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Abstract: The present theoretical status of the parameter for direct CP violation ε′/ε in the Standard
Model is reviewed and compared with most recent experimental measurements of the same quantity.

After collecting the basic expressions for ε′/ε, the situation of hadronic matrix element calculations is
summarised. The matrix elements constitute the dominant source of uncertainty for theoretical deter-

minations of ε′/ε. For central values of the input parameters, the numerical analysis then yields results
which are generally below the experimental data. Possible reasons for these findings are discussed.

T his year has experienced a revived strong

interest in the parameter ε′/ε which quan-
tifies direct CP violation in the neutral kaon sys-

tem, due to the recent experimental measure-

ments by the KTeV and NA48 collaborations:

Re (ε′/ε) = (28.0± 4.1) · 10−4 KTeV [1] ,
Re (ε′/ε) = (18.5± 7.3) · 10−4 NA48 [2] .

Both measurements confirm the large value found

previously by the NA31 collaboration [5] and give

rise to the new world average [3]

Re (ε′/ε) = (21.4± 4.0)× 10−4 . (1)

Experimentally, the signature for direct CP vio-

lation is a deviation of the ratio |η+−/η00| 2 from
unity, where

η+− ≡ A(KL → π
+π−)

A(KS → π+π−) , (2)

η00 ≡ A(KL → π
0π0)

A(KS → π0π0) . (3)

Theoretically, it is more convenient to con-

sider quantities were the final state pions are in

a definite isospin state:

ε ≡ A(KL → (ππ)I=0)
A(KS → (ππ)I=0) , (4)

ω ≡ A(KS → (ππ)I=2)
A(KS → (ππ)I=0) . (5)

∗Heisenberg fellow.

The parameter ε measures indirect CP violation

in the neutral kaon system which displays the

fact that the physical mass eigenstates KL and

KS are not eigenstates of CP, but have small

admixtures of the order of ε from the opposite

CP parity. The second parameter ω has noth-

ing to do with CP violation, but is introduced

for convenience. It parametrises the so called

∆I = 1/2 rule which states that the isospin zero

final state is much enhanced over the isospin two

final state. In other words, the ∆I = 1/2 tran-

sition is strongly enhanced over the ∆I = 3/2

transition.

With the help of these quantities, the param-

eter ε′ can be defined as

ε′ ≡ 1√
2

[
A(KL → (ππ)I=2)
A(KS → (ππ)I=0) − ε · ω

]
. (6)

Using the isospin decomposition of the final two-

pion state it is a simple exercise to find the rela-

tion between the experimental parameters η+−,
η00 and the theoretical parameters ε, ε

′ and ω:

η+− = ε+
ε′

1 + ω/
√
2
, (7)

η00 = ε− 2 ε′

1−√2ω . (8)

From these relations and the measured results for

η+− and η00 [4] one can deduce an experimental
value for ε:

ε = (2.280± 0.013) · 10−3 ei(43.5±0.1)o . (9)
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Employing CPT invariance in addition, the phase

has been extracted from the known KL-KS mass

difference.

To proceed further, one expresses the pa-

rameters ε, ε′ and ω in terms of isospin ampli-
tudes AI and final state interaction phase shifts

δI which are defined by

A(K0 → (ππ)I) = i AI eiδI , (10)

A(K̄0 → (ππ)I) = − i A∗I eiδI . (11)

If CP were conserved, the amplitudes AI would

be real. Making use of the relation between the

strangeness eigenstates K0, K̄0 and the mass

eigenstates KL, KS (further details can for ex-

ample be found in ref. [6]) the parameter ε′ can
be written as

ε′ =
1√
2
(1− ε2) Im

(
A2

A0

)
ei(π/2+δ2−δ0) , (12)

or expressed in a different, equivalent form:

ε′ =
(1− ε2)ei(π/2+δ2−δ0)√
2 (1 + ξ20)ReA0

[
ImA2 − ξ0 ReA2

]
,

(13)

where ξ0 ≡ ImA0/ReA0. So far no approxima-
tions have been performed and all equations are

exact. In particular, equation (13) will be the

starting point for our theoretical analysis of the

ratio ε′/ε.
Analogously, to a very good approximation

the parameter ω can be expressed as

ω ≈ ReA2
ReA0

ei(δ2−δ0) =
1

22.2
e−i(45±6)

o

, (14)

again reflecting the ∆I = 1/2 rule. The differ-

ence of the strong interaction phase shifts has

been obtained in ref. [7]. A consequence of the

∆I = 1/2 rule is that the isospin zero contri-

bution to ε′ is suppressed by the small quan-
tity ω compared to the isospin two component.

Phenomenological implications of this observa-

tion will be further discussed below.

Using the relations (7) and (8) together with

the experimental result (14) for ω, up to correc-

tions of the order of 2% one finds

Re

(
ε′

ε

)
≈ 1
6

[ ∣∣∣∣η+−η00
∣∣∣∣
2

− 1
]
. (15)

At present, these corrections are still much below

the experimental uncertainties and can be safely

neglected.

1. Basic formulae for ε′/ε

Neglecting the tiny corrections of order ε2 and ξ20
in equation (13), the central expression for ε′/ε
takes the form

ε′

ε
≈ e

i(π/4+δ2−δ0)
√
2 |ε|ReA0

[
ImA2 − |ω| ImA0

]
. (1.1)

Since it was found that the phase shift differ-

ence δ0− δ2 ≈ π/4, within the uncertainties ε′/ε
turns out to be real. Calculating the amplitudes

AI in the framework of the operator product ex-

pansion and applying the renormalisation group

equation, the basic formulae for ε′/ε is found to
be

ε′

ε
= Imλt

[
P (1/2) − P (3/2)

]
. (1.2)

Here λt ≡ VtdV ∗ts with Vij being the elements of
the quark mixing or Cabibbo-Kobayashi-Maskawa

(CKM) matrix. To an excellent approximation

one has

Imλt ≈ |Vub||Vcb| sin δ (1.3)

with δ being the CP-violating phase in the stan-

dard parametrisation of the CKM matrix [4].

Further, the P (∆I) are given by

P (1/2) = r
∑
i

yi(µ)〈(ππ)0|Qi(µ)|K〉(1 − ΩIB) ,

P (3/2) =
r

|ω|
∑
i

yi(µ)〈(ππ)2|Qi(µ)|K〉 , (1.4)

with

r =
GF |ω|
2|ε|ReA0 = 346GeV

−3 . (1.5)

The yi(µ) are Wilson coefficient functions corre-

sponding to the operators Oi and µ denotes the

renormalisation scale which for our analysis will

be of order 1GeV. In addition to the renormal-

isation scale dependence, both, the Wilson co-

efficients yi, and the hadronic matrix elements

of operators Oi, depend on the renormalisation

scheme. Of course, up to the calculated order, for

the physical quantities P (∆I) these dependencies

should cancel. Present-day values for the Wil-

son coefficients yi(mc) for two commonly used

schemes can be found in ref. [8]. Finally, ΩIB
is an isospin breaking correction which arises be-

cause mu 6= md. In the numerical analysis we
use ΩIB = 0.25± 0.08 [9,10] but we shall further
comment on isospin breaking effects below.
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Omitting negligible contributions from dimen-

sion five magnetic-dipole operators, the leading

contribution to ε′/ε results from dimension six
four-quark operators. These can be classified into

Q1,2 (current-current),Q3−6 (QCD penguin) and
Q7−10 (electroweak penguin) according to the
type of Feynman diagrams from which they arise.

Explicit expressions for all operators can for ex-

ample be found in ref. [11] and the review ar-

ticle [12]. Here we only give the two dominant

QCD and electroweak penguin operators:

Q6 = (s̄αdβ)V−A
∑
q=u,d,s

(q̄β qα)V+A , (1.6)

Q8 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s

eq(q̄β qα)V+A ,(1.7)

where α, β are colour indices and eq denotes the

electric quark charges. Although the contribu-

tion of the electroweak penguin Q8 is suppressed

by a factor αem it is enhanced by 1/|ω| and thus,
as we shall see further below, has some impact

on the value of ε′/ε.

2. History of ε′/ε calculations

To be able to appreciate the achievements of the

ε′/ε calculations in the last almost 25 years since
the first estimate of ε′/ε [13], let me briefly re-
view their history.

The first estimate of ε′/ε [13] assumedmt �
MW , only included QCD penguins which were

introduced first in ref. [14] and omitted renor-

malisation group effects. Nevertheless, just by

chance the resulting value 1/450 is surprisingly

close to the current world average. Renormalisa-

tion group effects in the leading logarithmic ap-

proximation have first been taken into account

in [15]. For mt �MW only QCD penguins play
a substantial role. First extensive phenomenolog-

ical analyses in this approximation can be found

in [16].

Over the eighties these calculations were re-

fined through the inclusion of QED penguin ef-

fects formt �MW [9,17], the inclusion of isospin
breaking in the quark masses [9,10] and through

improved estimates of hadronic matrix elements

in the framework of the 1/Nc approach [18]. This

era of ε′/ε culminated in the analyses in [19,20],

where QCD penguins, electroweak penguins and

the relevant box diagrams were included for ar-

bitrary top quark masses. The strong cancel-

lation between QCD penguins and electroweak

penguins for mt > 150 GeV found in these pa-

pers was later confirmed by other authors [21].

During the nineties considerable progress has

been achieved by calculating complete next-to-

leading order (NLO) corrections to the Wilson

coefficients yi(µ) [11, 22–24]. Down to a scale

of order 1GeV the corrections turned out to be

modest which allows good control over the short

distance part in the operator product expansion.

Together with the NLO corrections to ε and B0–

B̄0 mixing [25–27], this allowed for an improved

NLO analysis of ε′/ε including constraints from
the observed indirect CP violation (ε) and B0d,s–

B̄0d,s mixings (∆Md,s). Progress in the determi-

nation of the Vub and Vcb elements of the CKM

matrix and in particular the determination of the

top quark mass mt had of course also an impor-

tant impact on ε′/ε.
Nevertheless, it is fair to say that calcula-

tions of the long distance part, the hadronic ma-

trix elements, have not yet reached a level which

would match the NLO calculations of the Wilson

coefficients. Long distance physics inevitably in-

volves confinement effects and thus non-perturba-

tive methods are required for the calculation of

the matrix elements. In principal lattice QCD

calculations should be able to give matrix ele-

ments with the correct scale and scheme depen-

dencies to match the coefficient functions, but

the most important matrix element of Q6 has so

far not been obtained reliably.

Other methods which are based on effective

theories like chiral perturbation theory (ChPT)

or the 1/Nc expansion suffer from problems be-

cause a sound matching to the Wilson coefficients

with the correct scale and especially scheme de-

pendencies is not obvious. Finally, QCD sum

rules could be useful, but except for the K0–K̄0

mixing parameterBK , the calculation of hadronic

matrix elements in this approach has not been

developed far enough to be competitive to the

other methods. In the next section we shall thus

summarise the status of the hadronic matrix ele-

ments relevant for ε′/ε concentrating on the dom-
inant contributions 〈Q6〉0 and 〈Q8〉2.
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3. Hadronic matrix elements

For a discussion of the hadronic matrix elements

it is convenient to introduce the so called B-para-

meters which quantify the deviation of the full

matrix elements to the vacuum-saturation or fac-

torisation approximation were the four-quark op-

erator is factorised in the product of two currents

by inserting a vacuum intermediate state. This

approximation usually serves as a first estimate

of hadronic matrix elements. Thus we define

〈Q6〉0 ≡ B(1/2)6 〈Q6〉(vac)0 , (3.1)

〈Q8〉2 ≡ B(3/2)8 〈Q8〉(vac)2 , (3.2)

and the factorisation approximation corresponds

to B
(1/2)
6 = B

(3/2)
8 = 1. These values even hold

in the large-Nc limit [18] which means that in

this limit factorisation is exact.

Because it turns out that the factorised ma-

trix elements 〈Q6〉(vac)0 and 〈Q8〉(vac)2 are propor-

tional to 1/m2s, the value of the strange quark

mass enters the analysis of ε′/ε. This is not nec-
essary as for example on the lattice the matrix

elements 〈Q6〉0 and 〈Q8〉2 are calculated directly
and no direct dependence on the strange mass

arises. However, although the matrix elements

depend on the renormalisation scale, a careful

analysis [11] showed that this dependence is al-

most completely covered by the scale dependence

of the strange mass and B
(1/2)
6 , B

(3/2)
8 for ener-

gies of interest are practically scale independent.

In fact, this statement is exact in the large-Nc
limit since in this limit the anomalous dimensions

of Q6 and Q8 are minus twice the mass anoma-

lous dimension [11]. For this reason we stick to

the discussion of the B-parameters which make

a comparison of different methods which work at

different scales easier.

The status of strange quark mass determi-

nations has been recently summarised in refs.

[8, 28, 29]. For further references the reader is

referred to these works. Most precise values of

the strange quark mass come from lattice QCD

and QCD sum rule calculations. As a present

average, we quote

ms(2GeV) = (110± 20)MeV . (3.3)

Unquenched lattice calculations yield somewhat

smaller values but at present the information is

Method B
(1/2)
6 B

(3/2)
8

Lattice [30] – 0.69 – 1.06

Large-Nc [31] 0.72 – 1.10 0.42 – 0.64

ChQM [32] 1.07 – 1.58 0.75 – 0.79

Table 1: Results for B
(1/2)
6 and B

(3/2)
8 obtained in

different approaches.

not precise enough to be conclusive. In the ap-

proach to the analysis of ε′/ε of ref. [11] it is
convenient to calculate the matrix elements at

the scale mc because at that scale many of the

remaining hadronic matrix elements can be de-

termined from CP-conserving K → ππ decays.
Thus we also present the value of the strange

mass at that scale:

ms(mc) = (130± 25)MeV , (3.4)

where mc = 1.3GeV has been used.

Values for B
(1/2)
6 and B

(3/2)
8 obtained in var-

ious approaches are collected in table 1. The lat-

tice results have been calculated at µ = 2GeV.

Concerning the lattice results for B
(1/2)
6 , old cal-

culations gave values around one with errors of

the order of 30%. However, a recent work [33]

shows that NLO QCD corrections in the relation

between lattice and continuum operators are so

huge that at present there is no solid prediction

for B
(1/2)
6 on the lattice. The situation of B

(3/2)
8

is better. Here most approaches find a suppres-

sion of B
(3/2)
8 below unity by roughly 20%. Fur-

ther discussion of the lattice approach and addi-

tional references can be found in [34].

The average value of B
(1/2)
6 in the large-Nc

approach including full order p2 and p0/Nc con-

tributions as given in table 1 is close to 1 whereas

the suppression of B
(3/2)
8 compared to the large-

Nc limit is stronger than on the lattice. The

uncertainty comes from a variation of the cut-off

scale Λ in the effective theory. On the other hand

it has been found [35] that a higher order term

O(p2/Nc) enhances B(1/2)6 to 1.6. This result is

clearly interesting. Yet, in view of the fact that

other p2/Nc terms as well as p
4 and p0/N2c terms

have not been calculated, it is premature to take

this enhancement seriously.

Finally, the chiral quark model (ChQM) gives

values for B
(1/2)
6 as high as 1.33 ± 0.25. On the

4
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other hand, B
(3/2)
8 in this approach is well com-

patible with the lattice and large-Nc calculations.

Guided by the results presented above and biased

to some extent by the results from the lattice and

large-Nc approach to hadronic matrix elements,

the status of determinations of B
(1/2)
6 and B

(3/2)
8

is summarised as:

B
(1/2)
6 = 1.0±0.3 , B(3/2)8 = 0.8±0.2 . (3.5)

In addition, in our numerical analysis we shall

always keep B
(1/2)
6 ≥ B(3/2)8 as it is found with

all non-perturbative methods.

4. Numerical analysis of ε′/ε

Being one of the authors of a recent analysis of

ε′/ε [8] by the so-calledMunich group, I take the
liberty to mainly concentrate on this work but I

shall comment on other recent analyses below.

Before we can proceed with the calculation

of ε′/ε, we still have to extract the value of sin δ,
or equivalently, Imλt directly. This can be ob-

tained from a standard analysis of the unitarity

triangle which uses data for |Vcb|, |Vub|, ε, ∆Md
and ∆Ms, where the last two measure the size of

B0d,s–B̄
0
d,s mixing. This type of analysis is rather

well known and the reader is referred to the lit-

erature for details [34, 36, 37]. As our result for

Imλt, we quote [8]

Imλt = (1.33± 0.14) · 10−4 . (4.1)

At this point it is instructive to present a

formula which is not to be used for any serious

analysis, nevertheless in a crude approximation

displays the dependence of ε′/ε on the most im-
portant parameters collected in table 2:

ε′

ε
≈ 13 Imλt

[
130MeV

ms(mc)

]2[
B
(1/2)
6 (1− ΩIB)

− 0.4B(3/2)8

( mt(mt)
165GeV

)2.5]( Λ
(4)

MS

340MeV

)
. (4.2)

This formula exhibits clearly the dominant un-

certainties which reside in the values of B
(1/2)
6 ,

B
(3/2)
8 , ms, Λ

(4)

MS
and ΩIB. Because of the rather

accurate value of the top quark mass, the result-

ing uncertainty in ε′/ε amounts only to a few
percent.

Quantity Value Reference

Λ
(4)

MS
(340± 50)MeV [4]

ms(mc) (130± 25)MeV See text

mt(mt) (165± 5)GeV [4]

B
(1/2)
6 1.0± 0.3 See text

B
(3/2)
8 0.8± 0.2 See text

Table 2: Collection of main input parameters.

Let us now continue with the full analysis.

Using equations (1.2)–(1.5) and (4.1), the val-

ues for the Wilson coefficient functions yi [8,11],

the values of the B-parameters and strange quark

mass as discussed in the previous section, expres-

sions for the matrix elements in the vacuum in-

sertion approximation [8,11], as well as the value

of ΩIB given in section 2, we are in a position to

calculate ε′/ε.
For an estimation of the uncertainties in the

determination of ε′/ε we follow two different stra-
tegies:

• Method 1: All experimental and theoreti-
cal input parameters are scanned indepen-

dently within their ranges to produce the

minimal and maximal value for ε′/ε.

• Method 2: A Monte Carlo analysis is per-
formed were all experimental input param-

eters are simulated with Gaussian errors

and all theoretical input parameters with

flat errors. The result for ε′/ε is then ex-
tracted from a statistical analysis of the re-

sulting probability distribution.

In the so-called NDR scheme, our result for

the scanning method is:

1.05 · 10−4 ≤ ε′/ε ≤ 28.8 · 10−4 . (4.3)

The values found in the HV scheme, a second

scheme considered by us, are generally 20-30%

lower. This reflects the fact that at present the

scheme dependence of the matrix elements is not

fully under control and the difference in the re-

sults is due to a residual scheme dependence. For

the statistical analysis in the NDR scheme, we

obtain

ε′/ε = (7.7+6.0−3.5) · 10−4 , (4.4)

were similar comments apply for the result in the

HV scheme. We have quoted the median and

5
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Figure 1: Probability distribution for ε′/ε in the NDR and HV schemes.

68% confidence intervals because the resulting

distribution is rather asymmetric. A plot of the

corresponding probability distribution is shown

in figure 1.

In table 3 we show the values of ε′/ε in units
of 10−4 for specific values of B(1/2)6 , B

(3/2)
8 and

ms(mc) as calculated in the NDR scheme. The

corresponding values in the HV scheme are lower

as discussed above. The fourth column shows the

results for central values of all remaining param-

eters. The comparison of the fourth and fifth

column demonstrates how ε′/ε is increased when
Λ
(4)

MS
is raised from 340MeV to 390MeV. As

stated in equation (4.2), ε′/ε is roughly propor-
tional to Λ

(4)

MS
. Finally, in the last column maxi-

mal values of ε′/ε are given. To this end we have
scanned all parameters relevant for the analysis

of Imλt within one standard deviation and have

chosen Λ
(4)

MS
= 390MeV. Comparison of the last

two columns demonstrates the impact of the in-

crease of Imλt from its central to its maximal

value and the variation of mt.

We observe that the most probable values for

ε′/ε are in the ball park of 10−3. On the other
hand table 3 shows that for particular choices of

input parameters, values for ε′/ε as high as (2−
3) · 10−3 cannot be excluded. The largest uncer-
tainties reside in ms, B

(1/2)
6 and B

(3/2)
8 . ε′/ε in-

creases by roughly a factor of 2.3 whenms(mc) is

changed from 155MeV to 105MeV. The increase

of B
(1/2)
6 from 1.0 to 1.3 increases ε′/ε by approx-

imately 60% whereas corresponding changes due

to B
(3/2)
8 are around 40%. The combined un-

certainty due to Imλt and mt are roughly 25%

and the uncertainty coming from Λ
(4)

MS
amounts

to 15%.

In figure 2, we show the minimal value of

B
(1/2)
6 for two choices of ms(mc) and Λ

(4)

MS
as a

function of B
(3/2)
8 for which the theoretical value

of ε′/ε is higher than 2 · 10−3. To obtain this
plot we have varied all other parameters within

their uncertainties. We show also a line which

corresponds to the relation

B
(1/2)
6 = 1.7 · B(3/2)8 . (4.5)

This relation holds in the large-Nc approach to

the hadronic matrix elements independent of the

cut-off scale Λ. One observes that as long as

B
(3/2)
8 ≥ 0.6, the parameter B(1/2)6 is required to

be larger than unity.

Let me now come to a comparison with other

recent analyses of ε′/ε. All groups use the Wilson
coefficient functions calculated in refs. [11,22–24].

Therefore, the differences in ε′/ε result domi-
nantly from different values for the hadronic ma-

trix elements and to some extent different input

parameters needed for the determination of Imλt.

6
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B
(1/2)
6 B

(3/2)
8 ms(mc)[MeV] Central Λ

(4)

MS
= 390MeV Maximal

105 20.2 23.3 28.8

1.3 0.6 130 12.8 14.8 18.3

155 8.5 9.9 12.3

105 18.1 20.8 26.0

1.3 0.8 130 11.3 13.1 16.4

155 7.5 8.7 10.9

105 15.9 18.3 23.2

1.3 1.0 130 9.9 11.5 14.5

155 6.5 7.6 9.6

105 13.7 15.8 19.7

1.0 0.6 130 8.4 9.8 12.2

155 5.4 6.4 7.9

105 11.5 13.3 16.9

1.0 0.8 130 7.0 8.1 10.4

155 4.4 5.2 6.6

105 9.4 10.9 14.1

1.0 1.0 130 5.5 6.5 8.5

155 3.3 4.0 5.2

Table 3: Values of ε′/ε in units of 10−4 for specific values of B(1/2)6 , B
(3/2)
8 , ms(mc) and other parameters as

explained in the text.

A very recent analysis by the Rome group

[34], besides B
(1/2)
6 using matrix elements from

the lattice in the HV scheme, finds ε′/ε = (4 −
7) · 10−4, completely compatible with the results
presented above in the statistical analysis. Also

their scanning results are similar except that the

Rome group does not use the constraint B
(1/2)
6 ≥

B
(3/2)
8 and allows for a larger error in B

(1/2)
6

which results in values as low as ε′/ε = − 1·10−3.
Matrix elements in the large-Nc approach

were used in the analysis of ε′/ε by the Dort-
mund group [35]. With the exception of the large

correction of O(p2/Nc) which was found to en-
hance B

(1/2)
6 up to 1.6, the matrix elements in

the large-Nc approach are in agreement to the

values used in our analysis. Thus, of course, also

the resulting values for ε′/ε agree and the larger
value for B

(1/2)
6 would bring ε′/ε much closer to

the experimental average.

Finally, the Trieste group [32] generally finds

higher values of ε′/ε, with the central value around
17·10−4 and consequently consistent with the ex-
perimental findings. The main reason is a higher

value of B
(1/2)
6 as obtained from the chiral quark

model. In principal one could compare the re-

sults in the large-Nc and ChQM approaches, but,

whereas the former was regularised with a cut-

off, in the latter calculation dimensional regular-

isation was used and a direct comparison is not

possible.

5. Discussion

As the numerical analysis above shows, for present

values of the theoretical input parameters, esti-

mates of ε′/ε in the Standard Model are typi-
cally below the experimental data. However, as

the scanning analysis demonstrates, for suitably

chosen parameters ε′/ε in the Standard Model
can be made consistent with the data. Yet, this

only happens if several of the relevant parameters

are simultaneously close to extreme values of the

ranges given in table 2. On the other hand also

B
(1/2)
6 ≈ 2 would bring ε′/ε in agreement with
the measured value for central values of the other

parameters. Let us further discuss possible sce-

narios within the Standard Model which would

yield consistency of ε′/ε with the experimental
measurements without requiring additional new

physics contributions.

7



Heavy Flavours 8, Southampton, UK, 1999 Matthias Jamin

ms=130MeV �
MS

=340MeV

ms=130MeV �
MS

=390MeV

ms=105MeV �
MS

=340MeV

ms=105MeV �
MS

=390MeV

B6=1:7B8

B
(3=2)
8

B
(1
=
2
)

6

1.110.90.80.70.60.50.40.30.2

2

1.8

1.6

1.4

1.2

1

0.8

Figure 2: Minimal value for B
(1/2)
6 consistent with ε′/ε ≥ 2 · 10−3 as a function of B(3/2)8 .

The calculations of the B-parameters B
(1/2)
6

and B
(3/2)
8 involve non-perturbative physics and

are thus still very uncertain. Whereas the value

of B
(3/2)
8 seems to be under better theoretical

control, it could well be that the ranges as given

in table 2 underestimate B
(1/2)
6 . Hints are given

by the large correction of O(p2/Nc) in the large-
Nc approach. Additional indications in this di-

rection come from the recent work in refs. [38].

Also using large-Nc methods and an interme-

diate colour-singlet boson which is claimed to

provide the correct matching between the short-

distanceWilson coefficients and the hadronic ma-

trix elements, the authors of [38] obtain B
(1/2)
6 =

2.2 ± 0.5. Although premature at this stage the
result is certainly interesting as it would provide

the required enhancement of ε′/ε.

Another contribution to ε′/ε which deserves
to be reconsidered are the isospin-breaking cor-

rections. The original calculations [9, 10] which

more than ten years ago estimated ΩIB ≈ 0.25,
only considered π0-η, η′ mixing as the source
for isospin-breaking. As pointed out in the re-

cent work [39], additional isospin-violating effects

arise from the u-d quark mass difference directly.

Estimating these additional contributions in chi-

ral perturbation theory with resonances [40] the

authors of [39] find that ΩIB might even change

sign and become as low as ΩIB ≈ − 0.6, depend-
ing on the couplings of the scalar resonance sec-

tor. Such a change effectively would correspond

to B
(1/2)
6 ≈ 2, again bringing ε′/ε in agreement

with the experimental average. However, in this

case the couplings of the scalar resonances are

rather uncertain and the findings in ref. [39] need

further corroboration.

The final point that should be discussed here

is the issue of final state interactions. In princi-

ple, non-perturbative approaches to the hadronic

matrix elements should also reproduce the strong

final-state phases of the ππ system. At present,

however, since these phases are generated by chi-

ral loops, in all approaches to the matrix ele-

ments they are either zero [18], or found sub-

stantially smaller than the experimental values

[31, 32]. A first step in the direction to fully

include final-state interaction effects in the cal-

culation of ε′/ε has been taken very recently in
ref. [41].

In the elastic region for the ππ scattering,

unitarity and analyticity constraints permit to

give a representation of the isospin amplitudes

AI in terms of the so-called Omnès integral [42]

which involves the phase shifts δI , times an arbi-

8
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trary polynomial in momenta. Thus, the effects

of chiral logarithms are resummed to all orders

in the Omnès integral and the polynomial ambi-

guity can in principal be fixed by a calculation

in chiral perturbation theory. Taking these steps

with lowest order chiral expressions for the poly-

nomial ambiguity, the authors of [41] found that

besides the imaginary parts which reproduce the

final state phases by construction, there is also

a substantial enhancement of the real part for

isospin zero and a slight suppression for isospin

two. The corresponding enhancement and sup-

pression factors <I were estimated to be
<0 = 1.41± 0.06 , <2 = 0.92± 0.02 , (5.1)

respectively. Applying these factors in the ex-

pression for ε′/ε, for central values of the pa-
rameters ε′/ε = 15 · 10−4, much closer to the
experimental result.

As they stand, the results by the authors

of ref. [41] are very interesting and may provide

the dominant source of enhancement required to

bring theoretical calculations of ε′/ε within the
Standard Model and the experimental results into

agreement. These findings might also be linked

to large values of B
(1/2)
6 found in the large-Nc ap-

proach. Nevertheless, it would be important to

demonstrate that the factors <I take the values
of equation (5.1) also in the calculation of indi-

vidual matrix elements in particular approaches

like large-Nc or the chiral quark model.

Even though from the discussion above it ap-

pears that new-physics contributions at present

are not required to fit the data for ε′/ε, there is
certainly still room for such contributions. The

most plausible sizable contribution could come

from chromo-magnetic penguins in general su-

persymmetric models or modified Z-penguins. On

the other hand substantial modifications of QCD

penguins through new physics are rather improb-

able. For a further discussion of contributions to

ε′/ε beyond the Standard Model, the reader is
referred to the talk by Masiero [43].

The future of ε′/ε in the Standard Model
and its extensions will depend strongly on the

progress which is reached in the calculation of

hadronic matrix elements. This progress should

include a reliable calculation of B
(1/2)
6 on the lat-

tice, control over the scale and scheme dependen-

cies in approaches using effective low energy the-

ories such that a proper matching with the Wil-

son coefficient functions at the next-to-leading

order will be possible, a better understanding of

isospin-breaking effects, and finally, the proper

inclusion of final state interactions. First suc-

cesses in all these areas have been achieved and,

together with the upcoming improvements of the

experimental measurements with increased data

sets, to my mind the future for ε′/ε in the new
millennium looks bright.
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