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1. Introduction

If String Theory is a fundamental theory of Nature and not just a tool for studying systems
with strongly coupled dynamics, it should be able to describe at the same time particle physics
and cosmology, which are phenomena that involve very different scales from the microscopic four-
dimensional (4d) quantum gravity length of 10−33 cm to large macroscopic distances of the size of
the observable Universe∼1028 cm spanned a region of about 60 orders of magnitude. In particular,
besides the 4d Planck mass, there are three very different scales with very different physics corre-
sponding to the electroweak, dark energy and inflation. These scales might be related via the scale
of the underlying fundamental theory, such as string theory, or they might be independent in the
sense that their origin could be based on different and independent dynamics. An example of the
former constrained and more predictive possibility is provided by TeV strings with a fundamental
scale at low energies due for instance to large extra dimensions transverse to a four-dimensional
braneworld forming our Universe [1]. In this case, the 4d Planck mass is emergent from the funda-
mental string scale and inflation should also happen around the same scale [2].

Here, we will adopt the second more conservative approach, assuming that all three scales
have an independent dynamical origin. Moreover, we will assume the presence of low energy su-
persymmetry that allows for an elegant solution of the mass hierarchy problem, a unification of
fundamental forces as indicated by low energy data and a natural dark matter candidate due to an
unbroken R-parity. The assumption of independent scales implies that supersymmetry breaking
should be realized in a metastable de Sitter vacuum with an infinitesimally small (tunable) cosmo-
logical constant independent of the supersymmetry breaking scale that should be in the TeV region.
In a recent work [3], we studied a simple N = 1 supergravity model having this property and moti-
vated by string theory. Besides the gravity multiplet, the minimal field content consists of a chiral
multiplet with a shift symmetry promoted to a gauged R-symmetry using a vector multiplet. In
the string theory context, the chiral multiplet can be identified with the string dilaton (or an appro-
priate compactification modulus) and the shift symmetry associated to the gauge invariance of a
two-index antisymmetric tensor that can be dualized to a (pseudo)scalar. The shift symmetry fixes
the form of the superpotential and the gauging allows for the presence of a Fayet-Iliopoulos (FI)
term, leading to a supergravity action with two independent parameters that can be tuned so that the
scalar potential possesses a metastable de Sitter minimum with a tiny vacuum energy (essentially
the relative strength between the F- and D-term contributions). A third parameter fixes the Vacuum
Expectation Value (VEV) of the string dilaton at the desired (phenomenologically) weak coupling
regime. An important consistency constraint of our model is anomaly cancellation which has been
studied in [5] and implies the existence of additional charged fields under the gauged R-symmetry.

In a more recent work [6], we analyzed a small variation of this model which is manifestly
anomaly free without additional charged fields and allows to couple in a straight forward way a vis-
ible sector containing the minimal supersymmetric extension of the Standard Model (MSSM) and
studied the mediation of supersymmetry breaking and its phenomenological consequences. It turns
out that an additional ‘hidden sector’ field z is needed to be added for the matter soft scalar masses
to be non-tachyonic; although this field participates in the supersymmetry breaking and is similar
to the so-called Polonyi field, it does not modify the main properties of the metastable de Sitter
(dS) vacuum. All soft scalar masses, as well as trilinear A-terms, are generated at the tree level and
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are universal under the assumption that matter kinetic terms are independent of the ‘Polonyi’ field,
since matter fields are neutral under the shift symmetry and supersymmetry breaking is driven by
a combination of the U(1) D-term and the dilaton and z-field F-term. Alternatively, a way to avoid
the tachyonic scalar masses without adding the extra field z is to modify the matter kinetic terms
by a dilaton dependent factor.

A main difference of the second analysis from the first work is that we use a field representation
in which the gauged shift symmetry corresponds to an ordinary U(1) and not an R-symmetry. The
two representations differ by a Kähler transformation that leaves the classical supergravity action
invariant. However, at the quantum level, there is a Green-Schwarz term generated that amounts
an extra dilaton dependent contribution to the gauge kinetic terms needed to cancel the anomalies
of the R-symmetry. This creates an apparent puzzle with the gaugino masses that vanish in the first
representation but not in the latter. The resolution to the puzzle is based to the so called anomaly
mediation contributions [7, 8] that explain precisely the above apparent discrepancy. It turns out
that gaugino masses are generated at the quantum level and are thus suppressed compared to the
scalar masses (and A-terms).

2. Conventions

Throughout this paper we use the conventions of [9]. A supergravity theory is specified (up to
Chern-Simons terms) by a Kähler potential K , a superpotential W , and the gauge kinetic functions
fAB(z). The chiral multiplets zα ,χα are enumerated by the index α and the indices A,B indicate the
different gauge groups. Classically, a supergravity theory is invariant under Kähler tranformations,
viz.

K (z, z̄) −→ K (z, z̄)+ J(z)+ J̄(z̄),

W (z) −→ e−κ2J(z)W (z), (2.1)

where κ is the inverse of the reduced Planck mass, mp = κ−1 = 2.4×1015 TeV. The gauge transfor-
mations of chiral multiplet scalars are given by holomorphic Killing vectors, i.e. δ zα = θ Akα

A (z),
where θ A is the gauge parameter of the gauge group A. The Kähler potential and superpotential
need not be invariant under this gauge transformation, but can change by a Kähler transformation

δK = θ
A [rA(z)+ r̄A(z̄)] , (2.2)

provided that the gauge transformation of the superpotential satisfies δW = −θ Aκ2rA(z)W . One
then has from δW =Wαδ zα

Wαkα
A =−κ

2rAW, (2.3)

where Wα = ∂αW and α labels the chiral multiplets. The supergravity theory can then be described
by a gauge invariant function

G = κ
2K + log(κ6WW̄ ). (2.4)

The scalar potential is given by

V = VF +VD
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VF = eκ2K
(
−3κ

2WW̄ +∇αWgαβ̄
∇̄

β̄
W̄
)

VD =
1
2
(Re f )−1 AB PAPB, (2.5)

where W appears with its Kähler covariant derivative

∇αW = ∂αW (z)+κ
2(∂αK )W (z). (2.6)

The moment maps PA are given by

PA = i(kα
A ∂αK − rA). (2.7)

In this paper we will be concerned with theories having a gauged R-symmetry, for which rA(z)
is given by an imaginary constant rA(z) = iκ−2ξ . In this case, κ−2ξ is a Fayet-Iliopoulos [10]
constant parameter.

3. The model

The starting point is a chiral multiplet S and a vector multiplet associated with a shift symmetry
of the scalar component s of the chiral multiplet S

δ s =−icθ , (3.1)

and a string-inspired Kähler potential of the form −p log(s+ s̄). The most general superpotential
is either a constant W = κ−3a or an exponential superpotential W = κ−3aebs (where a and b are
constants). A constant superpotential is (obviously) invariant under the shift symmetry, while an
exponential superpotential transforms as W → We−ibcθ , as in eq. (2.3). In this case the shift
symmetry becomes a gauged R-symmetry and the scalar potential contains a Fayet-Iliopoulos term.
Note however that by performing a Kähler transformation (2.1) with J = κ−2bs, the model can be
recast into a constant superpotential at the cost of introducing a linear term in the Kähler potential
δK = b(s+ s̄). Even though in this representation, the shift symmetry is not an R-symmetry, we
will still refer to it as U(1)R. The most general gauge kinetic function has a constant term and a
term linear in s, f (s) = δ +β s.

To summarise,1

K (s, s̄) = −p log(s+ s̄)+b(s+ s̄),

W (s) = a,

f (s) = δ +β s , (3.2)

where we have set the mass units κ = 1. The constants a and b together with the constant c in eq.
(3.1) can be tuned to allow for an infinitesimally small cosmological constant and a TeV gravitino
mass. For b> 0, there always exists a supersymmetric AdS (anti-de Sitter) vacuum at 〈s+ s̄〉= b/p,

1In superfields the shift symmetry (3.1) is given by δS =−icΛ, where Λ is the superfield generalization of the gauge
parameter. The gauge invariant Kähler potential is then given by K (S, S̄) = −pκ−2 log(S+ S̄+ cVR)+κ−2b(S+ S̄+
cVR), where VR is the gauge superfield of the shift symmetry.
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while for b = 0 (and p < 3) there is an AdS vacuum with broken supersymmetry. We therefore
focus on b < 0. In the context of string theory, S can be identified with a compactification modulus
or the universal dilaton and (for negative b) the exponential superpotential may be generated by
non-perturbative effects.

The scalar potential is given by:

V = VF +VD

VF = a2e
b
l lp−2

{
1
p
(pl−b)2−3l2

}
l = 1/(s+ s̄)

VD = c2 l
β +2δ l

(pl−b)2 (3.3)

In the case where S is the string dilaton, VD can be identified as the contribution of a magnetized
D-brane, while VF for b = 0 and p = 2 coincides with the tree-level dilaton potential obtained
by considering string theory away its critical dimension [11]. For p ≥ 3 the scalar potential V
is positive and monotonically decreasing, while for p < 3, its F-term part VF is unbounded from
below when s+ s̄→ 0. On the other hand, the D-term part of the scalar potential VD is positive
and diverges when s+ s̄→ 0 and for various values for the parameters an (infinitesimally small)
positive (local) minimum of the potential can be found.

If we restrict ourselves to integer p, tunability of the vacuum energy restricts p = 2 or p = 1
when f (s) = s, or p = 1 when the gauge kinetic function is constant. For p = 2 and f (s) = s, the
minimization of V yields:

b/l = α ≈−0.183268 , p = 2 (3.4)
a2

bc2 = A2(α)+B2(α)
Λ

b3c2 ≈−50.6602+O(Λ), (3.5)

where Λ is the value of V at the minimum (i.e. the cosmological constant), α is the negative root
of the polynomial −x5 +7x4−10x3−22x2 +40x+8 compatible with (3.5) for Λ = 0 and A2(α),
B2(α) are given by

A2(α) = 2e−α −4+4α−α2

α3−4α2−2α
; B2(α) = 2

α2e−α

α2−4α−2
(3.6)

It follows that by carefully tuning a and c, Λ can be made positive and arbitrarily small indepen-
dently of the supersymmetry breaking scale. A plot of the scalar potential for certain values of the
parameters is shown in figure 1.

At the minimum of the scalar potential, for nonzero a and b < 0, supersymmetry is broken
by expectation values of both an F and D-term. Indeed the F-term and D-term contributions to the
scalar potential are

VF |s+s̄= α

b
=

1
2

a2b2eα

(
1− 2

α

)2

> 0,

VD|s+s̄= α

b
=

b3c2

α

(
1− 2

α

)2

> 0 . (3.7)
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Figure 1: A plot of the scalar potential for p = 2, b = −1, δ = 0, β = 1 and a given by equation (3.5) for
c = 1 (black curve) and c = 0.7 (red curve).

The gravitino mass term is given by

(m3/2)
2 = eG =

a2b2

α2 eα . (3.8)

Due to the Stueckelberg coupling, the imaginary part of s (the axion) gets eaten by the gauge field,
which acquires a mass. On the other hand, the Goldstino, which is a linear combination of the
fermion of the chiral multiplet χ and the gaugino λ gets eaten by the gravitino. As a result, the
physical spectrum of the theory consists (besides the graviton) of a massive scalar, namely the
dilaton, a Majorana fermion, a massive gauge field and a massive gravitino. All the masses are of
the same order of magnitude as the gravitino mass, proportional to the same constant a (or c related
by eq. (3.5) where b is fixed by eq. (3.4)), which is a free parameter of the model. Thus, they vanish
in the same way in the supersymmetric limit a→ 0.

The local dS minimum is metastable since it can tunnel to the supersymmetric ground state
at infinity in the s-field space (zero coupling). It turns out however that it is extremely long lived
for realistic perturbative values of the gauge coupling l ' 0.02 and TeV gravitino mass and, thus,
practically stable; its decay rate is [5]:

Γ∼ e−B with B≈ 10300 . (3.9)

4. Coupling a visible sector

The guideline to construct a realistic model keeping the properties of the toy model described
above is to assume that matter fields are invariant under the shift symmetry (3.1) and do not partic-
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ipate in the supersymmetry breaking. In the simplest case of a canonical Kähler potential, MSSM-
like fields φ can then be added as:

K = −κ
−2 log(s+ s̄)+κ

−2b(s+ s̄)+∑ϕϕ̄,

W = κ
−3a+WMSSM, (4.1)

where WMSSM(φ) is the usual MSSM superpotential. The squared soft scalar masses of such a
model can be shown to be positive and close to the square of the gravitino mass (TeV2). On the
other hand, for a gauge kinetic function with a linear term in s, β 6= 0 in eq. (3.2), the Lagrangian
is not invariant under the shift symmetry

δL =−θ
βc
8

ε
µνρσ FµνFρσ . (4.2)

and its variation should be canceled. As explained in Ref. [5], in the ’frame’ with an exponential
superpotential the R-charges of the fermions in the model can give an anomalous contribution to
the Lagrangian. In this case the ‘Green-Schwarz’ term ImsFF̃ can cancel quantum anomalies.
However as shown in [5], with the minimal MSSM spectrum, the presence of this term requires the
existence of additional fields in the theory charged under the shift symmetry.

Instead, to avoid the discussion of anomalies, we focus on models with a constant gauge kinetic
function. In this case the only (integer) possibility2 is p = 1. The scalar potential is given by (3.3)
with β = 0, δ = p = 1. The minimization yields to equations similar to (3.4), (3.5) and (3.6) with
a different value of α and functions A1 and B1 given by:

b〈s+ s̄〉 = α ≈−0.233153
bc2

a2 = A1(α)+B1(α)
Λ

a2b
≈−0.359291+O(Λ) (4.3)

A1(α) = 2eα
α

3− (α−1)2

(α−1)2 , B1(α) =
2α2

(α−1)2 ,

where α is the negative root of −3+ (α − 1)2(2−α2/2) = 0 close to −0.23, compatible with
the second constraint for Λ = 0. However, this model suffers from tachyonic soft masses when
it is coupled to the MSSM, as in (4.1). To circumvent this problem, one can add an extra hidden
sector field which contributes to (F-term) supersymmetry breaking. Alternatively, the problem of
tachyonic soft masses can also be solved if one allows for a non-canonical Kähler potential in the
visible sector, which gives an additional contribution to the masses through the D-term.

Let us discuss first the addition of an extra hidden sector field z (similar to the so-called Polonyi
field [12]). The Kähler potential, superpotential and gauge kinetic function are given by

K = −κ
−2 log(s+ s̄)+κ

−2b(s+ s̄)+ zz̄+∑ϕϕ̄ ,

W = κ
−3a(1+ γκz)+WMSSM(ϕ) ,

f (s) = 1 , fA = 1/g2
A , (4.4)

2If f (s) is constant, the leading contribution to VD when s+ s̄→ 0 is proportional to 1/(s+ s̄)2, while the leading
contribution to VF is proportional to 1/(s+ s̄)p. It follows that p < 2; if p > 2, the potential is unbounded from below,
while if p = 2, the potential is either positive and monotonically decreasing or unbounded from below when s+ s̄→ 0
depending on the values of the parameters.

7
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where A labels the Standard Model gauge group factoand γ is an additional constant parameter. The
existence of a tunable dS vacuum with supersymmetry breaking and non-tachyonic scalar masses
implies that γ must be in a narrow region:

0.5 <∼ γ <∼ 1.7 . (4.5)

In the above range of γ the main properties of the toy model described in the previous section
remain, while Rez and its F-auxiliary component acquire non vanishing VEVs. All MSSM soft
scalar masses are then equal to a universal value m0 of the order of the gravitino mass, while the
B0 Higgs mixing parameter is also of the same order:

m2
0 = m2

3/2

[
(σs +1)+

(γ + t + γt)2

(1+ γt)2

]
,

A0 = m3/2

[
(σs +3)+ t

(γ + t + γt2)

1+ γt

]
,

B0 = m3/2

[
(σs +2)+ t

(γ + t + γt2)

(1+ γt)

]
, (4.6)

where σs = −3+(α − 1)2 with α and t ≡ 〈Rez〉 determined by the minimization conditions as
functions of γ . Also, A0 is the soft trilinear scalar coupling in the standard notation, satisfying the
relation [13]

A0 = B0 +m3/2 . (4.7)

On the other hand, the gaugino masses appear to vanish at tree-level since the gauge kinetic
functions are constants (see (4.4)). However, as mentioned in Section 3, this model is classically
equivalent to the theory3

K = −κ
−2 log(s+ s̄)+ zz̄+∑

α

ϕϕ̄,

W =
(
κ
−3a(1+ z)+WMSSM(ϕ)

)
ebs , (4.8)

obtained by applying a Kähler transformation (2.1) with J =−κ−2bs. All classical results remain
the same, such as the expressions for the scalar potential and the soft scalar masses (4.6), but now
the shift symmetry (3.1) of s became a gauged R-symmetry since the superpotential transforms as
W −→We−ibcθ . Therefore, all fermions (including the gauginos and the gravitino) transform4 as
well under this U(1)R, leading to cubic U(1)3

R and mixed U(1)×GMSSM anomalies. These anoma-
lies are cancelled by a Green-Schwarz (GS) counter term that arises from a quantum correction to
the gauge kinetic functions:

fA(s) = 1/g2
A +βAs with βA =

b
8π2 (TRA−TGA) , (4.9)

where TG is the Dynkin index of the adjoint representation, normalized to N for SU(N), and TR is
the Dynkin index associated with the representation R of dimension dR, equal to 1/2 for the SU(N)

3This statement is only true for supergravity theories with a non-vanishing superpotential where everything can be
defined in terms of a gauge invariant function G = κ2K + log(κ6WW̄ ) [14].

4The chiral fermions, the gauginos and the gravitino carry a charge bc/2, −bc/2 and −bc/2 respectively.
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fundamental. An implicit sum over all matter representations is understood. It follows that gaugino
masses are non-vanishing in this representation, creating a puzzle on the quantum equivalence of
the two classically equivalent representations. The answer to this puzzle is based on the fact that
gaugino masses are present in both representations and are generated at one-loop level by an effect
called Anomaly Mediation [7, 8]. Indeed, it has been argued that gaugino masses receive a one-loop
contribution due to the super-Weyl-Kähler and sigma-model anomalies, given by [8]:

M1/2 =−
g2

16π2

[
(3TG−TR)m3/2 +(TG−TR)KαFα +2

TR

dR
(logdetK |R ′′),αFα

]
. (4.10)

The expectation value of the auxiliary field Fα , evaluated in the Einstein frame is given by

Fα =−eκ2K /2gαβ̄
∇̄

β̄
W̄ . (4.11)

Clearly, for the Kähler potential (4.4) or (4.8) the last term in eq. (4.10) vanishes. However, the
second term survives due to the presence of Planck scale VEVs for the hidden sector fields s and
z. Since the Kähler potential between the two representations differs by a linear term b(s+ s̄), the
contribution of the second term in eq. (4.10) differs by a factor

δmA =
g2

A
16π2 (TG−TR)beκ2K /2gαβ̄

∇̄
β̄
W̄ , (4.12)

which exactly coincides with the ‘direct’ contribution to the gaugino masses due to the field de-
pendent gauge kinetic function (4.9) (taking into account a rescaling proportional to g2

A due to the
non-canonical kinetic terms).

We conclude that even though the models (4.4) and (4.8) differ by a (classical) Kähler transfor-
mation, they generate the same gaugino masses at one-loop. While the one-loop gaugino masses
for the model (4.4) are generated entirely by eq. (4.10), the gaugino masses for the model (4.8)
after a Kähler transformation have a contribution from eq. (4.10) as well as from a field dependent
gauge kinetic term whose presence is necessary to cancel the mixed U(1)R×G anomalies due to
the fact that the extra U(1) has become an R-symmetry giving an R-charge to all fermions in the
theory. Using (4.10), one finds:

M1/2 =−
g2

16π2 m3/2

[
(3TG−TR)− (TG−TR)

(
(α−1)2 + t

γ + t + γt2

1+ γt

)]
. (4.13)

For U(1)Y we have TG = 0 and TR = 11, for SU(2) we have TG = 2 and TR = 7, and for SU(3) we
have TG = 3 and TR = 6, such that for the different gaugino masses this gives (in a self-explanatory
notation):

M1 = 11
g2

Y

16π2 m3/2

[
1− (α−1)2− t(γ + t + γt)

1+ γt

]
,

M2 =
g2

2
16π2 m3/2

[
1−5(α−1)2−5

t(γ + t + γt2)

1+ γt

]
,

M3 = −3
g2

3
16π2 m3/2

[
1+(α−1)2 +

t(γ + t + γt2)

1+ γt

]
. (4.14)

9
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5. Phenomenology

The results for the soft terms calculated in the previous section, evaluated for different values
of the parameter γ are summarised in Table 1. For every γ , the corresponding t and α are calculated
by imposing a vanishing cosmological constant at the minimum of the potential. The scalar soft
masses and trilinear terms are then evaluated by eqs. (4.6) and the gaugino masses by eqs. (4.14).
Note that the relation (4.7) is valid for all γ . We therefore do not list the parameter B0.

γ t α m0 A0 M1 M2 M3 tanβ (µ > 0) tanβ (µ < 0)

0.6 0.446 -0.175 0.475 1.791 0.017 0.026 0.027

1 0.409 -0.134 0.719 1.719 0.015 0.025 0.026

1.1 0.386 -0.120 0.772 1.701 0.015 0.024 0.026 46 29

1.4 0.390 -0.068 0.905 1.646 0.014 0.023 0.026 40 23

1.7 0.414 -0.002 0.998 1.588 0.013 0.022 0.025 36 19

Table 1: The soft terms (in terms of m3/2) for various values of γ . If a solution to the RGE exists, the value
of tanβ is shown in the last columns for µ > 0 and µ < 0 respectively.

In most phenomenological studies, B0 is substituted for tanβ , the ratio between the two Higgs
VEVs, as an input parameter for the renormalization group equations (RGE) that determine the
low energy spectrum of the theory. Since B0 is not a free parameter in our theory, but is fixed by
eq. (4.7), this corresponds to a definite value of tanβ . For more details see [15] (and references
therein). The corresponding tanβ for a few particular choices for γ are listed in the last two columns
of table 1 for µ > 0 and µ < 0 respectively. No solutions were found for γ . 1.1, for both signs
of µ . The lighest supersymmetric particle (LSP) is given by the lightest neutralino and since
M1 <M2 (see table 1) the lightest neutralino is mostly Bino-like, in contrast with a typical mAMSB
(minimal anomaly mediation supersymmetry breaking) scenario, where the lightest neutralino is
mostly Wino-like [16].

To get a lower bound on the stop mass, the sparticle spectrum is plotted in Figure 2 as a func-
tion of the gravitino mass for γ = 1.1 and µ > 0 (for µ < 0 the bound is higher). The experimental
limit on the gluino mass forces m3/2 & 15 TeV. In this limit the stop mass can be as low as 2 TeV. To
conclude, the lower end mass spectrum consists of (very) light charginos (with a lightest chargino
between 250 and 800 GeV) and neutralinos, with a mostly Bino-like neutralino as LSP (80−230
GeV), which would distinguish this model from the mAMSB where the LSP is mostly Wino-like.
These upper limits on the LSP and the lightest chargino imply that this model could in principle
be excluded in the next LHC run. In order for the gluino to escape experimental bounds, the lower
limit on the gravitino mass is about 15 TeV. The gluino mass is then between 1-3 TeV. This however
forces the squark masses to be very high (10−35 TeV), with the exception of the stop mass which
can be relatively light (2−15 TeV).

6. Non-canonical Kähler potential for the visible sector

As mentioned already in Section 4, an alternative way to avoid tachyonic soft scalar masses for
the MSSM fields in the model (4.1), instead of adding the extra Palonyi-type field z in the hidden
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Figure 2: The masses (in TeV) of the sbottom (yellow), stop (black), gluino (red), lightest chargino (green)
and lightest neutralino (blue) as a function of m3/2 for γ = 1.1 and for µ > 0. No solutions to the RGE were
found when m3/2 & 45 TeV. The lower bound corresponds to a gluino mass of 1 TeV.

sector, is by introducing non-canonical kinetic terms for the MSSM fields, such as:

K = −κ
−2 log(s+ s̄)+κ

−2b(s+ s̄)+(s+ s̄)−ν
∑ϕϕ̄,

W = κ
−3a+WMSSM,

f (s) = 1, fA(s) = 1/g2
A , (6.1)

where ν is an additional parameter of the theory, with ν = 1 corresponding to the leading term
in the Taylor expansion of − log(s+ s̄−ϕϕ̄). Since the visible sector fields appear only in the
combination ϕϕ̄ , their VEVs vanish provided that the scalar soft masses squared are positive.
Moreover, for vanishing visible sector VEVs, the scalar potential and is minimization remains the
same as in eqs. (refbsalpha). Therefore, the non-canonical Kähler potential does not change the fact
that the F-term contribution to the soft scalar masses squared is negative. On the other hand, the
visible fields enter in the D-term scalar potential through the derivative of the Kähler potential with
respect to s. Even though this has no effect on the ground state of the potential, the ϕ-dependence
of the D-term scalar potential does result in an extra contribution to the scalar masses squared
which become positive

ν >− eα(σs +1)α
A(α)(1−α)

≈ 2.6 . (6.2)

The soft MSSM scalar masses and trilinear couplings in this model are:

m2
0 = κ

2a2
(

b
α

)(
eα(σs +1)+ν

A(α)

α
(1−α)

)
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A0 = m3/2(s+ s̄)ν/2 (σs +3) (6.3)

B0 = m3/2(s+ s̄)ν/2 (σs +2)

where σs is defined as in (4.6), eq. (4.4) has been used to relate the constants a and c, and cor-
rections due to a small cosmological constant have been neglected. A field redefinition due to a
non-canonical kinetic term gϕϕ̄ = (s+ s̄)−ν is also taken into account. The main phenomenological
properties of this model are not expected to be different from the one we analyzed in section 5 with
the parameter ν replacing γ . Gaugino masses are still generated at one-loop level while mSUGRA
applies to the soft scalar sector. We therefore do not repeat the phenomenological analysis for this
model.
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