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A recent discovery has pointed out that the moment of inertia, the tidal Love number and the spin-
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are almost insensitive to the star equations of state. These I-Love-Q relations open the opportunity
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1. Introduction

Neutron stars (NSs) are among the most exotic objects of our Universe. They provide an
unique intersection between astrophysics, gravity and particle physics, and represent natural lab-
oratories for experimental tests under extreme conditions, which cannot be reproduced on Earth.
NSs are well established sources of electromagnetic signals, which have already provided precious
information on their internal and external structural properties [1]. Moreover, they are powerful
emitters of gravitational radiation as isolated and binary systems. Second generation detectors like
Advanced LIGO and Virgo are going to make gravitational wave astronomy a routine, unveiling
the physical phenomena occurring in highly dynamical and high-curvature regimes in the NS sur-
roundings [2, 3, 4]. Combined measurements in both these observational windows offer the chance
to test gravity in the strong field regime, and to put constraints on the holy grail of NS astrophysics,
i.e. its equation of state (EoS).

The largest obstacle in fully exploiting such objects as probe of new physics, lies in our igno-
rance about their internal structure. Some macroscopical features, like the star radius or its moment
of inertia, strongly depend on the underlying EoS, which is nowadays highly uncertain [1]. This
lack of knowledge affects our understanding of the stellar matter at supranuclear densities, and has
prevented model-independent tests of gravity.

However, in this scenario a breakthrough is represented by the I-Love-Q relations. Recently,
it has been shown that in slowly rotating and weakly magnetised neutron stars, universal relations
do exist between the quadrupole moment (Q), the moment of inertia (I) and the tidal Love number
(λ ), which are almost insensitive to the star equation of state [5, 6]. These relations have sev-
eral applications, and may be able to provide redundancy tests of General Relativity (GR), and
shed new light on the NS inner regions [7]. Moreover, they can be used to break degeneracies be-
tween astrophysical parameters from electromagnetic and gravitational signals, as those between
the quadrupole and the spins from GW observations of binary NSs [5], or in X-ray pulse profiles
detected by future space satellites [8, 9].

Confirmed in [10], these relations have been deeply analysed to assess their domain of validity,
considering highly dynamical binaries close the coalescence [11], strong magnetic fields [12], fast
rotating objects, [13, 14, 15, 16, 17, 18], and newly-born proto-neutron stars [19]. Moreover,
similar universal relations have been discovered for higher order multipole moments [13, 17, 16,
18, 20], tidal coefficients of NS binaries [21], other physical quantities [11, 22, 23], and in different
classes of theories, alternative to GR [24, 25, 26, 27, 28, 29].

In the following sections we will provide a brief overview of the I-Love-Q relations (we refer
the reader to the seminal papers [5, 6] for all the mathematical details and the possible applications),
and then we will present four examples in which they have been investigated to test and extend
their domain of validity. Moreover, although the I-Love-Q relations have also be proven to exist for
strange stars, hereafter we will mainly focus on normal EoS. Throughout this paper we use units in
which G = c = 1.

2. I-Love-Q

The I-Love-Q relations connect the moment of inertia I, the spin-induced quadrupole moment
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Q, and the tidal Love number λ of an isolated neutron star, through semi-analytic fourth order fits
which are independent of the star internal composition:

lny = a+b lnx+ c(lnx)2 +d(lnx)3 + e(lnx)4 , (2.1)

where (a . . .e) are numerical coefficients given in Table 1. The Ī, Q̄, λ̄ trio is normalised such that:

Ī =
I

M3 , Q̄ =− Q
M3χ2 , λ̄ =

λ

M5 , (2.2)

where M is the NS gravitational mass, and χ = J/M2 the spin parameter, J being its angular
momentum. Top panels of Fig. 1 show the Ī-λ̄ and the Q̄-λ̄ relations tested against the numerical

y x a b c d e
Ī λ̄ 1.47 0.0817 0.0149 0.000287 −3.64 ·10−5

Ī Q̄ 1.35 0.697 −0.143 0.0994 −1.24 ·10−2

Q̄ λ̄ 0.194 0.0936 0.0474 −0.00421 1.23 ·10−4

Table 1: Best-fit coefficients of Eq. (2.1) for the I-Love-Q relations [5].

results for a representative set of EoS and different NS configurations, obtained varying the central
pressure. The bottom plots show the relative errors between the data and the analytic fits (2.1), and
demonstrate that these relations are EoS independent with an accuracy better that 1%.

Figure 1: (Top) Analytic fits (solid black curves) and numerical results for the Ī-λ̄ and Q̄-λ̄ universal
relations. Different points refer to distinct equations of state. The top x-axes show the corresponding NS
masses for the APR EoS [30]. (Bottom) Relative errors between the data and the analytic expression (2.1)
(taken from [6]).

Although the reason of such universality is not completely understood, Yunes and Yagi have
already outlined some convincing arguments supporting their discovery [5]. The origin of the
I-Love-Q relations has a fascinating explanation in terms of the no-hair theorem, for which the
gravitational field of a rotating, non-charged black hole, solely depends on its mass and spin angular
momentum, with all the other multipole moments related to the first two [31]. Although this

3



P
o
S
(
M
P
C
S
2
0
1
5
)
0
1
4

From macro to micro Andrea Maselli

conjecture does not apply to ordinary stars, approximate universality of Eq. (2.1) might suggest
that I-Love-Q relations approach the black hole limit, as the stellar compactness increases. This
argument seems also to be supported by the discovery of no-hair universal relations which connect
some of the NS multipole moments (l ≤ 10) to the first three [13, 16, 17]. However, there is no
continuous limit which brings a NS sequence to a BH.

The reason of universality has been further investigated in [32, 33, 34], in which the authors
made a more detailed analysis to connect the NS structural properties with the origin of the I-Love-
Q relations. The main result point out that the EoS independence relies on the assumption that
the star is modeled by isodensity contours which are self-similar ellipsoids, with large variations
of the eccentricity being able to destroy the universality. This idea has also been corroborated
by a different study carried out on hot proto-neutron stars, showing that the I-Love-Q lose their
validity when entropy gradients are active inside the star, which reflect in considerable changes of
the ellipticity of the isodensity contours [19].

Finally, comparing the numerical data obtained for the I-Love-Q trio, computed for incom-
pressible stars and normal EoS, a different interpretation of the universality has been given in
[35, 36]. The result of this analysis shows that Eq. (2.1) is stationary at first order under pertur-
bations of the EoS around the incompressible limit, suggesting that EoS independence could be
related to the proximity of NSs to incompressible objects.

3. I-Love forever

A first study devoted to extend the domain of validity of the I-Love Q relations was made in
[11] to investigate the role of Eq. (2.1) during the coalescence of compact binary systems.

Neutron star tidal deformations are characterised by a set of coefficients, the Love numbers,
which are computed assuming that tidal effects are produced by an external, time-independent
gravitational field. However, this assumption makes the star effectively at isolation. The dominant
contribution, described by the l = 2 component λ , is defined by the relation

Qi j = λEi j , (3.1)

where Ei j and Qi j are the tidal tensor and the star quadrupole tensor, respectively. Equation (3.1) is
grounded on the adiabatic approximation, which states that the timescale of the orbital evolution
is much longer than the timescale associated with the stellar deformations [37, 38, 39, 40]. Such
hypothesis becomes less accurate as the binary approaches the merging phase, and dynamic tides
start to provide a significant contribution [41]. Moreover, current GWs interferometers are expected
to detect signals coming from the last stage of the inspiral, when binaries orbit at small distances,
in an highly dynamical regime. It is therefore crucial to determine whether, in this scenario, the
I-Love-Q relations would retain their universal character.

To this aim, the authors of [11] used a semi-analytical approach called the post-newtonian
affine model, which has been developed to describe tidal deformations in compact binaries, and
does not rely on the adiabatic approximation [42, 43]. In this framework the spherical star is
deformed by the tidal field into an ellipsoid, preserving this shape during the orbital motion. This
approach allows to compute Qi j and Ei j in terms of the dynamical variables, and to evaluate their
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ratio as function of the orbital frequency f . A new Love function λ ( f ) is then introduced:

λ ( f ) =
Ei j( f )
Qi j( f )

, (3.2)

whose limit of zero frequency (or infinite orbital separation) corresponds to the constant λ obtained
in the stationary approach. The post newtonian affine model also leads to define the moment of
inertia:

Ii = I× a2
i

R2 , (3.3)

where ai=1,2,3 are the axes of the deformed ellipsoidal star, being R and I its radius and moment
of inertia at spherical equilibrium. Three realistic EoS have been taken into account, APR4 [30],
H4 [44] and MS1 [45], which are expected to cover a wide range of NS deformability [46]. The
authors computed the normalised Love function λ̄ = λ ( f )/M5, and the normalised moment of
inertia corresponding to the axis pointing towards the companion Ī = I1/M3, as function of the
orbital frequency, testing the data against Eq. (2.1). Several NS-NS binary configurations have
been considered, with mass ratio equal to one, and star masses in the range M ∈ [1.2−2]M�.

In the left panel of Fig. (2) the Ī-λ̄ relation is plotted for three values of the GW frequency
fGW = 2 f = (170,500,850)Hz, with the dashed curves corresponding to new semi-analytic fits of
the data obtained at fixed orbital distances:

ln Ī = b0 +b1 ln λ̄ +b2(ln λ̄ )2 +b3(ln λ̄ )3 +b4(ln λ̄ )4 . (3.4)

The coefficients bi depend on fGW and are listed in Table 1 of [11]. The top-right panel of Fig. (2)
shows the relative errors (Ī− Ī f it)/Ī f it , between the data points and Eq. (3.4): for the three samples
considered, such discrepancies are always. 2%. In the lower panel the ratio Ī/Ī0 is plotted against
λ̄ , being Ī0 the value of Ī at isolation. We note that, as the binary approaches the final phase of
the inspiral, the moment of inertia changes with respect to its asymptotic value, and increases up
to 30%, depending on the EoS. The relative errors found are weakly dependent on the star internal
composition, and suggest the existence of a more general, f -independent fit between Ī and λ̄ , which
captures the whole range of frequencies considered. Such relation has been found with the same
functional form of Eq. (3.4) and (2.1):

ln Īuni = 1.95−0.373ln λ̄ +0.155(ln λ̄ )2−0.0175(ln λ̄ )3 +0.000775(ln λ̄ )4 . (3.5)

This fitting curve is drawn against all the numerical data in the upper panel of Fig. 3, with the bot-
tom section displaying the relative errors obtained by means of Eq. (3.5) (black squares), and using
the analytical result of Yunes and Yagi (red circles). The new fit reproduces the Ī-λ̄ relation with
5% accuracy throughout the inspiral, with the original formulation which becomes less accurate
as the binary approaches the coalescence, with relative errors of the order of 10%. The universal
relation (3.5) has also been tested for unequal NS-NS systems, and mixed BH-NS binaries, finding
similar results with the same degree of accuracy.

We finally note that in this study, a new relation has been found between the NS compactness
C =M/R and the constant tidal Love number. For the same sets of binary configurations previously
analysed, the authors found that the fit

C = 3.71×10−1−3.91×10−2 ln λ̄ +1.056×10−3(ln λ̄ )2 , (3.6)
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Ī fi
t
|/
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Figure 2: (Left) Ī − λ̄ relation for three values of the gravitational wave frequency fGW ≡ 2 f =

(170,500,875) Hz and for the EoS APR4 (×), MS1 (©), H4 (�). The dashed curves refer to the fits (3.4).
(Right Top) Relative fractional errors between fits and numerical results. (Right Bottom) Ī-λ̄ relation with
moment of inertia normalised by its value at infinity (taken from [11]).

reproduces the compactness with relative errors smaller than 2%. The C-λ̄ relation could be ex-
tremely useful to extract information on the star EoS from future GW observations of binary coa-
lescences, leading to estimates of the NS radius with uncertainties of . 10% [11].
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Figure 3: (Top) Fitting curve (3.5) (dashed line) and numerical results of the Ī-λ̄ relation, for data-set
including points up to fGW = 875 Hz. (Bottom) Relative fractional errors between fits and numerical
results. Black squares and red circles refer to the fit of Eq. (3.5), and to the analytical relation found by
Yunes and Yagi, respectively (taken from [11]).

4. Universality for fast-rotating stars

A natural extension of the original discovery made by Yunes and Yagi was to consider fast
rotating objects. This problem was first addressed in [14].

Fig. 4 shows the data of Ī and Q̄ computed through the rns code [47, 48], and tested against
the analytic relation (2.1) for different rotation frequencies f . Several realistic EoS have been taken

6



P
o
S
(
M
P
C
S
2
0
1
5
)
0
1
4

From macro to micro Andrea Maselli

into account. The figure suggests that universality is completely broken for frequencies greater than
∼ 160Hz, with the spread of the data due to the equation of state being comparable to the spread
due to rotation. The bottom panel also displays the relative errors between numerical values and
Eq. (2.1) for two of the cases considered, showing that deviations from the fourth order fit can be
O(10%) for stars close to the fastest millisecond pulsar known ( f ∼ 700Hz). Such differences, as
the span related to the EoS, decrease for lower values of Ī and Q̄, for which stellar configurations
are characterised by larger compactness. As pointed out by the authors, this result is somehow
expected, as for these configurations the NSs approach the BH limit. Although a universal Ī-Q̄

Figure 4: (Left) Numerical data obtained for the normalised moment of inertia and spin-induced quadrupole,
for NSs with rotation frequency f . Different point shapes correspond to distinct EoS. The analytic relations
(2.1) (black solid curve) and (4.1) (red dashed and black dotted curves) are also drawn against the data. The
bottom panel shows the relative errors between the numerical values and the fit derived by Yunes and Yagi
(Y&Y in the label). (Right) The top panel shows the new Ī-Q̄ universal relations (4.1) for fixed sequences
of rotational frequency. The bottom figure displays the numerical values for gravitational mass as function
of the normalised quadrupole (taken from [14]).

does not exist, new semi-analytic fits can be derived, which capture the universality for sequences
of fixed rotational frequency:

ln Ī = a0 +a1 ln Q̄+a2(ln Q̄)2 , (4.1)

where ai = ai( f ) are fitting coefficients described by a third order relation:

ai = c0 + c1
f

1 kHz
+ c2

(
f

1 kHz

)2

+ c3

(
f

1 kHz

)3

, (4.2)
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(see Table 1 of [14] for the numerical values of ci). The right plot of Fig. 4 shows these relations
for a restricted sample of EoS. Relative errors with respect to the numerical data decrease to 2% for
all the frequencies . 500Hz, and up to ∼ 5% for higher rotations. Deviations for slowly rotating
stars are mainly due to the accuracy of Eq. (4.1), while for faster spins are related to the spread of
different EoS.

This problem was also tackled in [15], where new analytic fits have been discovered, which
improve the universality of the Ī-Q̄ relations even for frequencies greater than 500 Hz. The authors
focused on finding a dimensionless parameter α , which characterises the star rotation, and such
that the function Ī(Q̄,α) is independent from the EoS. Universality is maximised assuming the
following functional form:

ln Ī ≈∑
i j

Ai jai ln j Q̄≈∑
i j

Bi j f̃ i ln j Q̄ , (4.3)

where Ai j and Bi j are fitting coefficients (listed in Table 1 of [15]), and the two parametrisations
have been chosen such that a = J/M2, and f̃ = 20R f . Figure 5 shows the relative percentage errors
between Eq. (4.3) and 3×104 data in the parameter space 0.1 < a < 0.6, 0.2 < f̃ < 1.2, 1.5 < Q̄ <

15, for the EoS specified on the side. Deviations from Eq. (4.3) are always . 1%, and on average
∼ 0.3%. We note that, in both cases, the new universal relations depend on an extra parameter,
being a or f̃ . Future simultaneous measurements of the Ī-Q̄-a trio, must be consistent with the
curve of the right panel of Fig. 5, if GR holds. Finally, the authors suggested the chance to use
the f̃ parametrisation to constrain the NS radius, once the dimensionless Ī,Q̄ and the dimensionful
stellar frequency f have been measured.
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5. I-Love-Q magnetically

NSs are characterised by strong magnetic fields, with surface values of the order of 1012 G
for radio pulsars, and up to 1015 G for magnetars. Their neat effect is to deform the star spherical
shape, and then to modify its quadrupole moment. It is therefore expected that magnetic fields
would affect the I-Love-Q relations. A systematic study about this topic has been first addressed in
[12], focusing on the I-Q pair 1.

As argued by the authors, a simple Newtonian framework is already able to capture the main
features of the magnetised Ī-Q̄ relation. Given a standard polytropic EoS with polytropic index
γ = 2, for a purely poloidal magnetic field the normalised quadrupole and moment of inertia are
related at the lowest order by:

Q̄ = Q̄r + Q̄m ' 4.9Ī1/2 +10−3Ī
(

Bp

1012G

)2( P
1s

)2

, (5.1)

where the first term is due to rotation (Q̄r), and the second (Q̄m) to the magnetic field Bp at the pole,
being P the star period. In the same spirit, for a purely toroidal configuration:

Q̄' 4.9Ī1/2−3×10−5Ī
( 〈B〉

1012G

)2( P
1s

)2

, (5.2)

where 〈B〉 is the field averaged on the star volume. Equations (5.1)-(5.2) show that the rotational
contribution is always dominant, except for very strong fields and large periods. Moreover, the
quadrupole is proportional to the product B× P, and therefore is not universal, since it will in
general depend on the NS parameters.

This analysis has been extended to a fully relativistic treatment, by considering the two con-
figurations described above separately, and a twisted-torus model, in which both fields are present.
The left panel of Fig. 6 shows the magnetic quadrupole, for purely poloidal (Q̄m > 0,Bp = 1012G)
and purely toroidal (Q̄m < 0,〈B〉 = 1012G) fields, for a non-rotating star, with different EoS. It is
clear that only once the magnetic field configuration has been specified, the Ī-Q̄m relation acquires
an universal character, which weakly relies on the star internal composition. The right panel of the
same figure also shows the strong dependence on the product B×P. In this case a pure toroidal set
up has been considered as function of P, with 〈B〉= 1014G and one realistic EoS. Different periods
lead to distinct Ī-Q̄ relations, which are now dominated by the rotational component.

Universality is also lost for twisted-torus configurations, as displayed in Fig. 7. In the right
panel the authors considered a NS with internal toroidal-to-total magnetic field energy ratio F =

Erot/E int
m = 50%, a surface poloidal field Bp = 5× 1012G with P = 10s, and five EoS (see [12]

for more details). In this case the equation of state plays a crucial role, completely spoiling out
the validity of the Ī-Q̄ relation. Moreover, these results seem to strongly depend on the values
of F , and on the prescription for the internal currents. Different field strengths, specified by the
parameter k̄, yield distinct slopes and then destroy the universal behaviour.

1Magnetic corrections to the Love number are currently not known, and would be of higher order.
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Figure 6: (Left) Normalised magnetic quadrupole as function of the normalised moment of inertia, for
purely poloidal (Q̄m > 0,B = 1012G) and toroidal (Q̄m < 0,〈B〉= 1012G) fields. The NS is non-rotating and
modeled by the realistic EoS APR [30], with masses identified by the upper x-axis. (Right) Ī-Q̄ relation for
a purely toroidal magnetic field for different rotation rates and 〈B〉= 1014G (taken from [12]).

Figure 7: (Left) Q̄m relation for twisted-torus configurations with F = 0.5, Bp = 5× 1012, k̄ = 0.25 and
P = 10s. (Right) Same as left plot, but for different k̄ and F , and the EoS APR [30] (taken from [12]).

6. Universal relations for hot stars

I-Love-Q relations have been originally tested for cold equations of state, which are expected
to provide a reliable description of old neutron stars. Although some finite-temperature EoS have
been considered [5, 6], they have been treated as barotropic, assuming a uniform temperature of
T = 109K. Such configurations yield a good picture of the star only 1 minute after the supernova
explosion. This scenario has been extended in [19], in which newly-born neutron stars were stud-
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ied, taking into account hot EoS where entropy gradients between the core and the envelope are
still active.

The authors considered a sequence of mass-energy, pressure, and lepton fraction profiles,
which describe a NS with baryonic mass Mb = 1.6M� during the first minute of the stellar life.
Then, they computed the I-Love-Q trio at different stages of the star evolution, comparing the
numerical data with the theoretical results given by Eq. (2.1). Figure 8 shows the relative errors
∆I/Ī f it = |Ī− Ī f it |/Ī f it and ∆Q/Q̄ f it = |Q̄− Q̄ f it |/Q̄ f it for the normalised moment of inertia and
spin-induced quadrupole moment, at t = (0.2,0.3,0.5,1,2.5,20) seconds after the star birth. The
plots clearly show that the analytical fits lose their validity during the first stages after the bounce,
with discrepancies up to 30% for the Ī-Q̄ and Q̄-λ̄ relations. These errors rapidly decrease, reduc-

á

á

á

á

á

áá

1000 10 00050002000 30001500 7000

1.0

5.0

2.0

3.0

1.5

7.0

Λ

D
I�I

fi
tH%

L

0.2

0.3

0.5

1

2
5

20
0

1

2

3

4

5

6
0.0 0.2 0.4 0.6 0.8 1.0

s

r�R

0.2 0.5

2

5

20

á

á

á

á

á

á

á

10 15

0.5

1.0

2.0

5.0

10.0

20.0

Q

D
I�I

fi
tH%

L

0.2

0.3
0.5

1

2

520
0

1

2

3

4

5

6
0.0 0.2 0.4 0.6 0.8 1.0

s

r�R

0.2 0.5

2

5

20

á

á

á

á

á

á

á

1000 10 00050002000 30001500 7000

1.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

Λ

D
Q

�Q
fi

tH%
L

0.2

0.3
0.5

1

2

520
0

1

2

3

4

5

6
0.0 0.2 0.4 0.6 0.8 1.0

s

r�R

0.2 0.5

2

5

20

Figure 8: The plots show the relative differences between the universal relations (2.1) and the numerical
data obtained from hot EoS (see text), at different times (in seconds) after the proto-neutron star birth. The
insets display the entropy gradient per unit baryon, as function of the normalised radius of the star, for some
configurations (taken from [19]).

ing to values . 1% after 2s, and then restoring the I-Love-Q universal character. The latter seems
therefore to depend on how fast the newly-born star reaches a quiet and cold state.

The inset in each plot also shows, for some of the configurations considered, the entropy
per baryon as function of the star radius. It is interesting to note that largest deviations from
universality occur when the entropy gradient is maximum. This point has been examined more
in detail, computing the ellipticity of the isodensity contours e inside the star, normalised to the
star rotation rate Ω. From Fig. 9 it is clear that the ratio e/Ω changes with variations greater than
200% during the first second. However, for t & 2s, when entropy gradients smoothen, the profiles
become nearly flat. These results seem to support the hypothesis made in [32], for which I-Love-Q
relations lose their accuracy when the ellipticity of the isodensity contours inside the NS presents
large changes.
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Figure 9: Ellipticity of the isodensity contours normalised to the star rotation rate, as function of the equa-
torial radius, at different times of the star evolution after the bounce (taken from [19]).

7. Conclusions

Neutron stars are the golden mine of relativistic astrophysics, as they represent the ideal arena
to study physics in the most extreme conditions. However, our ignorance of their internal structure,
i.e of the equation of state at supranuclear densities, has limited our ability to address some fun-
damental questions related to their properties. In this scenario, new possibilities are offered by the
recently discovered I-Love-Q relations, which link together the moment of inertia, the tidal Love
number and spin-induced quadrupole of isolated binary NSs, in an EoS independent way.

In this paper we have given a brief overview of the main features of such universal relations,
and presented four scenarios in which they have been deeply investigated adding new physical
degrees of freedom. In particular, we have shown that universality survives in highly dynamical
regimes, when binary mergers close to the coalescence are considered, also leading to define new
semi-analytic fits valid throughout the inspiral. Conversely, it has been pointed out that strong
magnetic fields or large entropy gradients inside hot neutron stars are able to destroy I-Love-Q
relations. Finally, we have described how different parametrisations may lead to the extension of
their domain of validity to fast rotating objects.

Although the origin of such universality is still debated, I-Love-Q relations promise to offer
new chances to combine current and future gravitational and electromagnetic observations, and to
provide a new understanding of the astrophysical phenomena involving neutron stars.
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