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Abstract: We present a general review about the N=1 supersymmetric SU(Nc) Yang-Mills on the

lattice focusing our attention on the quenched approximation in supersymmetry. Finally we analyse

and discuss the recent results obtained at strong coupling and large Nc for the mesonic and fermionic

propagators and spectrum.

1. Introduction

In this paper we consider the non-perturbative

aspects of the strongly interacting supersymmet-

ric gauge theories. [1]. In particular we concen-

trate our attention on the pure N=1 Supersym-

metric Yang-Mills (SYM) theory.

The fundamental question of the supersym-

metry (SUSY) breaking of the N=1 SYM was ad-

dressed in Refs.[2], [3]. According to the general

argument of theWitten index [2] or the Veneziano-

Yankielowicz (VY) low energy effective theory [3]

one can conclude that:

• the spontaneous breaking of chiral symme-
try occurs: the gluino condensate 〈λ̄λ〉 6= 0

• the low energy supermultiplet is given by
the scalar, pseudoscalar and fermion colour-

less bound states.

• SUSY is not broken

• no goldstone boson (or pion) associated with
the chiral symmetry breaking is present, as

the latter is broken by the anomaly.

A primary tool for a direct study of strongly

coupled field theories is the space-time lattice

regularization. In QCD the non perturbative
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phenomena such as confinement, chiral symme-

try breaking and spectra can be studied on the

lattice by using numerical Monte Carlo simula-

tion in the weak coupling limit. Nevertheless,

when the supersymmetric gauge theories are for-

mulated on the lattice, the following problems

arise

• The lattice breaks the Poincaré group and
so there are no continuum SUSY algebra

transformations.

• The naive lattice formulation breaks the
balance n0 bosons=n0 fermions due to the

extra poles in the gluino propagator. The

Wilson term cures this problem, but gener-

ates a bare mass term for the gluinos which

breaks explicitely both the chiral symmetry

and supersymmetry.

The basic idea to circumvent these problems was

proposed some time ago by Curci and Veneziano

[4]. They suggested to leave that the lattice reg-

ularization spoil SUSY and chiral symmetries.

Then the Ward Identities (WI) in the continuum

limit should be recovered by using appropriate

renormalized operators for the SUSY and chiral

currents [4], such as the case of chiral symmetry

in QCD [5]. The main result is that in the con-

tinuum limit the chiral limit defines the SUSY

point and viceversa [4].

Recently two different collaborations [6]-[9]

studied non perturbatively on the lattice the spec-
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trum of the N=1 SYM theory following the guide

lines of Ref. [4]. In Ref. [8], because of the lim-

itation deriving from the use of computing re-

sources, the quenched approximation was used

to study the spectrum. This approximation is

implemented by neglecting the internal gluino

loops or in other words by setting to unity the

fermion determinant in the correlation functions

of composite operators. In the SYM theory the

quenched approximation badly breaks SUSY and

it cannot be a good approximation on the basis

of large Nc dominance since gluinos are in the

adjoint representation of the colour group. How-

ever the quenched numerical results for the low

energy spectrum show no deviations from the su-

persymmetry expectation within the statistical

errors [8].

In connection with this result, in Ref. [10] a

qualitative and quantitative understanding of the

effects of quenching in N=1 SYM theory has been

analysed in the framework of low energy effective

theory. The result is that the splitting in the

mass spectrum of the low energy supermultiplet

is connected to the changing of the anomalies

structure induced by quenching.

Recently it has been analysed the strong cou-

pling limit of the N=1 SYM on the lattice in the

large Nc limit [11]. The method used in Ref. [11]

is based on the hopping parameter (k) expansion

in terms of random walks which have been re-

summed for any value of the Wilson parameter

(r) in the small hopping parameter region. An-

alytical results have been obtained for the prop-

agator and spectra of the mesonic 2-gluino and

fermionic 3-gluino operators in terms of r and

k. Moreover the critical lines in k and r space,

where the chiral symmetry and supersymmertry

can be recovered in the continuum limit, have

been analysed for any dimension [11].

The paper is organized as follows. In the

next section we discuss the weak coupling limit

on the lattice and summarize the approach of

Ref. [4]. In section 3 we present the results on

the SUSY spectrum induced by the quenched ap-

proximation by means of a low energy effective

lagrangian. In section 4 we discuss the strong

coupling limit at large Nc and give the main re-

sults for the correlation functions and spectra for

the 2-gluino and 3-gluino operators. Finally in

the last section we summarize our conclusions.

2. Weak coupling limit

The lattice chiral WI can be obtained by apply-

ing the chiral transformations to the N = 1 SYM

lattice. The result is given by 1

∇µAµ = 2m0P +XA (2.1)

where m0 is the gluino bare mass. The opera-

torXA comes from the chiral symmetry-breaking

due the lattice spacing and it vanishes in the con-

tinuum limit (a → 0) since it is of order O(a).
Nevertheless when we take the matrix elements

of Eq.(2.1) between external states, the contri-

bution of the operator XA could not vanish in

the continuum limit. Indeed XA can induce di-

vergencies of order O(1/a) that compensate the

explicit factor a in XA and spoil the WI in the

continuum limit.

However it is possible to define a renormal-

ized operator X̂A whose matrix elements are still

of order O(a) [5],[4]. Due to the symmetries of

the action, X̂A can mix only with the following

operators

X̂A = XA + (ZA − 1)∇µAµ − Z̃A∇µAµ
− ZQPµν P̃µν + 2m̄P (2.2)

where Pµν is the lattice transcription of the field

strength Fµν and P̃µν is the dual. Finally, by

inserting Eq.(2.2) inside Eq.(2.1), we obtain the

renormalized chiral WI which has the good con-

tinuum limit [4]

∇µÂµ = 2(m0 − m̄)Z−1P P̂ + Q̂+O(a) (2.3)

provided that

Âµ = ZA(g0)Aµ, P̂ = ZP (g0)P

Q̂ = ZQ(g0)Pµν P̃µν + Z̃A(g0)∇µAµ
where the Q̂ term reproduces the usual chiral

anomaly. It is important to note that the Eq.(2.3)

has the same form as the continuum one provided

that we identify on the lattice the renormalized

gluino mass m̂λ as follows [4]

m̂λ = (m0 − m̄)Z−1P . (2.4)
1the expression for the chiral currents Aµ and the pseu-

doscalar density P , together with the N=1 Super-Yang-

Mills action on the lattice, can be found in Refs. [4], [8]
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Finally the chiral symmetry on the lattice is re-

covered by tuning m0 to a critical value m
crit
0

mcrit0 − m̄λ(mcrit0 , g0, r) = 0 (2.5)

where the m̄ term depends in general on m0, g0
and r. Note that ZA is of order ZA = 1 +O(g0)

and in the continuum limit (g0 → 0) we obtain
ZA = 1, as expected by the current non renor-

malization theorem.

In the case of SUSY WI we have an analo-

gous result of Eq.(2.1)

∇µSµ = 2m0χ+XS
where now Sµ(x) is the bare SUSY current on

the lattice and χ = 1/2P aµνσµνλ
a where the λa is

the gluino field. The expressions for XS and Sµ
can be found in Ref.[4]. The operator XS , which

is of order O(a), spoil the continuum SUSY WI,

like XA in the case of chiral symmetry.

By applying the same method used for the chiral

WI one obtains the following renormalized SUSY

WI [4]

∇µŜµ = 2(m0 − m̄)Z−1χ χ̂+O(a)
where

χ̂ = Zχχ, Ŝµ = ZSSµ + ZTTµ

Tµ(x) ≡ γνP aνµ(x)λa(x)
This result coincides with the corresponding one

in the continuum, provided that the renormalized

gluino mass m̂λ is identified with

m̂λ = (m0 − m̄)Z−1χ (2.6)

Then the relevant conclusion is that in the con-

tinuum limit the chiral limit of Eq.(2.4) defines

the SUSY point and viceversa [4].

The present numerical analysis implement

these guidelines for studing the spectrum of the

N=1 SYM with SU(2) gauge group. Accord-

ing to Veneziano-Yankielowicz [3], the low-energy

SUSY supermultiplet is given by the following

colourless composite fields

S(x) = λ̄a(x)λa(x), P (x) = λ̄a(x)γ5λ
a(x),

χ(x) = Gaµν(x)σµνλ
a(x) (2.7)

where the sum on the colours is assumed. As

usual the masses are extracted from the large

Euclidean-time behaviour of the lattice correla-

tion functions for the corresponding operators in

Eq.(2.7).

In Ref. [8] the quenched approximation is

used in which dynamical gluino loops are ne-

glected, or the fermion determinant det(K) is

setted to 1 in the correlation functions.2 In QCD

the quenched approximation is a good one be-

cause the det(K) = O(1/Nc) in the large Nc
limit. In the present case the gluinos are in the

adjoint representation of the colour group (like

the gluons) and by using naive arguments based

on perturbation theory one should expect that

the quenched approximation badly breaks SUSY.
3 Nevertheless the quenched results of Ref. [8]

show a dynamical chiral symmetry breaking and

a quite degenerate spectrum in low energy super-

multiplet. Moreover in Ref.[8] the OZI approxi-

mation has been used. In this approximation the

diagrams which contribute to the chiral anomaly

are neglected and by using general arguments [4]

one should expect a massless pseudo-goldstone

boson or pion in the spectrum.

In the next section we will show how to im-

plement the quenching in the fundamental the-

ory. Then we will give an estimation of the sys-

tematic error induced by the quenching on the

spectrum, by means of a low energy lagrangian

approach.

3. Quenched Supersymmetry

In the continuum theory the on-shell action of

the N=1 SYM theory is given by

SSYM =

∫
d4x

{
−1
4
F aµνF

aµν +
i

2
λ̄aγµDabµ λ

b

}
(3.1)

whereDaµ is the covariant derivative acting on the

gluino field λa. At the classical level this action is

U(1)A invariant, as well as scale invariant. At the

quantum level these symmetries are broken by

the corresponding anomalies and the anomalous

WI are given by

∂µJµ = −c(g)F aµν F̃ aµν , Θµµ = c(g)F aµνF aµν
2Really in the present case one has the Pfaffian instead

of det(K) since the gluinos are Majorana fields.
3These arguments, based on perturbation theory, do

not apply in the strong coupling limit (see section 4),

where indeed this approximation is exact at large Nc
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γµSµ = 2c(g)σµνF
a
µνλ

a (3.2)

where Jµ and Sµ are the chiral and SUSY cur-

rents respectivley, Θνµ the energy momentum ten-

sor, with c(g) = β(g)/2g and β(g) is the beta

function of N=1 SYM. The above two anomalies

and the SUSY trace anomaly belong to the same

supermultiplet.

The corresponding low energy theory of VY

[3] was obtained by considering the chiral super-

field S whose components are given by a complex

scalar field φ, a Dirac fermion χ and complex

auxiliary field M . In terms of the fundamental

fields, they are described by [3]

φ = c(g)λ̄aRλ
a
L ,

χ = ic(g)
2 σµνF

aµνλa ,

M = − c(g)2
(
F aµνF

aµν + iF aµν F̃
aµν
)
,

(3.3)

where c(g) is the same factor appearing in the

anomalies in Eq.(3.2).

The expression of the VY action in terms of

the superfield S is given by [3]

SV Y =

∫
d4x

{
9

α
(S†S)1/3D

+

[
1

3

(
S log(

S

µ3
)− S

)
F

+ h.c.

]}

where α and µ are two free parameters. Note

that the request to reproduce the correct anoma-

lies of the fundamental action in Eq.(3.1) fixes

completely the form of the superpotential. The

spectrum can be easily analysed by looking at

the minimum of the scalar potential (VV Y ) in

the exponential representation for the scalar field

φ ≡ ρeiθ

VV Y =
α3

81

ρ4

4

[
log2(

√
α

3
√
2

ρ

µ
) + θ2

]
.

Then the following conclusions are drawn [3]

• min(VV Y ) is obtained at a non-zero value of
ρ: spontaneous chiral symmetry breaking

occurs.

• The would-be goldstone boson, θ, is not a
massless field: the anomaly term in the la-

grangian explicitly breaks the chiral sym-

metry, providing a mass scale for the su-

permultiplet.

• SUSY is unbroken: mass degeneracymθ =
mρ = mχ =

1
3αµ.

Now we explain how to implement the quench-

ing in the N=1 SYM theory [10]. We extend the

method proposed by Bernard and Golterman [12]

for quenched QCD to the Majorana fermions in

the adjoint representation of the colour group.

In order to cancel the fermion determinant, we

introduce a ghost Majorana field ηa which has

the same quantum numbers as the gluino λa,

but “wrong” (bosonic) spin-statistics. Then the

quenched action SqSYM is given by

SqSYM =

∫
d4x

{
−1
4
F aµνF

aµν +
i

2
λ̄aγµDabµ λ

b

+
i

2
η̄a(iγµγ5)D

ab
µ η
b

}

Note that (due to the wrong statistic and Majo-

rana nature) η̄aγµDabµ η
b = 0 (up to total deriva-

tives), in the same way as λ̄aγµγ5D
ab
µ λ

b = 0. It

is important to stress that the SqSYM is no longer

supersymmetric, but it acquires a new U(1 | 1)
symmetry [10]. Note that SqSYM violates unitar-

ity due to the ghost η field.4

The U(1 | 1) group is a Z2 graded Lie group
with both bosonic and fermionic generators (the

supersymmetric algebra itself obeys a Z2 graded

Lie group) [13]. In a more compact form:

SqSYM =

∫
d4x

{
−1
4
F aµνF

aµν + iQ̄aRγ
µDabµ Q

b
R

}

where Q is the doublet Qa = (λa, ηa). Then

SqSYM is invariant under chiral U(1 | 1) transfor-
mations, defined as follows:

QR → UQR = exp
{
i
αiσ

i

2

}
QR ,

QL → U †QL (3.4)

where U †U = I and the σi=1,2,3 matrices, which
are the usual Pauli matrices (with σ0 the unity

matrix), belong to the algebra of U(1 | 1), where
σ0, σ3 and σ1, σ2 correspond to the bosonic and

fermionic generators respectively. The supertrace

Str (invariant under U(1 | 1)) is defined as

Str

(
a b

c d

)
= a− d ,

4This is a consequence of the fact that the quenched

approximation violates unitarity

4



Trieste Meeting of the TMR Network on Physics beyond the SM Emidio Gabrielli

where, in general, a, d are complex numbers and

b, c complex Grassman numbers. From the trans-

formations in Eq.(3.4) we see that four currents

are associated to the U(1 | 1) symmetry, which
are J iµ = Q̄

a
Rσ
iγµQaR or in components [10]

J0µ =
1

2
(iλ̄aγµγ5λ

a + η̄aγµη
a)

J+µ = λ̄
a
Rγµη

a
R, J

−
µ = η̄

a
Rγµλ

a
R

J3µ =
1

2
(iλ̄aγµγ5λ

a − η̄aγµηa)

From the bosonic statistic of the ghost fields ηa

it follows that only J3µ is anomalous. Indeed for

the J0µ anomaly the fermionic-statistic loop ver-

sus the bosonic one cancels exactly, while for the

J3µ case these are summed up. As for the trace

anomaly it can be shown that the ghost contri-

bution to the trace of the tensor-energy momen-

tum exactly cancel the contribution of the gluino

loop.

In order to generalize the VY effective la-

grangian we introduce new composite fields which

have particular transformation properties under

U(1 | 1). In terms of the gluino and ghost fields
these are given by

φ̂ ≡ σiφ̂i, φ̂i = c(g)Q̄aRσiQaL,
χ̂ =

ic(g)

2
σµνF

aµνQa (3.5)

with transformation properties

φ̂→ Uφ̂U, χ̂R → Uχ̂R (3.6)

Then we look for the most general low energy

effective lagrangian L in terms of the fields in
Eq.(3.5). This lagrangian can be decomposed as

follows [10]

L = Lkin + Lint + Lanom
where Lkin, Lint are invariant under chiral U(1 |
1) and naive scale transformations. The Lanom is
not invariant, but it is completely fixed by requir-

ing to reproduce the anomalies of the quenched

fundamental theory. Moreover the anomalous

Uσ3(1 | 1) transformations breaks U(1 | 1) as
U(1 | 1)→ Z4Nc × SU(1 | 1)

We do not give here the expression for the la-

grangian L that, however, can be found in Ref.

[10]. We only point out that the coefficients of

the U(1 | 1) invariant terms in Lkin and Lint
are fixed by requiring that, in the classical un-

quenched limit (ηa → 0), this lagrangian ap-

proaches continuosly to the corresponding one of

VY, since supersymmetry should be recovered in

this limit. The only term which is non-analytic

in the unquenched limit and is responsible for the

mass splitting is the anomalous term Lanom, as
explained in Ref. [10].

Now we look at the spectrum in the expo-

nential representation φ̂ = ρ exp (iθiσi) ≡ ρΣ̂.
Note that, in terms of the original field θ, we

have θ3 = θ − θ̃ and θ0 = θ + θ̃, where θ̃ is a
pure η ghost condensate and it goes to zero in

the unquenched limit.

The mass spectrum in terms of the original

VY fields is obtained by using the technique ex-

plained in Ref. [12] and we find

mρ =
β′

β
mχ, mθ = (1 + 1)mχ (3.7)

where β′(g) is the one-loop β function of the
pure Yang-Mills theory. This spectrum should

be compared with mχ = mσ = mθ in the un-

quenched theory. Note that the splitting in the

mass spectrum of Eq.(3.7) provides an estimation

of the error induced by the quenched approxima-

tion. Now we summarize the main conclusion of

this analysis [10]

• The mass splitting of the VY supermulti-
plet results from the non-analiticity of the

anomaly structure induced by the ghost field.

• The numerical result obtained in Ref.[8] for
the ratio (mρ/mχ)lat = 1.1(3) is in fair

agreement with our theoretical expectation

(mρ/mχ)th = 11/9 = 1.22 for SU(2).

4. Strong coupling limit

The lattice strong coupling expansion is a very

powerful analytical probe in order to study the

critical behaviours of lattice gauge theories and

also to test qualitatively their continuum prop-

erties. The strong coupling expansion technique

has been extensively used in pure Yang-Mills the-

ory and in QCD, often combined also with the

large Nc expansion. We recently investigated the

5
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strong coupling limit at large Nc of a N=1 SYM

theory and now we present the main results and

conclusions of this work [11].

The usual computational frameworks of strong

coupling expansion can be summarized as follows

• Effective actions [14]-[16]: The Wilson-Dirac
lattice action is considered at large Nc and

small β = 1/g20. The large Nc expansion

can be recognized as a saddle-point expan-

sion of the gauge functional integral, previ-

ously simplified by the β → 0 limit.

• Path resummation [15]-[19]: The fermion
matrix M is inverted by using the stan-

dard hopping parameter expansion, which

expresses the propagator M−1 as a sum
over paths on the lattice.

Our technique is based on the path resumma-

tion formulas which are valid irrespective of the

representation in which the matter lies and for

general r. Moreover we keep r arbitrary since it

allows the possibility of searching for multicriti-

cal points: indeed more freedom in the parame-

ter space is necessary in order to search for the

simultaneous restoration of supersymmetry and

chiral symmetry. Now we present the general

formalism.

The SUSY Yang-Mills action on the lattice

can be formally written as

S = βSg +
1

2
ΨiΨjMij ,

where βSg is the pure gauge part and Ψi is a

Grassman variable representing the field of a Ma-

jorana fermion. The matrix M̃ must be antisym-

metric and its form is given by

M̃ = CM, M = I−
∑
α∈I
∆α

(∆α)ij = kδmn+V (α) U
ab
α (n) (rI − γα)AB

where U is the gauge link variable, I and C are

the unity and charge conjugation matrix respec-

tively and κ is the hopping parameter. With

the indices i and j we simbolically indicate i =

(n, a,A), where n, a and A run on the lattice

points, the indices of the SU(Nc) adjoint rep-

resentation, and the Dirac indices respectively.

Now we will concentrate upon the gauge invari-

ant operators of the form:

Oi(x) = Ψ
a1
A1
(x) . . .Ψ

ap
Ap
(x) (Si)A1...Ap Ca1...api

(4.1)

where Ca1...api is an invariant color tensor and

(Si)A1...Ap a spin tensor. For p = 2 a basis for Si
is the Clifford algebra basis in d dimension.

We are interested in computing the following quan-

tities at strong coupling

〈Oi(x)〉, Gij(x− y) ≡ 〈Oi(x)Oj(y)〉 (4.2)

where as usual the 〈 〉 means the vacuum expec-
tation value.

We will be able to accomplish this goal for

β = 0 and in the large Nc limit, and the cor-

rections to the formulas in powers of β and 1
Nc

are in principle feasible. When the fermion are

integrated out we obtain

∏
i

(∫
dΨi

)
exp{−1

2
ΨiΨjMij + JiΨi} =

Pf(M) exp{−1
2
JiJj(M−1C−1)ij} (4.3)

where Pf(M) stands for the Pfaffian of the ma-

trix M. 5 Now the next step is to expand the

previous quantities as a sum over all the possible

paths γ going from x to y

(M−1(x, y))abAB =
∑

γ∈S(x→y)
W ab(γ) ΓAB(γ)

Pf(M) = exp{1
2

∑
x∈L

∞∑
L=1

∑
γ∈SL(x→x)

1

L
Tr(W (γ))Tr(Γ(γ))}

where W (γ) is the path ordered product (along

the path γ) of the gauge field link variables U(x)abα
and Γ(γ) denotes the appropriate product of the

spin matrices:

Γ(γ ≡ (x, ~α)) = κL(r − γα1) · · · (r − γαL)
5The square of the Pfaffian is the determinant, and up

to a sign

Pf(M) =
√
det(C) det(M) = exp{1

2
Tr(log(M))}

We checked that Pf(M) is always positive provided that

|κ| < 1
2d (|r|+1)

6
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where L is the lengh of the path in lattice space

unity and SL(x → y) in the sum indicates the
sum over the paths of the lenght L which goes

from x to y. Now we present the main results

obtained by using the results of Ref.[20] for the

SU(Nc) group integration for gauge fields in the

adjoint representation at large Nc :

• The quenched approximation and the OZI
approximations turn out to be exact in the

large Nc limit.

• The results obtained at βadjoint = 0 are
exact in the large Nc limit: the corrections

ofO(β) are subleading in the largeNc limit.

Now we give the main formulas (at large Nc)

for the condensates 〈Oi(x)〉 and propagators of
the 2-gluino operatorsGij(x), defined in Eq.(4.1)

( with p = 2), obtained after resumming over

paths:

〈Oi(x)〉 = R1(ξ)Tr(Ŝi)
Gij(x) = R2(ξ)

∏
µ

(

∫
dϕµ

2π
) eıϕ·x

×〈Si| C̃−12 [Θ2(ξ)I − Ã2(ϕ)]−1|Sj〉
Ã2(ϕ) ≡ κ2

∑
α∈I
eıϕα(r − γα)⊗ (r − γα) (4.4)

where C̃2 ≡ C−1 ⊗ C−1 with C the charge con-
jugation matrix, ξ is a function of r, k given in

Ref.[11], and Si are matrices of the Clifford al-

gebra basis in d-dimension. The expressions for

the functions R2(x) and Θ2(x) can be found in

Ref.[11]. We have analogous expressions for the

p-gluino propagators provided that the function

R2, the vectors |Si〉 and the matrix Ã2(ϕ), ap-
pearing in Eq.(4.4), are substituted with the cor-

responding ones for the p-gluino operators.

The main difficulty in order to calculate the

propagators is given by the calculation of the in-

verse matrix Θp(ξ)I−Ãp(ϕ) for general p-gluino
operators. This goal has been achieved for the

2-gluino operators in any dimension by means

of the gamma-fermions techniques developed in

Ref.[11]. In general for the p-gluino sector (with

p > 2) we have been able to invert this matrix

only in the particular limit where the spectrum

of the p-gluino propagators becomes degenerate.

In general the procedure to obtain the masses

can be summarized as follows: extract the eigen-

values of the matrix Θp(ξ)I− Ãp(~ϕ = ~0), which
are functions of the temporal momentum ϕ0. Then

determine ϕpole0 which is the (complex) value of

ϕ0 for which the eigenvalues vanishes. Finally

the lattice masses are given by

M = −log(|eıϕpole0 |). (4.5)

Note that the lattice masses are dimensionless

quantities and depend only on k and r. The

physical masses are proportional to M/a and so

the states whose lattice mass vanish at the crit-

ical line, are the states that survive this contin-

uum limit.

Now we present below the main results for

the spectrum of the 2-gluino and 3-gluino opera-

tors in d=4.

• Chiral symmetry is spontaneusly broken.
• The pseudoscalar is the lightest states and
the critical lines where the scalar or the

lightest fermion become massless are out-

side of the physical region in the (k, r) plane.

• All the meson masses become degenerate
only for r → ∞ and κ → 0 with the prod-
uct κr = fixed. In particular all the mesons

become massless in the limit where κr =
1

2
√
2d−1 .

• In this limit : the lightest fermion mass can
not be degenerate with the lightest meson

sector and for p > q any mass in the p-

gluino sector (the fermions have p odd) is

higher than any other in the q-gluino sector

in this limit.

From these results we argue that there are no

points in the (k, r) plane giving a possible candi-

date for a supersymmetric continuum limit.

5. Conclusions

In order to estimate the error induced by the

quenched simulations on the spectrum, we im-

plemented the quenching in the fundamental the-

ory by introducing a ghost field. Although SUSY

is lost upon quenching, it turns out that a new

7
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U(1 | 1) symmetry arises, explicitly broken by
the chiral anomaly to Z4Nc × SU(1 | 1). Then
we carried out this new symmetry and the cor-

responding anomalies in a low energy lagrangian

scheme. The result is that the anomaly structure

entails a controlable splitting of the VY multiplet

by giving the scalar mass 20% heavier then the

fermionic one. These results are in fair agreement

with the numerical quenched ones within the sta-

tistical errors and provides a first estimate of the

systematic error associated to the quenching in

lattice SUSY computations.

From the side of the strong coupling limit

at the large Nc : we used the hopping parame-

ter (k) expansion in terms of random walks re-

summed for any value of the Wilson parameter r

and close to the origin in k. We found exact an-

alytical results for the condensates, propagators

and spectrum in the large Nc limit, for arbitrary

dimensions and general r. By analysing these re-

sults our main conclusion is that the quenched

and the usual OZI approximations are exact at

βadjoint = 0 and in the large Nc limit. More-

over we proved that in the strong coupling regime

there are no critical lines or points in the (k, r)

plane giving a possible candidate for a supersym-

metric continuum limit, at least in the validity

region of the hopping parameter expansion close

to the origin.
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