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Abstract: In this talk, we review the properties of anomalous U(1)’s in D = 4, N = 1 type IIB orien-

tifolds and investigate the pertubative validity of N = 1 heterotic-type I duality in four dimensions.

1. Introduction

In the last few years, the development of the

orientifold techniques [2] has given rise to the ex-

ploration of a new class of D = 4, N = 1 string

compactifications with promising phenomenolo-

gical properties (see e.g. [3, 4, 5, 6, 7, 8, 9, 10,

11, 12]). These new vacua, which contain both

open and unoriented closed strings, are expected

to have heterotic duals in view of the postulated

heterotic-type I duality in ten dimensions [13].

One of the most striking features of these orien-

tifold models, however, is the presence of anoma-

lous abelian gauge symmetries which show many

differences with the heterotic anomalousU(1). In

particular, their gauge groups may contain seve-

ral anomalous U(1)’s, with non-universal anoma-

lies canceled by a generalized Green-Schwarz me-

chanism involving several antisymmetric tensors,

and moduli-dependent Fayet-Iliopoulos terms.

One may thus ask whether this picture is consis-

tent with duality.

In this talk, we first give a detailed descrip-

tion of anomalous U(1)’s in orientifolds, with a

particular attention to the scales of the gauge bo-

son masses and Fayet-Iliopoulos terms. Then we

use these results to discuss the validity of duality

on specific examples where a candidate heterotic

dual is known.

∗This talk is based on work made in collaboration with
Z. Lalak and H.P. Nilles [1].

2. Anomalous U(1)’s in D = 4, N = 1

heterotic compactifications

Let us first recall some facts about anomalous

U(1)’s in D = 4, N = 1 compactifications of

the heterotic string. The gauge group of such

vacua often possesses several abelian factors, one

combination of which (denoted by U(1)X in the

following) may be anomalous. Its anomalies are

harmless, however, since they are compensated

for by a four-dimensional version [14] of the Green-

Schwarz mechanism [15] which ensures the con-

sistency of the underlying D = 10 string theo-

ry. This mechanism relies on the presence of

an antisymmetric tensor with the requisite cou-

plings to cancel the anomaly; since there is only

one such tensor Bµν in heterotic vacua (the four-

dimensional remnant of the antisymmetric tensor

from the D = 10 supergravity multiplet), there

can be at most one anomalous U(1). In its super-

symmetric formulation [14], the Green-Schwarz

mechanism ist most commonly described in terms

of the pseudoscalar dual of Bµν , the model-inde-

pendent axion that belongs to the dilaton super-

multiplet. The anomalies are then canceled by a

shift of the axion under a U(1)X gauge transfor-

mation. Note that this requires universal (gauge-

group independent) ratios of the anomalies:

CA

kA
=
Cg

12
(2.1)

where kA is the Kac-Moody level of the gauge

group factor GA, CA = 2Tr (T
ATAX) is the
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coefficient of the U(1)XGAGA gauge anomaly

(there is an additional symmetry factor for the

cubic U(1)X anomaly, CX =
2
3 Tr (X

3)), and

Cg = TrX is the coefficient of the mixed U(1)X -

gravitational anomaly.

The anomalous gauge boson acquires a mass

of the order of the string scale through its Green-

Schwarz coupling to the axion and, as a conse-

quence of the anomaly, a Fayet-Iliopoulos term ξ2

is generated at the one-loop level. A string com-

putation [16] shows that ξ2 is tied to the string

scale by a model-dependent coefficient:

ξ2 =
TrX

192 π2
M2Str (2.2)

In the original vacuum, supersymmetry is broken

by the Fayet-Iliopoulos term; however, there ge-

nerally exist “shifted vacua” in which the vevs of

some fields Φα charged under U(1)X compensate

for ξ2, thus restoring supersymmetry. A combi-

nation of the S and the Φα chiral superfields is

then absorbed by the anomalous vector multi-

plet and disappears from the massless spectrum,

while the orthogonal combination yields the low-

energy dilaton supermultiplet. This vacuum shift

generally triggers further breakdown of the gauge

group [17].

3. Anomalous U(1)’s in D = 4, N = 1

orientifolds

As stressed in the introduction, D = 4, N = 1

type IIB orientifolds show a very different pattern

of anomaly cancellation. The gauge group of

such vacua may contain more than one anoma-

lous U(1). Their anomalies are not universal in

the sense of Eq. (2.1) and are compensated for

by a generalized version of the Green-Schwarz

mechanism, which involves several antisymme-

tric tensors [18]. Also, a string computation [19]

has shown that no Fayet-Iliopoulos term is gene-

rated at the one-loop level. While this result has

been obtained in a specific vacuum (the Z3 orien-

tifold of Ref. [3]), it is believed to hold in a larger

class of models, since it is related to tadpole can-

cellation.

The mechanism of anomaly cancellation in

T 6/ZN and ZM × ZN type IIB orientifolds has
been studied in Ref. [20]. Let us summarize here

their results. In addition to the antisymmetric

tensor Bµν from the untwisted sector, these mo-

dels contain several twisted antisymmetric ten-

sorsBkµν , k = 1 . . .M living at the fixed points of

the underlying orbifold. Those twisted antisym-

metric tensors couple1 to the Yang-Mills Chern-

Simons forms:

∂µBνρk ω
A YM
µνρ (3.1)

and to the field strength of the abelian factors

U(1)i, i = 1 . . .N present in the gauge group:

εµνρσ B
µν
k F

ρσ
i (3.2)

The Green-Schwarz terms (3.2), together with

(3.1), generate the tree diagrams which cancel

against the anomalous triangle graphs. A stri-

king difference with the heterotic case is that

there are no Green-Schwarz couplings for Bµν
- implying that the dilaton superfield does not

play any role in anomaly cancellation [20].

In a supersymmetric description, the pseu-

doscalar duals ak of the twisted antisymmetric

tensors lie in the same chiral multiplets as the

blowing-up modes mk associated with the singu-

larities of the orbifold:

Mk |θ=θ̄=0 = mk + i ak (3.3)

Performing a duality transformation on the cou-

plings (3.1), we obtain the following expression

for the gauge kinetic function:

fA = fp +
∑
k

ckAMk (3.4)

where fp depends linearly on the untwisted mo-

duli (fp = S for gauge groups coming from 9-

branes [9]) and the ckA are model-dependent coef-

ficients. Similarly, the couplings (3.2) can be

rewritten as

∂µakA
µ
i (3.5)

This tells us that the Kähler potential for theMk
fields takes the generic form:

K = K

(
{Mk + M̄k − 2

N∑
i=1

δki Vi }
)
(3.6)

1More precisely, the antisymmetric tensors living at a

given fixed point of the orbifold couple only to the gauge

fields coming from D-branes whose worldvolume contains

this fixed point.
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where the Green-Schwarz parameters δki are mo-

del-dependent coefficients as well2. Gauge inva-

riance then implies that, under a U(1)i transfor-

mation with gauge parameter Λi , the Mk un-

dergo a shift:

Mk → Mk + i δ
k
i Λi (3.7)

while the dilaton, as well as the other untwisted

moduli, remains unshifted. The variation of the

gauge kinetic terms induced by (3.7) then cancels

the mixed gauge anomalies, which show the non-

universal structure:

CiA = 8 π
2
∑
k

ckA δ
k
i (3.8)

Mixed gravitational anomalies are canceled in a

similar fashion.

In order to determine the Fayet-Iliopoulos

terms and abelian gauge boson masses, one first

needs to find the anomalous combinations of the

N U(1) factors. This is done by diagonalizing

the Green-Schwarz terms

2
∑
i,k

giδ̃
k
i ∂µakA

µ
i (3.9)

as obtained from (3.6), where the ak and A
µ
i

fields have been canonically normalized, gi =

〈Refi〉−1/2 is the gauge coupling of U(1)i and
δ̃ki =

√
2
∑
kK

1/2
kl δ

l
i are the moduli-dependent

Green-Schwarz couplings (Kkl = ∂
2K/∂Mk∂M̄l

denotes the Kähler metric for theMk fields). The

“diagonalization” of (3.9) involves a rotation RV

on the gauge bosons and a rotation RM on the

pseudoscalars ak:∑
i,k

RVpi giδ̃
k
i R
M
qk = µpδpq (3.10)

One can always choose RV and RM in such a

way that the first r “eigenvalues” µ1, . . . µr are

nonzero. In terms of the redefined fields a′p =∑
kR
M
pkak andA

′µ
p =

∑
iR
V
piA

µ
i , the Green-Schwarz

couplings (3.9) read

r∑
p=1

µp ∂µa
′
pA
′µ
p (3.11)

2The coefficients ckA and δ
k
i were determined in [20]

from the study of anomaly cancellation, and explicitly

computed in [21].

Eq. (3.11) tells us that there are exactly r anoma-

lous U(1)’s. Indeed, only the r gauge bosons

A′µp=1...r have Green-Schwarz couplings, and each
of them couples to a different axion-like field a′p
whose shift compensates for the anomalies of the

associated U(1). The N−r orthogonal combina-
tions A′µp=r+1...N , on the other hand, correspond
to anomaly-free U(1)’s. This can be checked

explicitely by redefining the charges accordingly

to the gauge bosons, Y ′p =
∑
iR
V
pi giYi/g (with

g =
√∑

i g
2
i /N ) and by computing the anomalies

in the new basis. Note that the anomalous gauge

bosons are defined in an unambiguous way by

Eq. (3.11) (up to possible degeneracies among

the µp), while the anomaly-free gauge bosons can

be rotated at will.

Having identified the anomalous U(1)’s, we

are now ready to determine the gauge boson mas-

ses and Fayet-Iliopoulos terms. Eq. (3.11) tells

us that the anomalous gauge boson A′µp acquires
a mass µp by absorbing the pseudoscalar a

′
p. The

supersymmetric version of this statement is that

the chiral superfield M ′p and the anomalous vec-
tor multiplet V ′p combine to form a massive vec-
tor multiplet, with m′p as a scalar component,
and a′p providing the longitudinal degree of free-
dom of the vector component A′µp . The masses
µp, together with the rotations R

M and RV , can

be computed by diagonalizing either the gauge

boson or the scalar mass matrix (both of them

are obtained from the expansion of the Kähler

potential (3.6)). Choosing this last possibility,

we define RM as the rotation which diagonalizes

M2kl =
∑
i g
2
i δ̃
k
i δ̃
l
iM

2
Pl. We then obtain an ex-

pression for the masses:

µ2p =
∑
i

g2i δ̄
p
i δ̄
p
iM

2
Pl δ̄pi =

∑
k

RMpk δ̃
k
i (3.12)

and for the anomalous combinations of the gauge

bosons:

A′µp =
∑
i

RVpiA
µ
i =

∑
i

giδ̄
p
i

µp
Aµi (3.13)

(p = 1 . . . r). Note that the anomalous gauge

boson masses (3.12) depend on the blowing-up

modes mk through the gauge couplings gi and

the Kähler metric Kkl (which appears in the cou-

plings δ̃ki ). But since the latter is non-singular at

the orientifold point 〈mk〉 = 0 (see below), they

3
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do not significantly depart from their orientifold

value µp ∼ MPl when one blows up. We there-
fore conclude that the anomalous gauge bosons

acquire Planck-scale masses through the Green-

Schwarz mechanism while the N − r anomaly-
free gauge bosons remain massless, exactly as one

would have expected.

As mentioned above, the Fayet-Iliopoulos terms

are not generated at one loop (note that this is in

agreement with the fact that the dilaton does not

participate in anomaly cancellation), but receive

tree-level contributions from the Kähler potential

[20, 19]. After going to the basis of Eq. (3.11),

one obtains:

ξ2p = −
µpMPl√
2 g

∑
k,l

KkK
−1/2
kl RMpl (3.14)

where Kk = ∂K/∂Mk. Note that ξ
2
p = 0 for

anomaly-free U(1)’s (since µp = 0). Expanding

the derivatives of K around the orientifold point

〈mk〉 = 0, one finds:

ξ2p = −
µpMPl

g
〈m′p〉 − . . . (3.15)

To derive Eq. (3.15), we have used the fact that

the Kähler potential (3.6) can be expanded in

powers of (Mk + M̄k − 2
∑
i δ
k
i Vi) around the

orientifold point, and that the lowest order term

is a square3. We conclude that the scale of the

Fayet-Iliopoulos terms is set by the values of the

blowing-up modes; in particular, they vanish in

the orientifold limit. This is to be contrasted

with the heterotic case, in which ξ2 is tied to

the string scale by the coefficient of the mixed

gravitational anomaly.

To summarize, in D = 4, N = 1 type IIB

orientifolds, the vector multiplets V ′p=1...r asso-
ciated with the anomalous combinations of the

abelian gauge factors acquire a Planck-scale mass

(3.12) by absorbing a combination of the twisted

chiral multiplets which contain the blowing-up

modes of the underlying orbifold. To each of

these massive multiplets is associated a moduli-

dependent Fayet-Iliopoulos term (3.15) which at

lowest order is proportional to the vev of its scalar

component. After integrating out the massive

3This statement [19] is supported by the arguments of

Ref. [22], and has been confirmed by the computations of

Ref. [21].

vector multiplets, we end up with N−r anomaly-
free U(1)’s andM−r twisted moduliM ′p=r+1...M .
Note that contrary to the heterotic case, a va-

cuum shift is not required to maintain supersym-

metry. Indeed, at the level of unbroken super-

symmetry, and in the absence of any nonpertur-

bative mechanism that would stabilize them, the

vevs of the mk fields are only restricted by the

vanishing of the anomalous D-terms (p = 1 . . . r)

D′p = − g
(∑
α

Y ′αp |Φα|2 + ξ2p(mk)
)
(3.16)

Thus they describe flat directions, and the Fayet-

Iliopoulos terms in type IIB orientifolds are just

moduli. In particular, there is an obvious va-

cuum 〈Φα〉 = 0 , 〈mk〉 = 0 , corresponding to the
orientifold limit, in which all ξ2p vanish. In this

vacuum, only the anomalous U(1)’s are broken,

and their associated gauge bosons become heavy

and decouple, leaving r residual global symme-

tries. On the other hand, nonzero values of the

blowing-up modes would force some of the mat-

ter fields Φα to acquire a vev, possibly leading to

further breakdown of the gauge group4.

4. Heterotic-type I duality in four

dimensions

D = 4, N = 1 type IIB orientifolds, which can

be seen as orbifolds of the type I string theory,

allow us to investigate four-dimensional aspects

of heterotic-type I duality [13]. Indeed, some of

these models are expected to have heterotic duals

which are perturbative string constructions. Fur-

thermore, the duality relation between the ten-

dimensional dilatons Φ
(10)
I = −Φ(10)H becomes,

upon reduction to D dimensions [3]:

Φ
(D)
I =

6−D
4
Φ
(D)
H − D − 2

16
lnV

(10−D)
H

(4.1)

4Let us add for completeness that the combinations

Mk + M̄k − 2
∑
i δ
k
i Vi appearing in the Kähler potential

(3.6) should actually be corrected by a piece depending

logarithmically on the untwisted moduli [23, 21]. Taking

this effect into account does not modify our conclusions;

in particular, the Fayet-Iliopoulos terms still vanish in the

orientifold limit.

4



Trieste Meeting of the TMR Network on Physics beyond the SM Stéphane Lavignac

where V
(10−D)
H is the (10-D)-dimensional com-

pact volume in heterotic string units. Thus, hete-

rotic-type I duality, which is a nonperturbative

symmetry in ten dimensions, relates regions of

the moduli spaces which are both weakly cou-

pled in four dimensions.

More specifically, among the consistent T 6/ZN
and ZM × ZN orientifolds of Ref. [7, 9], the
ones that contain solely D9-branes are expected

to have a perturbative heterotic dual; these are

the Z3, Z7 and Z3 × Z3 models. These models
as well as their candidate heterotic duals were

constructed in Ref. [3, 4, 5, 6], where duality as-

pects were also discussed. However, the results

of Ref. [20, 19] were not known at that time (in

particular, it was generally assumed that a Fayet-

Iliopoulos term of the order of the string scale is

associated to each anomalous U(1)), which calls

for a reexamination of the question. The purpose

of this section is to perform a detailed investiga-

tion of duality between D = 4, N = 1 type IIB

orientifolds and heterotic orbifolds on the basis

of the results of previous section.

4.1 Z3 models

Let us start with the Z3 models of Ref. [3]. The

orientifold model is constructed by gauging the

world-sheet parity of the type IIB string com-

pactified on T 6/Z3. The gauge group is G =

SU(12)×SO(8)×U(1)X , and the massless spec-
trum consists of 3 families of Qa = (12,8V)−1
and Φa = (66,1)+2 in the open string sector,

27 twisted moduli Mαβγ , α, β, γ = 1, 2, 3 corre-

sponding to the blowing-up modes of the under-

lying orbifold (which has 33 = 27 fixed points)

and 10 untwisted moduli (9 geometric moduli

Tab and the dilaton) in the closed string sector.

The renormalizable superpotential reads WI =

λIabcQaQbΦc. The U(1)X factor is anomalous,

with non-universal anomaliesCSU(12) = 36, CSO(8)
= −72, CX = 864 and TrX/12 = 9 which are
canceled by the shifts of the twisted moduliMαβγ

5.

Let us now consider the candidate heterotic

dual, which is a T 6/Z3 orbifold of the SO(32)

heterotic string. The gauge group is the same as

5More precisely, only the symmetric combination of

the 27 twisted moduliMαβγ is involved in the generalized

Green-Schwarz mechanism

in the orientifold model, and the untwisted sec-

tor matches the open string and untwisted closed

string sectors of the latter. The twisted sector,

which contains 27 copies of Mαβγ = (1,1)−4
and Vαβγ = (1,8S)+2, shows on the other hand

strong differences with the orientifold model: the

blowing-up modesMαβγ are charged under U(1)X
and the SO(8) spinors have no orientifold coun-

terparts (this is due to the fact that spinorial

representations of orthogonal groups cannot arise

perturbatively fromD-branes; however, they could

be generated nonperturbatively). The renorma-

lizable superpotential differs fromWI by the pre-

sence of couplings involving the twisted fields [4]:

WH = λ
H
abcQaQbΦc+Λ(... )MαβγVα′β′γ′Vα′′β′′γ′′ .

Finally, the U(1)X factor has universal anomalies

CSU(12) = CSO(8) = CX = TrX/12 = 36 which

are compensated for by the shift of the dilaton,

and a Fayet-Iliopoulos term ξ2 = TrX
192 π2 M

2
Str is

generated at the one-loop level.

Although the two models appear to be quite

different, the presence of an anomalous U(1) on

both sides enforces duality. Indeed, one should

compare not the original vacua, but the super-

symmetric low-energy theories which are obtained

after the anomalous D-term has been canceled

and the heavy fields (including the anomalous

U(1)) have been integrated out. On the orien-

tifold side, the vector multiplet VX becomes mas-

sive by absorbing the symmetric combination of

the 27 twisted moduliMαβγ ; its decoupling leads

to an unbroken gauge group SU(12) × SO(8)
and a global symmetry U(1)X at the orientifold

point. On the heterotic side, a vacuum shift is

necessary in order to compensate for the Fayet-

Iliopoulos term. Since the latter is positive, this

requires nonzero vevs of the blowing-up modes,

which carry a negative X-charge6. The twisted

states Vαβγ then acquire supersymmetric masses

through their superpotential couplings [4] and

decouple from the massless spectrum. As long as

the 〈Mαβγ〉 are the only nonzero vevs, the non
abelian gauge group SU(12)×SO(8) remains un-
6Since the Qa fields also carry a negative X-charge,

one can actually cancel the anomalous D-term without

blowing up the orbifold. We do not consider this possibi-

lity however, because it seems to be impossible to ensure

both D- and F -flatness in this case (a similar statement

has been done about the blown-up orientifold [24]).

5
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broken, while VX becomes heavy by absorbing

a combination of the dilaton and Mαβγ super-

fields. Note that U(1)X survives as an effective

global symmetry of the renormalizable superpo-

tential, although it is spontaneously broken by

the vevs of the blowing-up modes. This is due to

the fact that the only renormalizable couplings

that violate the X charge are the masses of the

Vαβγ fields, which decouple from the low-energy

theory. Of course, higher order terms may not

respect this symmetry.

We conclude that the gauge groups and mass-

less spectra of both models match after decou-

pling of the anomalous U(1). It is interesting to

remark that, at the point of maximal gauge sym-

metry, the blown-up orbifold is dual to the type

I model in the exact orientifold limit. Note also

that the presence of moduli-dependent Fayet-Ilio-

poulos terms on the orientifold side is crucial for

matching all flat directions of both models.

4.1.1 Z3 models with a discrete Wilson line

One can add a discrete Wilson line to the Z3
models [8]. The gauge group is then broken to

G = SU(4)4×U(1)4. Three combinations X , Y1
and Y2 of the abelian charges are anomalous in

the orientifold model, thus only one U(1) gauge

factor remains at low energy. On the heterotic

side, there is of course a single anomalous charge

X , but the vacuum shift induced by the Fayet-

Iliopoulos term breaks Y1 and Y2 at the same

time. Finally, one finds a perfect matching of

both models once the heavy fields have been in-

tegrated out.

4.2 Z7 models

While duality holds in the Z3 case, problems ap-

pear at the level of the maximal unbroken gauge

symmetry in the Z7 case. These models [5] have

a gauge group G = SU(4)3 × SO(8) × U(1)3,
with three anomalous U(1)’s on the orientifold

side. The heterotic model has ξ2 > 0 and the

only fields with a negative anomalous charge have

quantum numbers Q1 = (1, 4̄,4,1)(−2,1,1), Q2 =
(4̄,1,4,1)(−2,1,−1) and Q3 = (4̄, 4̄,1,1)(−2,−2,0)
(where the first subscript refers to the anoma-

lous charge). Thus the vacuum shift necessarily

breaks SU(4)3 together with the three U(1)’s.

In the orientifold model, on the other hand, the

non abelian gauge group remains unbroken as

long as the singularities are not blown up, since

the Fayet-Iliopoulos terms vanish in this limit.

We conclude that the moduli spaces of the two

models cannot be matched, unless the orientifold

point is destabilized e.g. by some nonperturba-

tive mechanism7.

4.3 Z3 × Z3 models
Duality does not seem to hold in the Z3×Z3 case
either. Both models [6] have a gauge group G =

SU(4)3×SO(8)×U(1)3 with a single anomalous
U(1). After the vacuum shift and the decoupling

of the heavy fields, the gauge groups match, but

there remains a slight discrepancy in the mass-

less spectrum: some heterotic twisted states are

charged under the two remaining U(1)’s, while

their orientifold counterparts are gauge singlets.

4.4 Comments

It is difficult to draw a general conclusion from

the previous analyses. While the Z3 models sa-

tisfy our duality criteria, problems appear at the

level of the gauge group in the Z7 case, and at

the level of the massless spectrum in the Z3×Z3
case. It could be that these models are actually

not dual. However, the discrepancies found could

just mean that we are missing nonperturbative

effects; in particular, duality could be restored in

the Z7 case if Fayet-Iliopoulos terms were gene-

rated in the orientifold model.

That such effects may be present is supported

by several features of the Z3 and Z3×Z3 models
that strongly suggest duality. First, despite the

differences of the anomaly cancellation mecha-

nisms, the blowing-up modes of the two models

seem to play a “dual” role: on the orientifold

side, they are moduli and participate in the gene-

ralized Green-Schwarz mechanism; on the hete-

rotic side, they are charged under the anoma-

lous U(1) and acquire vevs in order to compen-

sate for the Fayet-Iliopoulos term. This results

7Let us add for completeness that the Z7 orbifold also

possesses charged twisted states that have no perturbative

counterparts on the orientifold side. Like in the Z3 case,

these states can acquire large masses through their super-

potential couplings. However, in the Z7 case this requires

nonzero vevs of both the Qa fields and the blowing-up

modes, the latter being not enforced by the vacuum shift.

6
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in the breaking and decoupling at a high scale

of the same number of U(1)’s in both models.

Furthermore, the vevs of the heterotic blowing-

up modes give large supersymmetric masses to

the states that have no perturbative orientifold

counterparts, making it possible for both mass-

less spectra to match. This picture is not valid

for the Z7 models, because the heterotic blowing-

up modes do not carry any anomalous charge.

5. Conclusion

In this talk, we have studied the properties of

anomalous U(1)’s in a large class ofD = 4, N = 1

type IIB orientifolds, and reconsidered some can-

didate evidence for N = 1 heterotic-type I dua-

lity in four dimensions, in the light of the results

of Ref. [20] and [19]. We have shown how the

anomalous vector multiplets acquire a mass of

the order of the Planck scale and decouple from

the low-energy effective theory. The scales of

the associated Fayet-Iliopoulos terms are fixed by

the values of the blowing-up modes of the under-

lying orbifold, and they vanish in the orientifold

limit. This is a noticeable difference with the he-

terotic anomalous U(1), whose Fayet-Iliopoulos

term has a nonzero, moduli-independent value of

the order of the string scale.

On the basis of this picture, we have recon-

sidered the generally admitted duality between

D = 4, N = 1 type IIB orientifolds and hete-

rotic orbifolds, which has been considered as a

four-dimensional manifestation of the postulated

heterotic-type I duality in ten dimensions. We

found that the shift of the heterotic vacuum re-

quired by the presence of a Fayet-Iliopoulos term

ensures a perfect matching of the gauge groups

and perturbative spectra of the Z3 models, but

there remain discrepancies in two other candi-

date dual models, namely the Z7 and Z3 × Z3
cases. It is likely however that duality be re-

stored by nonperturbative effects that remain to

be identified8.

8The results of Ref. [21], in which threshold correc-

tions to the gauge couplings in T 6/ZN type IIB orien-

tifolds were computed, seem to indicate that such non-

perturbative effects are also required in the Z3 case in

order for duality to hold.

Acknowledgements

I would like to thank Z. Lalak and H.P. Nilles

for a pleasant and stimulating collaboration. This

work has been supported by the European Com-

mission program ERBFMRX-CT96-0090.

References

[1] Z. Lalak, S. Lavignac and H.P. Nilles, preprint

BONN-TH-99-06, hep-th/9903160, to appear in

Nucl. Phys. B.

[2] A. Sagnotti, in Cargese ‘87, “Non-Perturbative

Quantum Field Theory”, eds. G. Mack et al.

(Pergamon Press, Oxford, 1988), p. 251; G. Pra-

disi and A. Sagnotti, Phys. Lett. B216 (1989) 59;

M. Bianchi and A. Sagnotti, Phys. Lett. B247

(1990) 517, Nucl. Phys. B361 (1991) 519; E.G.

Gimon and J. Polchinski, Phys. Rev. D54 (1996)

1667.

[3] C. Angelantonj, M. Bianchi, G. Pradisi, A.

Sagnotti, and Ya.S. Stanev, Phys. Lett. B385

(1996) 96.

[4] Z. Kakushadze, Nucl. Phys. B512 (1998) 221.

[5] Z. Kakushadze and G. Shiu, Phys. Rev. D56

(1997) 3686.

[6] Z. Kakushadze and G. Shiu, Nucl. Phys. B520

(1998) 75.

[7] G. Zwart, Nucl. Phys. B526 (1998) 378.

[8] L.E. Ibanez, JHEP 07 (1998) 002.

[9] G. Aldazabal, A. Font, L.E. Ibanez, and G. Vio-

lero, Nucl. Phys. B536 (1998) 29.

[10] Z. Kakushadze, Phys. Lett. B434 (1998) 269,

Phys. Rev. D58 (1998) 101901.

[11] J. Lykken, E. Poppitz and S.P. Trivedi, Nucl.

Phys. B543 (1999) 105.

[12] L.E. Ibanez, C. Munoz and S. Rigolin, Nucl.

Phys. B553 (1999) 43.

[13] J. Polchinski and E. Witten, Nucl. Phys. B460

(1996) 525.

[14] M. Dine, N. Seiberg and E. Witten, Nucl. Phys.

B289 (1987) 317.

[15] M. Green and J. Schwarz, Phys. Lett. B149

(1984) 117.

[16] J. Atick, L. Dixon and A. Sen, Nucl. Phys. B292

(1987) 109; M. Dine, I. Ichinose and N. Seiberg,

Nucl. Phys. B293 (1987) 253.

7



Trieste Meeting of the TMR Network on Physics beyond the SM Stéphane Lavignac
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