

where m0 is the chiral-limiting value of mN and cφ is a linear combination of low-energy constants.
Then the couplings f N

q can be expressed in terms of the pion-nucleon sigma-term

σπN = 〈N|m̄(ūu+ d̄d)|N〉 , m̄ = 1
2(mu +md) , (2.6)

the strangeness content of the nucleon

y =
2〈N|s̄s|N〉
〈N|ūu+ d̄d|N〉

(2.7)

and another parameter

z =
〈N|ūu− s̄s|N〉
〈N|d̄d− s̄s|N〉

(2.8)

that is related to isospin violation. For some time, it has been known that obtaining reliable uncer-
tainty estimates in this framework is problematic because:

1. The up- and down-quark coefficients f N
u,d depend explicitly on the 3-flavour quantities y and z.

As a result, the order 30% uncertainties associated with chiral SU(3)L×SU(3)R perturbation
theory χPT3 propagate into the 2-flavour sector;

2. The strange-quark scalar matrix element is defined as

f N
s =

σπN

2mN

ms

m̄
y , (2.9)
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where ms/m̄ = (27.4± 0.4) [14], the strangeness content is taken from the relation y =

1−σ0/σπN , with σ0 = (36±7)MeV [15], and z' 1.49 is extracted from leading-order fits
to the baryon mass spectrum [16]. Within the range σπN = 50±15 MeV covered in [17–22],
large values for the strangeness content of the nucleon2 and the corresponding coupling f N

s =

0.2±0.2 have been inferred. Although still employed in the literature (see e.g. [24,25]), such
large values are incompatible with modern lattice QCD calculations, which yield a much
smaller and more reliable determination of f N

s [26]:

f N
s

∣∣∣
lattice

= 0.043±0.011 . (2.10)

Evidently, the choice of input for f N
s can have a dramatic effect on the interpretation of

experimental limits on σSI. For example, it has been shown [27] that lattice input for f N
s can

weaken bounds on the constrained MSSM parameter space by factors of 5-10 (!) relative to
those obtained in the traditional χPT3 framework.

In Ref. [28], it was demonstrated that problem 1 can be circumvented by using the 2-flavour
theory χPT2 directly, thus avoiding the 3-flavour expansion in the first place. (Problem 2 is avoided
by adopting lattice input (2.10) for f N

s .) Starting from the χPT2 expansion of the nucleon mass at
O(m3

π) and including the effects due to strong isospin violation, one finds [28]

f N
u =

σπN(1−ξ )

2mN
+∆ f N

u , f N
d =

σπN(1+ξ )

2mN
+∆ f N

d ,

∆ f p
u = (1.0±0.2)×10−3 , ∆ f n

u = (−1.0±0.2)×10−3 ,

∆ f p
d = (−2.1±0.4)×10−3 , ∆ f n

d = (2.0±0.4)×10−3 , (2.11)

where
ξ =

md−mu

md +mu
= 0.36±0.04 (2.12)

is taken from [14]. A key feature of this approach is that isospin violation can be systematically
accounted for, so it becomes natural to ask whether there exist regions in the MSSM parameter
space where such effects may be important. In this context, we observe that the cross section (2.1)
may be rewritten as3

σSI =
4µ2

χ

π
f 2
p

[
A+(A−Z)

(
fn

fp
−1
)]2

, (2.13)

so that the departure of fn/ fp from unity emerges as a convenient measure of isospin violation.

3. Blind Spots and Isospin Violation

Virtually nothing is known about how supersymmetry is broken at the weak-scale, so in gen-
eral, the MSSM contains more than 100 parameters whose values are to be constrained by experi-
ment. Given the huge parameter space, it is necessary to make additional, simplifying assumptions

2Although see [23] for important higher-order corrections to σ0 which can reduce the value of y, albeit with large
uncertainties.

3Corrections to the single-nucleon picture underlying (2.1) in the form of two-nucleon currents can be systematically
taken into account using effective field theory [29–32].
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Figure 1: Left: Current and projected limits on SI χ–xenon scattering due to h exchange with tanβ = 10.
The pink band shows the existing constraints from LUX [4], while projected limits from XENON1T [5]
and LZ [6] are given by the blue and orange regions respectively. The blind spot where the SI cross section
vanishes is denoted by the red line and lies within the irreducible neutrino background (νBG) shown in grey.
Right: Amount of isospin violation in terms of fn/ fp. The coloured bands correspond to the 1σ uncertainties
associated with the different determinations of the scalar matrix elements f N

q discussed in the text.

in order to undertake phenomenological analyses. In our work [7], we have examined several sim-
plified models where all but a few superpartners are decoupled from the spectrum. Not only does
this allow us to focus on dark matter signals of interest, it also allows us to develop an analytical
framework with which to explore the underlying parameter space. Here we consider the effects of
isospin violation in two simplified models [8,9] where χ-quark scattering is mediated by Higgs ex-
change in the t-channel: for an analysis of scenarios involving the exchange of light 3rd generation
squarks, we refer the reader to [7].

In these models, the lightest neutralino χ is an admixture of bino, wino, and Higgsino interac-
tion eigenstates, obtained by diagonalising the mass matrix

M1 0 −1
2 g1vd

1
2 g1vu

0 M2
1
2 g2vd −1

2 g2vu

−1
2 g1vd

1
2 g2vd 0 −µ

1
2 g1vu −1

2 g2vu −µ 0

 . (3.1)

Here M1 (M2) are the soft supersymmetry-breaking masses of the bino (wino), µ is the Higgsino
mass parameter, and vu,d are the two Higgs Hu,d vacuum expectation values, whose ratio vu/vd is
denoted by tanβ . Let us now consider the two simplified models in turn.

MMMooodddeeelll 111 : The simplest possible dark matter model in the MSSM consists of a light Higgs h
with properties consistent with the SM, and a neutralino LSP which we assume to be predominantly
bino-like, i.e. where M1�M2, µ . In this case, the corresponding Wilson coefficients are

Ch
ui
=Ch

di
=

g2
1

4m2
h

1
M2

1 −µ2 (M1 +µ sin2β ) , ui = u,c, t, di = d,s,b , (3.2)
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Figure 2: Left: Current and projected limits on SI χ–xenon scattering due to h,H exchange with different
benchmark values for M1 and µ . Excluded regions and the blind spot are colour-coded as in Fig. 1, with
the cross-hatched region in dark-blue corresponding to CMS limits [33] on H,A→ τ+τ−. The region to the
left of the dark-red dashed line at mA ' mH+ ' 480 GeV is excluded by B→ Xsγ [34]. Right: Pseudoscalar
Higgs mass mA dependence of the SI χ–xenon cross section (black) and the central value of fn/ fp (red) as
determined by χPT2 method.

so we conclude that (a) for µ negative, the SI amplitude vanishes in the parameter space regions
where M1 + µ sin2β = 0 [8]; (b) the Cqi are independent of quark flavour, so isospin violation is
determined entirely by hadronic quantities

fn

fp
=

(
mn

mp

)
2+7∑ f n

q

2+7∑ f p
q
. (3.3)

Note in particular that f N
s dominates the sums in (3.3) and can produce the largest source of un-

certainty on fn/ fp. In the left plot of Fig. 1, we show the prospects for constraining the blind spot
with current and – assuming no signal is seen – future direct detection experiments. In the right
plot, we display the 1σ uncertainties on fn/ fp as a function of σπN . Here we have compared three
approaches to determine the scalar matrix elements:

(1) the χPT2 method (blue) proposed in [28], with f N
s taken from the lattice (2.10);

(2) the traditional χPT3 method [10–12, 30] (orange) where f N
s is typically large;

(3) use of the χPT3 formalism, but with lattice input for f N
s (green).

As seen in the Figure, the uncertainties associated with the traditional χPT3 method are large and
display a strong sensitivity to σπN . In contrast, the χPT2 method is largely independent of σπN and
yields uncertainties which are smaller by factors of ≈ 6 or more. In this case, the 1σ uncertainties
on fn/ fp are at the 5% level, so the naive expectation that isospin violation is a small effect in the
MSSM is borne out explicitly.

MMMooodddeeelll 222 : A more interesting example arises when the spectrum is extended to include the
heavier Higgs states H, A, H± of the MSSM. In this case, destructive interference between the h

6
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Figure 3: Left: Amount of isospin violation in terms of fn/ fp due to h,H exchange in χ–xenon scattering.
The shaded regions show the uncertainty on fn/ fp due to each determination of the scalar matrix elements
discussed in the text. Colour coding as in Fig. 1.

and H amplitudes gives rise to a generalised blind spot [9]

2
m2

h
(M1 +µs2β )+µ tanβ

1
m2

H
' 0 , (3.4)

for tanβ large and mA > mh. As a result of the extended Higgs sector, a complementarity of
constraints from collider, flavour and direct detection arises (left plot of Fig. 2). In particular,
increased sensitivity in future LHC searches for the decay A,H → τ+τ− will be able to cover the
blind spot region (3.4), where direct detection limits are necessarily weak.

Another interesting feature of (3.4) is that destructive interference produces a central value
for fn/ fp which becomes large as the blind spot is approached (right plot of Fig. 2). This is
reflected in the corresponding uncertainties shown in Fig. 3 (left plot), and highlights the need for
complementary constraints from e.g. flavour observables (right plot).

4. Summary

An accurate evaluation of nucleon scalar matrix elements and their uncertainties remains an
important ingredient in the interpretation of dark matter direct detection limits. For neutralino dark
matter, it is well known [27] that the input value for f N

s can have a dramatic effect on excluded
regions of the MSSM parameter space. Here we have highlighted another area where control over
hadronic uncertainties is particularly important, namely, isospin violation in the vicinity of blind
spots [8, 9]. If signals of weak-scale supersymmetry remain persistently absent at the LHC and
direct detection experiments, reducing these uncertainties will become particularly relevant as the
MSSM is cornered in these regions of parameter space.
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