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1. Introduction

The strong coupling is a fundamental quantity of the standard model and QCD. Its precise
measurement serves as a cornerstone of experimental high energy physics. One possible way to
extract it is from event shape variables measured in electron-positron annihilation. For this high
precision theoretical predictions are instrumental setting high demand on the numerical quality
and accuracy of theoretical computations. Since in high energy particle physics the computational
toolbox is perturbative quantum field theory the accuracy of predictions is meant to be understood
as including as many terms in the perturbative expansion as possible. To use these predictions
in experimental fitting procedures to extract the coupling good numerical convergence and low
statistical uncertainties are required hence the demand for numerical quality.

Electron-positron annihilation can also be used as a testbed for deploying new computational
methods since the initial state does not contain any colored particle thus QCD radiation can only
come from colored particles in the final state. In leptoproduction state-of-the-art computations
include up to seven jets [1] at NLO while up to three jets [2, 3] at NNLO accuracy. Here we apply
the COLORFULNNLO method [4, 5], developed to compute NNLO QCD corrections for colorless
initial states, we decided to apply it to three-jet production in electron-positron annihilation. This
choice is also motivated by a possible strong coupling measurement on the premise that the devised
method can provide predictions with numerical quality suitable for extracting the value of strong
coupling or using the method to calculate new event shape observables for which no NNLO QCD
prediction was available in the past and possibly finding one for which hadronization corrections
are moderate making it a good candidate for strong coupling determination.

In a very early stage of creating the numerical code implementing the COLORFULNNLO
method for three-jet production it was realized that the organization of the subtraction terms to reg-
ularize kinematic singularities is a major bookkeeping problem but with some effort it can be auto-
mated and made general. Hence we decided not to build a numerical code for three-jet production
but instead a complete framework which uses the COLORFULNNLO method for computations in
QCD up to NNLO which is user-friendly and flexible to suit user and future needs.

2. Method

The COLORFULNNLO method is a completely local subtraction scheme to compute jet cross
sections in perturbative QCD up to NNLO accuracy, fully worked out for non-colored initial states.
As any other subtraction method it relies upon adding and subtracting zero in a clever way from
various contributions of the cross section. The total cross section in perturbation theory up to the
NNLO correction can be written in the form of:

σNNLO = σ
LO +σ

NLO +σ
NNLO , (2.1)

where

σ
LO =

∫
m

dσ
BJm (2.2)

is the LO cross section defined by the fully differential Born cross section of m final state par-
tons and the jet function J which takes the value of Jm on the m-parton phase space. The NLO
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contribution can be formally written as

σ
NLO =

∫
m+1

dσ
R
m+1Jm+1 +

∫
m

dσ
V
m Jm , (2.3)

where the sum is finite for all infrared-safe observables due to the KLN theorem. Our aim is to
be able to compute fully differential cross sections thus we would like to perform all integrals in
d = 4 dimensions numerically. To do so the two contributions have to be made separately finite
which is achieved by subtracting kinematic singularities and adding them back integrated over the
unresolved regions of phase space (denoted by

∫
1):

σ
NLO =

∫
m+1

[
dσ

R
m+1Jm+1−dσ

R ,A1
m+1 Jm

]
ε=0

+
∫

m

[
dσ

V
m +

∫
1

dσ
R ,A1
m+1

]
ε=0

Jm . (2.4)

In the case of the NLO correction only two contributions are present: the real one, with one extra
parton in the final state and the virtual one, with one parton virtually exchanged, or equivalently the
(m+1)- and m-parton contributions. The NNLO correction is composed of three contributions:

σ
NNLO = σ

NNLO
m +σ

NNLO
m+1 +σ

NNLO
m+2 =

∫
m+2

dσ
RR
m+2Jm+2 +

∫
m+1

dσ
RV
m+1Jm+1 +

∫
m

dσ
VV
m Jm , (2.5)

where the individual contributions are infinite, only their sum is finite for IR-safe observables. The
(m+ 2)-parton contribution contains an (m+ 2)-parton tree-level squared matrix element which
can develop kinematic singularities due to singly and doubly unresolved parton emissions. The
(m+ 1)-parton contribution is the interference of an (m+ 1)-parton one-loop amplitude with the
corresponding tree-level one exhibiting kinematic singularities due to singly unresolved emissions
and explicit ε poles due to the integration over loop momentum. Finally, the m-parton contribution
is the sum of the modulus squared one-loop and the interference of the two-loop amplitude with
the corresponding m-parton tree-level matrix element. This last contribution does not contain any
kinematic singularity, but has ε poles due to dimensional regularization of matrix elements which
are cancelled by the (m+1)- and (m+2)-parton contributions when summed up providing a finite
prediction for all IR-safe observables.

In the (m+2)-parton contribution the jet function allows for up to doubly unresolved emissions
hence local subtractions have to be included for both the singly (dσ

RR ,A1
m+2 ) and doubly (dσ

RR ,A2
m+2 )

unresolved emissions. Beside of these the subtraction terms have additional kinematic singulari-
ties: when a singly unresolved emission takes place a part of those subtraction terms which were
included for the doubly unresolved emission develops kinematic singularities, while in the case of a
doubly unresolved emission a subset of subtraction terms for regularizing singly unresolved emis-
sions develops kinematic singularities. To cancel these singularities additional subtraction terms
are introduced (dσ

RR ,A12
m+2 ). When these kinematic singularities are regularized the (m+ 2)-parton

contribution becomes finite even in d = 4 dimension and has the form

σ
NNLO
m+2 =

∫
m+2

{
dσ

RR
m+2Jm+2−dσ

RR,A2
m+2 Jm−

[
dσ

RR,A1
m+2 Jm+1−dσ

RR,A12
m+2 Jm

]}
ε=0

. (2.6)

The kinematic singularities of the (m+ 1)-parton contribution are regularized by introducing ap-
propriate subtraction terms (dσ

RV ,A1
m+1 ), while the explicit poles are cancelled by adding back the in-

tegrated dσ
RR ,A1
m+2 subtractions. These integrated subtraction terms still contain a one parton degree
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of freedom which can become unresolved hence a subtraction is introduced,
((∫

1 dσ
RR ,A1
m+2

)A1
)

,

to regularize these kinematic singularities. The regularized (m+1)-parton contribution can be cast
into the form of

σ
NNLO
m+1 =

∫
m+1

{(
dσ

RV
m+1 +

∫
1

dσ
RR,A1
m+2

)
Jm+1−

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)A1
]

Jm

}
ε=0

. (2.7)

After integrating over degrees of freedom of unresolved emissions in the subtractions they are
added back in the last contribution, namely in the m-parton one:

σ
NNLO
m =

∫
m

{
dσ

VV
m +

∫
2

[
dσ

RR,A2
m+2 −dσ

RR,A12
m+2

]
+
∫

1

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)A1
]}

ε=0

Jm .

(2.8)

Since both the (m+2)- and (m+1)-parton contributions are regularized by the various subtractions,
due to the KLN theorem the last m-parton one has to be finite as well, the integrated subtractions
cancel the explicit ε poles of the dσVV contribution.

3. The MCCSM framework

As discussed in the previous section that the NNLO correction is composed of three different
contributions, two out of these need subtractions to regularize kinematic singularities. The presence
of subtractions results in the proliferation of contributions needed for the cross section turning the
computation into a heavy bookkeeping problem. Since the way subtractions are assigned to singular
regions is an algorithmically well-defined problem it can be automated. Having an implementation
which can automatically assign subtraction terms to a partonic subprocess pays off because of the
large number of these terms not only is the manual implementation cumbersome but it is not free
from possible human errors. Beside the possibility to automate subtractions the other good reason
for a general NNLO QCD framework is that the COLORFULNNLO method only needs the various
squared matrix elements as input.

As for a Monte Carlo integrator the user can select from several being available in the literature
[6, 7, 8, 9, 10, 11]. If the integrator is only defined on the hypercube of unity a mapping is needed
from the hypercube of unity of integration to the actual physical phase space. This can also be done
in an automatic way paving the road further for automation.

These properties allowed us to create the MCCSM (Monte Carlo implementing the COLOR-
FULNNLO Subtraction Method) numerical code in a flexible fortran90 program library.

3.1 Setup and initialization

MCCSM is constructed to be fully modular: each process resides in a separate folder. If NNLO
QCD predictions are to be computed for a particular process the code has to be compiled in the
folder of the process. The user has to provide various tree-level, one- and two-loop squared ma-
trix elements to build a complete code, Tab. (1) gives a summary of the squared matrix elements
requested by the program.
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# of loops
# of partons

m m+1 m+2

0
B , Bi j , Bi jk , Bi jkl

Bµν , Bµν

i j , Bαβ µν
R , Ri j , Rµν RR

1 V , Vi j , V µν RV

2 VV

Table 1: Collection of user-provided matrix elements needed by MCCSM. Latin indices stand for color while
greek indices for spin degrees of freedom for the color- and spin-correlated squared matrix elements.

The behavior of the code can be controlled and even fine-tuned via an input card which not
only specifies the physical and Monte Carlo integrator related parameters but can also be used to
fine-tune the run by selecting only specific contributions or even turning off subtraction terms to
obtain NLO QCD corrections to the (m+1)-parton process.

Upon initialization MCCSM determines the partonic subprocesses of the process and the num-
ber of massless quark flavors. Than for every active contribution the squared matrix elements are
evaluated in randomly chosen phase space points and the code tries to identify numerical relations
between the various contributions coming from different subprocesses. For example, e+ e−→ uūg
and e+ e− → dd̄g differ only by a factor of four at tree-level. By identifying these relations the
code can limit the calls to the matrix elements to an absolute minimum gaining considerable speed
for complex multi-leg processes.

Than the code determines the subtraction terms for the irreducible subprocesses and checks
limiting behavior for each one of them. With the irreducible subprocesses determined the program
is ready to perform the Monte Carlo integration of the active contributions.

3.2 Obtaining the various contributions

The current version of MCCSM uses MINT [9] as the integrator. The code communicates with
the integrator through interface routines residing in a module making a possible change in the
integrator straightforward.

We use MINT as our integrator since it provides excellent control over the integration and
offers the possibility to perform the integration grid optimization in a parallel fashion by running the
code in multiple copies with differently chosen random seeds and at the end of the runs collecting
all information from the runs to refine the integration grid. Using this approach no communication
is needed between the various concurrently running jobs. The behavior of the code is just the same
on a multi-hundred core cluster as on a desktop with multiple cores.

MINT is a Monte Carlo integrator on the hypercube of unity. To obtain a physical phase space
point a mapping has to be defined which is provided by PHASER, an in-house multi-channel phase
space generator.

4. Predictions

Two- and three-jet production in electron-positron annihilation were the first processes imple-
mented in MCCSM. For these the NNLO QCD corrections are already known [2, 3] thus offering
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B V R VV RV RR

# of PS points 100M 100M 100M 10M 10M 10M

Timing 12min 8h 17min 3h 24min 7h 32min 21h 53min 5h 26min

Table 2: Typical CPU timing for the various contributions to three-jet leptoproduction on a Intel(R)
Xeon(R) E5-2695 v2 2.40GHz CPU.

the possibility to validate our calculation by comparison to existing predictions.
In electron-positron annihilation it is usual practice to give predictions for a generic O event

shape observable normalized to the LO cross section for e+ e−→ hadrons, σ0,

1
σ0

dσ

dO
=

αs

2π
A(O)+

(
αs

2π

)2
B(O)+

(
αs

2π

)3
C(O)+O(α4

s ) , (4.1)

where A(O), B(O) and C(O) are the differential cross section contributions at LO, NLO and NNLO
accuracy, respectively.

For comparison with existing calculations [2, 3] we computed the six standard event shape
variables: thrust, heavy-jet mass, total- and wide-jet broadening, C-parameter and the 3-to-2 jet
transition variable. By way of illustration, we show our predictions for BW and heavy-jet mass
in Fig. (1). On the lower panels showing the physical predictions the band corresponds to the
scale uncertainty at NNLO obtained by varying the renormalization scale between

√
Q2/2 and

2
√

Q2, On the plots for the C-coefficient the bands correspond to the statistical uncertainty of our
numerical integration. Our statistical uncertainty enlarges resulting in the opening of the band when
the prediction in the bin approaches zero. On the lower panels both in the physical predictions and
both on the plots for the C-coefficient the markers stand for the ratio of the other two computations
compared to ours while the error bars indicating their statistical uncertainty only. From these plots
it is visible that the agreement between our calculation and [3] is excellent1, while the agreement
with [2] is fairly good. We note that the comparison to [2] is hampered by the somewhat large
uncertainties of that calculation. The discrepancies visible for large values of the event shapes
can be attributed to statistical underestimation in the other two calculations because in the region
of phase space in question (beyond the LO kinematic limits of the observables) we checked our
predictions with MadGraph5_aMC@NLO [12] and found perfect agreement.

Beside the usual event shapes we also computed the NNLO QCD correction for jet cone energy
fraction [13] for the first time for which the physical prediction and the NNLO QCD correction is
depicted on Fig. (2).

The performance of MCCSM for this process is summarized in Tab. (2).

5. Conclusions

In this talk we introduced our numerical code, MCCSM which uses the COLORFULNNLO
subtraction method to provide NNLO QCD corrections to three-jet leptoproduction. With our code
we made predictions for event shape variables which are already known at NNLO QCD accuracy
as well as presented predictions for the jet cone energy fraction for the first time at this accuracy.

1We are grateful to S. Weinzierl for providing us with updated predictions from the code of ref. [3].
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Figure 1: Predictions for the physical and C-coefficient of wide-jet broadening and heavy-jet mass with
comparison to [3] (SW) and [2] (GGGH).

We compared our results to previous calculations and found agreemnt. In our computations
we achieved very small statistical uncertainty for all the computed observables demonstrates the
robustness of the method and numerical stability of our code.

At present the COLORFULNNLO is worked out for colorless initial states. The generalization
to partonic initial states is in progress.
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