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Abstract:We present updates of our results for neutralB-meson mixing and leptonic decay constants

obtained in the quenched approximation from a mean-field-improved Sheikholeslami-Wohlert action

at two values of lattice spacing. We consider quantities such as BBd(s) , fD(s) , fB(s) and the full ∆B = 2

matrix-elements, as well as the corresponding SU(3)-breaking ratios.

1. Introduction

The study of Bd − B̄d oscillations enables mea-
surement of the poorly known CKM matrix ele-

ment |Vtd|. The frequency of these oscillations is
determined by

∆md ≡MHBd −MLBd , (1.1)

where MHBd and M
L
Bd
are the heavy and light

mass eigenvalues of the mixing system. ∆md is

experimentally measurable from tagged Bd me-

son samples, and is also calculable in the Stan-

dard Model. To leading order in 1/MW , the

Standard Model prediction for ∆md is

∆md =
G2F
8π2
M2W |VtdV ∗tb|2 C ({Si(xt)} ,MW , µ)

× |〈B̄d|O∆B=2d (µ)|Bd〉| , (1.2)

where xt = m
2
t/M

2
W , Si(xt) are the relevant Inami-

Lim functions [1], µ is the renormalisation scale,
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O∆B=2d is the four-quark operator
[
b̄γµ(1− γ5)d][

b̄γµ(1− γ5)d
]
and C is the relevant Wilson co-

efficient. Since |Vtb| is equal to unity to very
good accuracy, a measurement of ∆md enables

the determination of |Vtd|. The accuracy of this
determination is currently limited by the theo-

retical uncertainty in the calculation of the non-

perturbative strong-interaction effects in the ma-

trix-element 〈B̄d|O∆B=2d |Bd〉. An alternative ap-
proach [2], in which many theoretical uncertain-

ties cancel, is to consider the ratio, ∆ms/∆md,

where ∆ms is the mass difference in the neutral

Bs− B̄s system. In the Standard Model, one has

∆ms
∆md

=

∣∣∣∣VtsVtd
∣∣∣∣
2(
MBs
MBd

)2
ξ2 =

∣∣∣∣VtsVtd
∣∣∣∣
2

rsd

≡
∣∣∣∣VtsVtd
∣∣∣∣
2 ∣∣∣∣ 〈B̄s|O∆B=2s |Bs〉
〈B̄d|O∆B=2d |Bd〉

∣∣∣∣ , (1.3)

where O∆B=2s is the same operator as O∆B=2d

with d replaced by s and where we have omitted

the renormalisation-scale dependence of these op-

erators as it cancels in the ratio. Because the uni-

tarity of the CKM matrix implies |Vts|'|Vcb| and
because |Vcb| can be accurately obtained from
semileptonic B to charm decays, a measurement

of ∆ms/∆md determines |Vtd|. This is a chal-
lenging measurement and, at present, only a lower

bound on ∆ms/∆md exists [3].

The matrix elements which appear in Eq.
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(1.3) are traditionally parameterised by

MBq(µ) = 〈B̄q|O∆B=2q (µ)|Bq〉
=
8

3
M2Bqf

2
Bq
BBq (µ) , (1.4)

where q = d or s, where the B-parameter, BBq ,

measures deviations from vacuum saturation, cor-

responding to BBq = 1, and fBq is the leptonic

decay constant:

〈0|b̄γµγ5q|Bq(p)〉 = ipµfBq . (1.5)

With this parameterisation, the quantity ξ de-

fined in Eq. (1.3) is given by

ξ =
fBs
fBd

√
BBs
BBd

. (1.6)

BecauseMBs andMBd are measured experimen-

tally, ξ2 is the quantity in Eq. (1.3) which re-

quires a non-perturbative determination.

We report on BBd(s) , fB(s) , BBs/ BBd , fBs/

fB, rsd and ξ. Results for D-meson decay con-

stants fD(s) and the SU(3) breaking ratio fDs/

fD are also given. These results are updates of

those we presented in [4, 5].

2. Main features of the lattice calcu-

lation

Numerical calculations are performed in the quen-

ched approximation at two values of the coupling,

β = 6.2 and β = 6.0, corresponding to an inverse

lattice spacing 1/a ∼ 2.5 GeV (finer) and 1/a ∼
2.0 GeV (coarser), respectively. We use a mean-

field-improved Sheikholeslami-Wohlert (SW) ac-

tion [6] to describe the quarks. With this action,

discretisation errors are formally reduced from

O(a) to O(αsa) and may be numerically smaller
because of the mean-field improvement. This re-

duction of discretisation errors is important in

lattice calculations involving heavy quarks, be-

cause these quarks have small Compton wave-

lengths. For details on the parameters used in

the numerical calculations, please refer to table

2 in Appendix A.

At each value of the lattice spacing, we have

three light quarks with masses in a range between

∼ ms/2 and ∼ ms, which allows us to linearly

extrapolate the quantities we are after to van-

ishing quark mass and interpolate them to the

strange-quark mass. To obtain results for the b

quark, while keeping discretisation errors under

control, we work with five heavy-quark masses

straddling the charm mass1 and extrapolate up

to the b mass, guided by HQET.

We use two methods to calculate rsd:

• Direct method: rsd is obtained from the
direct calculations ofMBs andMBd .

• Indirect method: rsd is obtained by cal-
culating fBs/fBd and BBs/BBd , and then

combining them with the experimentalMBs/

MBd .

We find that both heavy-quark-mass and light-

quark-mass extrapolations are under better con-

trol for the indirect method than they are for the

direct method.

3. Matching to the continuum and

running in the MS scheme

Results of lattice-regularised calculations have to

be matched to the continuum renormalisation

scheme in which Wilson coefficients are calcu-

lated. We perform this matching at one loop

[7, 8, 9, 10] with mean-field improvement [11].

At this order, it is consistent to use the tree-

level value for improvement coefficient cSW (see

Appendix A). This is the procedure we use to

obtain the central values for our results.

Moreover, because chiral symmetry is explic-

itly broken by Wilson fermions, the axial vector

current Aµ requires a (multiplicative) renormal-

isation and is related to its continuum counter-

part via

Acontµ = ZA(αs)A
latt
µ , (3.1)

where ZA is finite.

For the four-quark operators, to subtract the

contributions arising from the explicit breaking

1However, only three of these are used on the finer

lattice (β = 6.2) when calculating matrix elements and

B-parameters of the four-quark operators.

2
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of chiral symmetry, it is sufficient to consider the

following basis of parity-conserving operators

O1,2 = γµ × γµ ± γµγ5 × γµγ5,
O3,4 = I × I ± γ5 × γ5, (3.2)

O5 = σµν × σµν ,

where we only show their Dirac structure for sim-

plicity. O1 is the parity-even part of O∆B=2q .

This operator, in the MS scheme at the renor-

malisation scale µ, is related to the above lattice

operators by

OMS1 (µ) = Z11(αs, aµ)Ôlatt1 (a) , (3.3)

where

Ôlatt1 (a) = Olatt1 (a)+
5∑
i=2

Z1i(αs)Olatti (a) . (3.4)

Z11 depends logarithmically on aµ. The Z1i, i 6=
1, account for the operator mixing due to the

explicit chiral symmetry, and do not depend on

aµ.

The scheme of αs is not fixed at one loop. We

choose αs = αMS obtained from the procedure de-

scribed in [11], with nf = 0 (quenched approxi-

mation), which was shown to lead to particularly

convergent perturbative expansions [11]. Central

values are obtained by identifying the scale of the

coupling with the matching scale µ and match-

ing at µ = 2/a–a typical lattice ultraviolet scale.

Running in the MS scheme is performed at two

loops with the same coupling constant as for the

matching, and nf = 0.

4. Scaling with heavy-quark mass

To study the behaviour of the various quantities

with heavy-quark mass, we define

Φf (MP ) ≡ afP
ZA

√
aMP

(
αs(MP )

αs(MB)

)2/β0
(4.1)

ΦB(µ,MP ) ≡ BP (µ)
(
αs(MP )

αs(MB)

)2/β0
(4.2)

Φ∆F=2(µ,MP ) ≡ a
4MP (µ)

aMP

(
αs(MP )

αs(MB)

)6/β0
(4.3)

where MP is the heavy-meson mass and MP is

the ∆F = 2 matrix element calculated at that

mass. β0 is the one-loop coefficient of the QCD

β-function, with nf = 0. In Φf , ΦB and Φ∆F=2,

we have cancelled the logarithmic dependence of

fP , BP andMP onMP at leading-log order [12].

ForX(MP ) = Φf , ΦB, Φ∆F=2 and the SU(3)-

breaking ratios, we use the HQET-inspired rela-

tion,

X(MP ) = aX+bX

(
1

aMP

)
+cX

(
1

aMP

)2
+· · · ,
(4.4)

to investigate the heavy-quark-mass scaling be-

haviour of these quantities, as shown in figures

1, 2 and 3.

5. Systematic uncertainties

Our main results at the two values of lattice spac-

ing are summarised in table 1. In this table, the

first error bar for each quantity is statistical. The

other errors are systematic and we discuss them

now.

5.1 Discretisation errors

In table 1, results for the decay constants dis-

play significant variation with lattice spacing2.

This suggests that discretisation errors for these

quantities may be important. To quantify these

errors we estimate residual, O(amQαs) discreti-
sation effects, associated with the mass mQ of

the heavy quark, as described in Appendix B.

This is the second error bar on the decays con-

stants and their SU(3)-breaking ratios, fDs/fD
and fBs/fB.

Such an estimate could, in principle, be car-

ried out for the B-parameters and the SU(3)-

breaking ratios rsd and ξ. However, many of

2This poor scaling is not fully understood. It could be

improved by using fπ instead of mρ to set the scale (see

table 2). For instance, fB at β = 6.0 would be ∼ 191 MeV
instead of 201 MeV while its value at β = 6.2 would be

160 MeV. However, mρ is a valid means of setting the

scale in quenched calculations and, as discussed below,

we include a systematic associated with the uncertainty in

the lattice spacing. Furthermore, this poor scaling is not

present in the B-parameters and SU(3)-breaking ratios

which are the main thrust of the present work.

3
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(a) (b)

Figure 1: Scaling of Φf with heavy-quark mass on (a): the finer lattice and (b): the coarser lattice. The

points labelled MQs and MQd correspond to the heavy quarks, Q, used in our simulation. The curves are fits

to the RHS of Eq. (4.4). The other points are the result of interpolation to Q = c or extrapolation to Q = b.

these discretisation effects cancel trivially in the

ratios of matrix elements defining these quanti-

ties. Furthermore, a full quantification of O(a
mQαs) effects for MBq and their B-parameters

would require one to consider the mixing of the

four-quark operators in Eq. (3.3) with operators

of dimension seven, which is beyond the scope of

the present work. Finally, in table 1, results for

B-parameters and their SU(3)-breaking ratios

exhibit very little lattice-spacing dependence, sup-

porting the idea that discretisation errors for these

quantities are small. Thus, we assume that the

statistical error for these quantities encompasses

possible residual discretisation errors. For rindirectsd

and ξ, however, which are obtained using fBs/fB,

we take into account the discretisation error on

this quantity.

5.2 Matching uncertainties

To estimate the systematic errors arising from

the perturbative matching in the B-parameters,

we match at different µ in the range between 1/a

and π/a 3, then run the resultant B-parameters

to 2/a to compare them with the ones matched

“directly” at 2/a. The range [1/a, π/a] covers

typical lattice ultraviolet scales and is vindicated

by our study of BK [13], where we find that

3We always identify the scale of α
MS
with the matching

scale.

continuum chiral behaviour is restored for these

scales. We also consider the variation coming

from computing Z11(µ = 2/a) and Z1i with the

constant cSW set to its mean-field-improved value

instead of 1. All of these variations, which affect

BB and BBs significantly, but not BBs/ BB, are

reflected in the second error bars on these B-

parameters.

Decay constants independent of renormali-

sation scale. However, the above procedure re-

sults in a ∼ 4% change in ZA through the µ-
dependence of αMS(µ) and the change in the value

of cSW. This is reflected in the decay constants’

third error bar but does not affect the corre-

sponding SU(3)-breaking ratios.

5.3 Heavy-quark-mass extrapolations

As shown in figure 1, the decay constants have a

pronounced extrapolation in heavy-quark mass,

and the term quadratic in 1/MP on the RHS of

Eq. (4.4) contributes significantly. To quantify

the systematic error associated with this extra-

polation–the fourth error bar on the decay con-

stants–we perform a fit of the heaviest three points

in figure 1 to the RHS of Eq. (4.4), without the

quadratic term.

Figure 2 indicates that the linear heavy-quark-

mass extrapolation of the B-parameters works

4
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(a) (b)

Figure 2: Scaling of ΦB with heavy-quark mass on (a): the finer lattice and (b): the coarser lattice. The

points labelled MQs and MQd correspond to the heavy quarks, Q, used in our simulation. The curves are fits

to the RHS of Eq. (4.4) without the quadratic term in 1/MP . The other points are the result of extrapolation

to Q = b.

well and is mild: the associated uncertainty should

be covered by the statistical error.

The ∆F = 2 matrix elements have a very

pronounced dependence on heavy-quark mass, as

seen in figure 3. Since we are not reporting re-

sults for the individualMBd(s) , we do not quan-

tify the systematic errors associated with their

determination. However, this strong mass-de-

pendence is one of the elements which make a

reliable determination of rsd, from the ratio of

individually calculatedMBd(s) , difficult [14].

5.4 Uncertainties in the determination of

the lattice spacing

In quenched calculations, the value of the lat-

tice spacing varies significantly with the quan-

tity used to set the scale. This variation is due to

quenching effects, as well as any other systematic

uncertainty which may affect the quantity used

to set the scale. In this work, we determine the

lattice spacing from the ρ-meson mass4. We then

vary the inverse lattice spacing, 1/a, increasing it

by 10% and decreasing it by 5%. This range cov-

ers the typical variations observed in the determi-

nation of the scale from gluonic or light-hadron

4The scale determined from fπ gives compatible re-

sults at β = 6.2, as shown in table 2.

spectral quantities, for the action and parameters

we use [15].

Uncertainties in the lattice spacing will ob-

viously affect the determination of all the de-

cay constants, as they are dimensionful. They

will also slightly change the curves in the heavy-

quark-mass extrapolations (figures 1, 2 and 3).

Furthermore, they induce a variation in the stran-

ge-quark mass, which we obtain from the mass of

the kaon, and therefore affect all quantities which

depend on this mass.

In practice, we find that the variation of the

lattice spacing discussed above does not induce

a significant change in the B-parameters. How-

ever, it does affect all the decay constants and

SU(3)-breaking ratios. This is reflected in the

last error bar on these quantities.

5.5 Quenching errors

Quenching errors have been studied using the

quenched Chiral Perturbation Theory (qχPT) and

have been found to be small for the B-parameters

[16]. Moreover, numerical simulation [17] with

two light flavours of dynamical quarks indicate

that those in fBs/fB are also small. Thus, they

ought to be small for rsd and ξ. Contrary to this,

quenching errors may be significant for the decay

5
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(a) (b)

Figure 3: Scaling of Φ∆F=2 with heavy-quark mass on (a) the finer lattice and (b) the coarser lattice. The

points labelled MQs and MQd correspond to the heavy quarks, Q, used in our simulation. The curves are fits

to the RHS of Eq. (4.4) (without the quadratic term in 1/MP for the finer lattice). The other points are the

result of extrapolation to Q = b.

constants themselves, as indicated by both qχPT

[16] and numerical simulation [17].

As we mentionned in the previous section,

the uncertainty in the lattice scale is, in part,

a quenching effect. Thus, to the extent that it

is, we have already accounted for some quench-

ing errors. A more thorough estimate of these

effects, however, would require a dedicated un-

quenched simulation which is beyond the scope

of this work. Therefore, we do not attempt to

quantify quenching errors any further.

6. Final results

Since two lattice spacings are not sufficient for

an extrapolation to the continuum limit (a = 0),

we quote the results obtained on the finer lattice

(β = 6.2) as our best estimates. And because it

appears to be more reliable, we quote rindirectsd for

rsd.

Our main preliminary results are thus

ξ = 1.15(6)+2−3 ,

rsd = 1.37(14)
+4
−6 ,

BBs
BB

= 0.98(3) ,

fBs
fB
= 1.16(6)+2−3 ,

BB(5 GeV) = 0.92(4)
+3
−0 ,

BBs(5 GeV) = 0.91(2)
+3
−0 ,

fB = 161(16)
+24
−13 MeV ,

fBs = 192(14)
+24
−13 MeV ,

fD = 195(10)
+22
−10 MeV ,

fDs = 224(7)
+21
−9 MeV ,

fDs
fD
= 1.15(4)+2−3 ,

where the first error bar is statistical and the

second is systematic, the result of adding our

long list of systematic errors in quadrature. By

choosing the results obtained on the finer lattice,

we are also being conservative in our estimate of

statistical errors as they are larger than on the

coarser lattice for which we have higher statistics.

Note that our results, obtained with large

statistics and a highly improved action are com-

patible with recent world averages [5, 18, 19, 20].
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lattice coarser finer

β 6.0 6.2

fDs(MeV) 251(3)+16+11+2+17− 0− 4−0− 8 224(7)+9+8+0+16−0−3−0− 8
fD(MeV) 224(4)+12+10+1+20− 0− 4−0−10 195(10)+7+7+0+19−0−3−0−10
fBs(MeV) 232(6)+27+10+ 0+22− 0− 4−16−11 192(14)+14+7+ 0+19− 0−3−10− 9
fB(MeV) 201(9)+20+9+ 0+25− 0−4−13−13 161(16)+11+6+0+21− 0−2−8−10
fDs/fD 1.12(1)+1+ + +2−0− − −2 1.15(4)+1+ + +2−0− − −3
fBs/fB 1.14(2)+1+ + +2−0− − −3 1.16(6)+1+ + +2−0− − −3

BBs(5 GeV) 0.92(2)+ +4+ +− −0− − 0.91(2)+ +3+ +− −0− −
BB(5 GeV) 0.90(4)+ +4+ +− −0− − 0.92(4)+ +3+ +− −0− −
BBs/BBd 1.02(3)+ +0+ +0− −0− −0 0.98(3)+ +0+ +0− −0− −0
rindirectsd 1.38(7)+2+ + +4−0− − −6 1.37(14)+1+ + +4−0− − −6
rdirectsd 1.52(18)+ + + +6− − − −9 1.71(28)+ + + + 8− − − −11
ξ 1.15(3)+1+ + +2−0− − −3 1.15(6)+1+ + +2−0− − −3

Table 1: Results at the two values of lattice spacing. rindirectsd = (
MBs
MB

fBs
fB
)2
BBs
BB
and rdirectsd = (MBs/MBd ).

The first error bar on each quantity is statistical while the others are systematic, as described in Section 5.

Blank error bars are put in to help keep track of which systematic effect each error corresponds to.
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A. Simulation Details

The quarks in the simulation are described by

the SW action

SSWF = SWF − ig0 cSW
κq

2

∑
x,µ,ν

q̄ Fµνσµν q(x) ,

(A.1)

where SWF is the standard Wilson action, g0 the

bare gauge coupling, Fµν a lattice realisation of

the Yang-Mills field strength tensor, κq the ap-

propriate quark hopping parameter and cSW, the

so-called clover coefficient. cSW = 1 corresponds

to tree-level improvement. With this value of

cSW, leading discretisation errors are O(αsa) in-
stead of O(a) as they are with the standard Wil-
son action, corresponding to cSW = 0. We actu-

ally use a mean-field-improved SW action with

values of cSW given in table 2, where the param-

eters used in our simulations are summarised.

lattice coarser finer

β 6.0 6.2

lattice size 163 × 48 243 × 48
cSW 1.47852 1.44239

# of cfs. 498 188

a−1(Mρ) (GeV) 1.96(5) 2.54(8)

a−1(fπ) (GeV) 1.87(4) 2.52(8)

Table 2: Simulation parameters. a−1(Mρ) and
a−1(fπ) are the values of the inverse lattice spacing
determined from calculations of the ρ-meson mass

and the pion decay constant, respectively. The lat-

ter is given for µ = 2/a.

B. O(a)-improvement of the axial cur-
rent

The leading discretisation errors with the mean-

field-improved SW action are formally ofO(αsa),
as they are for the tree-level improved SW ac-

tion. To estimate these errors, we consider the

following variation in our procedure.

O(αsa)-improvement of the axial current re-
quires one to include the effect of the a∂µP (P

the pseudoscalar density) counterterm through

the replacement

Aµ → Aµ + cAa∂µP , (B.1)

7



Heavy Flavours 8, Southampton, UK, 1999 L. Lelloucha and C.-J.D. Linb (UKQCD Collaboration)

as well as to rescale the quark fields as

q → (1 + bA
2
amq)q , (B.2)

with both cA and bA evaluated at one loop [21,

22]. Thus, from a comparison of results obtained

with cA and bA set to their tree-level values (cA =

0 and bA = 1) to those obtained with cA and

bA evaluated at one loop, we can get an esti-

mate of the effect of O(αsa) discretisation errors.
We do not use the one-loop results as central

values for the decay constants, for consistency

with our determination of the B-parameters. In-

deed, O(αsa)-improvement of the four-quark op-
erators would require one to consider the mixing

of these operators with operators of dimension

seven, which is beyond the scope of the present

work.

To correct for some higher-order discretisa-

tion effects, we actually use KLM normalisation

[23] for the quark fields. Thus, our central values

are obtained with the normalisation

q →√1 + amqq (B.3)

and the one-loop variation with

q →
√
1 + amq

1 + amq/2
(1 +

b1−loopA

2
amq)q . (B.4)

We also check that results obtained with tree-

level normalisation (bA = 1 in Eq. (B.2)) [24] lie

within the discretisation error we quote.

References

[1] T. Inami and C.S. Lim, Prog. Theor. Phys. 65

(1981) 297; ibid. 65 (1981) 1772.

[2] C. Bernard, T. Blum and A. Soni, Phys. Rev.

D 58 (1998) 014501.

[3] See for instance L. Foà’s experimental sum-
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