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Abstract: I review the relations between mass scales in various string theories and

in M-theory. I discuss physical motivations and possible consistent realizations of

large volume compactifications and low string scale.

Large longitudinal dimensions, seen by Standard Model particles, imply in general

that string theory is strongly coupled unless its tension is close to the compactification

scale. Weakly coupled, low-scale strings can in turn be realized only in the presence

of extra large transverse dimensions, seen through gravitational interactions, or in

the presence of infinitesimal string coupling. In the former case, quantum gravity

scale is also low, while in the latter, gravitational and string interactions remain

suppressed by the four-dimensional Planck mass. There is one exception in this gen-

eral rule, allowing for large longitudinal dimensions without low string scale, when

Standard Model is embedded in a six-dimensional fixed-point theory described by a

tensionless string.

Extra dimensions of size as large as TeV−1 ' 10−16 cm are motivated from the
problem of supersymmetry breaking in string theory, while TeV scale strings offer a

solution to the gauge hierarchy problem, as an alternative to softly broken supersym-

metry or technicolor. I discuss these problems in the context of the above mentioned

string realizations, as well as the main physical implications both in particle accel-

erators and in experiments that measure gravity at sub-millimeter distances.
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1. Preliminaries

In critical (ten) dimensions, any consistent superstring theory has two parameters: a

mass (or length) scale Ms (ls = M
−1
s ), and a dimensionless string coupling λs given

by the vacuum expectation value (VEV) of the dilaton field e<φ> = λs [1, 2]: CIT: strings,sao

D = 10 : Ms = l
−1
s λs . (1.1) LAB: tenD

Upon compactification in D = 4 dimensions on a compact manifold of volume V ,

these parameters determine the four-dimensional (4d) Planck mass (or length) Mp
(lp =M

−1
p ) and the dimensionless gauge coupling g at the string scale. For simplicity,
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in the following we drop all numerical factors from our formulae, while, when needed,

we use the numerical values:

D = 4 : Mp ' 1.2× 1019 GeV g ' 1/5 . (1.2) LAB: fourD

Moreover, the weakly coupled condition implies that λs << 1. Our method in the

following consists in expressing the 10d parameters (Ms, λs) in terms of the 4d ones

and the compactification volume, in heterotic (s = H), type I (s = I) and type II

(s = II) string theories, and then discuss the conditions on possible large volume or

low string scale realizations, keeping the string coupling small.

An important point is that the compactification volume will always be chosen

to be bigger than unity in string units, V > l6s . This can be done by a T-duality

transformation which exchanges the role of the Kaluza-Klein (KK) momenta p with

the string winding modes w. For instance, in the case of one compact dimension on

a circle of radius R, they read:

p =
m

R
; w =

nR

l2s
, (1.3) LAB: pw

with integers m,n. T-duality inverts the compactification radius and rescales the

string coupling:

R→ l
2
s

R
λs → λs

ls

R
, (1.4) LAB: Tdual

so that the lower-dimensional coupling λs
√
ls/R remains invariant. When R is

smaller than the string scale, the winding modes become very light, while T-duality

trades them as KK momenta in terms of the dual radius R̃ ≡ l2s/R. The enhance-
ment of the string coupling is then due to their multiplicity which diverges in the

limit R→ 0 (or R̃→∞).

2. Heterotic string and motivations for large volume compact-

ifications

In heterotic string, gauge and gravitational interactions appear at the same (tree)

level of perturbation theory (spherical world-sheet topology), and the corresponding

effective action is [1, 2]: CIT: strings,sao

S =
∫
d4x
V

λ2H
(l−8H R+ l−6H F 2) , (2.1)

upon compactification in four dimensions. Here, for simplicity, we kept only the

gravitational and gauge kinetic terms, in a self-explanatory notation. Identifying

their respective coefficients with the 4d parameters 1/l2p and 1/g
2, one obtains:

MH = gMp λH = g

√
V

l3H
. (2.2) LAB: het
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Using the values (1.2), one obtains that the heterotic string scale is near the Planck

mass, MH ' 1018, while the string is weakly coupled when the internal volume is
of order of the string scale, V ∼ l6s . However, despite this fact, there are physical
motivations which suggest that large volume compactifications, and thus strong cou-

pling, may be relevant in physics [3]. These come from gauge coupling unification CIT: ia

and supersymmetry breaking by compactification, which we discuss below.

2.1 Gauge coupling unification

It is a known fact that the three gauge couplings of the Standard Model, when

extrapolated at high energies assuming the particle content of its N = 1 minimal

supersymmetric extension (MSSM), they meet at an energy scale MGUT ' 2× 1016
GeV. At the one-loop level, one has:

1

g2a(µ)
=
1

g2
+
ba

4π
ln
M2GUT
µ2

, (2.3)

where µ is the energy scale and a denotes the 3 gauge group factors of the Standard

Model SU(3)× SU(2)× U(1). The value of MGUT is very near the heterotic string
scale, but it differs by roughly two orders of magnitude. If one takes seriously this

discrepancy, a possible way to explain it is by introducing large compactification

volume.

Consider for instance one large dimension of size R, so that V ∼ Rl5H . Identi-
fying MGUT with the compactification scale R

−1, this requires R ∼ 100lH . Alter-
natively, one can use string threshold corrections which grow linearly with R [4]. CIT: dkl

Assuming that they can account for the discrepancy, one needs roughly R/lH ∼
ln(M2H/M

2
GUT) ∼ 10. As a result, the string coupling (2.2) equals λH ∼ 0.5−2 which

enters in the strongly coupled regime.

2.2 Supersymmetry breaking by compactification

In contrast to ordinary supergravity, where supersymmetry breaking can be intro-

duced at an arbitrary scale, through for instance the gravitino, gaugini and other soft

masses, in string theory this is not possible (perturbatively). The only way to break

supersymmetry at a scale hierarchically smaller than the (heterotic) string scale is by

introducing a large compactification radius whose size is set by the breaking scale.

This has to be therefore of the order of a few TeV in order to protect the gauge

hierarchy. An explicit proof exists for toroidal and fermionic constructions, although

the result is believed to apply to all compactifications [5, 6]. This is one of the CIT: ablt,kp

very few general predictions of perturbative (heterotic) string theory that leads to

the spectacular prediction of the possible existence of extra dimensions accessible to

future accelerators [3]. The main theoretical problem is though the strong coupling, CIT: ia

as mentioned above.
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The strong coupling problem can be understood from the effective field theory

point of view from the fact that at energies higher than the compactification scale, the

KK excitations of gauge bosons and other Standard Model particles will start being

produced and contribute to various physical amplitudes. Their multiplicity turns

very rapidly the logarithmic evolution of gauge couplings into a power dependence [7], CIT: tv

invalidating the perturbative description, as expected in a higher dimensional non-

renormalizable gauge theory. A possible way to avoid this problem is to impose

conditions which prevent the power corrections to low-energy couplings [3]. For CIT: ia

gauge couplings, this implies the vanishing of the corresponding β-functions, which

is the case for instance when the KK modes are organized in multiplets of N = 4

supersymmetry, containing for every massive spin-1 excitation, 2 Dirac fermions and

6 scalars. Examples of such models are provided by orbifolds with no N = 2 sectors

with respect to the large compact coordinate(s).

The simplest example of a one-dimensional orbifold is an interval of length πR, or

equivalently S1/Z2 with Z2 the coordinate inversion. The Hilbert space is composed

of the untwisted sector, obtained by the Z2-projection of the toroidal states (1.3),

and of the twisted sector which is localized at the two end-points of the interval, fixed

under the Z2 transformations. This sector is chiral and can thus naturally contain

quarks and leptons, while gauge fields propagate in the (5d) bulk.

Similar conditions should be imposed to Yukawa’s and in principle to higher (non-

renormalizable) effective couplings in order to ensure a soft ultraviolet (UV) behavior

above the compactification scale. We now know that the problem of strong coupling

can be addressed using string S-dualities which invert the string coupling and relate

a strongly coupled theory with a weakly coupled one [2]. For instance, as we will CIT: sao

discuss below, the strongly coupled heterotic theory with one large dimension is

described by a weakly coupled type IIB theory with a tension at intermediate energies

(RlH)
−1/2 ' 1011 GeV [8]. Furthermore, non-abelian gauge interactions emerge from CIT: ap

tensionless strings [9] whose effective theory describes a higher-dimensional non- CIT: w95

trivial infrared fixed point of the renormalization group [10]. This theory incorporates CIT: sei

all conditions to low-energy couplings that guarantee a smooth UV behavior above

the compactification scale. In particular, one recovers that KKmodes of gauge bosons

form N = 4 supermultiplets, while matter fields are localized in four dimensions. It

is remarkable that the main features of these models were captured already in the

context of the heterotic string despite its strong coupling [3]. CIT: ia

In the case of two or more large dimensions, the strongly coupled heterotic string

is described by a weakly coupled type IIA or type I/I′ theory [8]. Moreover, the CIT: ap

tension of the dual string becomes of the order or even lower than the compactification

scale. In fact, as it will become clear in the following, in the context of any string

theory other than the heterotic, the simple relation (2.2) that fixes the string scale in

terms of the Planck mass does not hold and therefore the string tension becomes an

arbitrary parameter [11]. It can be anywhere below the Planck scale and as low as a CIT: w
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few TeV [12]. The main advantage of having the string tension at the TeV, besides its CIT: l

obvious experimental interest, is that it offers an automatic solution to the problem of

gauge hierarchy, alternative to low-energy supersymmetry or technicolor [13, 14, 15]. CIT: add,aadd,ab

3. M-theory on S1/Z2“×”Calabi-Yau

The strongly coupled E8×E8 heterotic string compactified on a Calabi-Yau manifold
(CY) of volume V is described by the 11d M-theory compactified on an interval

S1/Z2 of length πR11 times the same Calabi-Yau [16]. Gravity propagates in the CIT: hw

11d bulk, containing besides the metric and the gravitino a 3-form potential, while

gauge interactions are confined on two 10d boundaries (9-branes) localized at the

two end-points of the interval and containing one E8 factor each. The corresponding

effective action is

SH =
∫
d4xV (

R11

l9M
R+ 1

l6M
F 2) . (3.1) LAB: SH

It follows that

lM = (g
2V )1/6 R11 = g

2 l
3
M

l2P
. (3.2) LAB: Mth

The validity of the 11d supergravity regime is when R11 > lM and V > l
6
M implying

g < 1 by virtue of eq.(3.2). Comparison with the heterotic relations (2.2) yields:

lM = lHλ
1/3
H R11 = lHλH , (3.3) LAB: M-het

which shows in particular that R11 is the string coupling in heterotic units. As a

result, at strong coupling λH > 1 the M theory scale and the 11d radius are larger

than the heterotic length: R11 > lM > lH .

Imposing the M-theory scale l−1M to be at 1 TeV, one finds from the relations
(3.2) a value for the radius of the 11th dimension of the size of the solar system,

R11 ' 108 kms, which is obviously excluded experimentally. On the other hand,
imposing a value for R11 ' 1 mm which is the shortest length scale that gravity
is tested experimentally, one finds a lower bound for the M-theory scale l−1M >∼ 107

GeV [17]. CIT: ckm

While the relations (3.2) seem to impose no theoretical constraint to lM , there

is however another condition to be imposed beyond the classical approximation [11]. CIT: w

This is because at the next order the factorized space S1/Z2 × CY is not any more
solution of the 11d supergravity equations, which require the size of the Calabi-

Yau manifold to depend on the 11th coordinate x11 along the interval. This can

be seen for instance from the supersymmetry transformation of the 3-form potential

(with field-strength G(4)) which acquires non vanishing contributions from the 10d

boundaries:

δG(4) = l6Mδ(x11)
(
trF ∧ F − 1

2
trR∧R

)
+ (x11 ↔ πR11 − x11, F ↔ F ′) . (3.4)
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As a result, the volume of CY varies linearly along the interval, to leading order:

V (x11) = V (0)− x11l3M
∫
CY
ω ∧ (trF ′ ∧ F ′ − trF ∧ F ) , (3.5) LAB: V

where ω ∼ V 1/3 is the Kähler form on the six-manifold CY.
It follows that there is an upper bound on R11, otherwise the gauge coupling in

one of the two walls blows up when the volume of CY shrinks to zero size. Choosing

V (0) ≡ V and imposing V (πR) ≥ 0, eq.(3.5) yields R11 <∼ V 2/3/l3M and through the
relations (3.2):

lP >∼ g5/3lM = g2V 1/6 . (3.6)

This implies a lower bound for the M-theory scale l−1M >∼ g5/3MP , or equivalently for
the unification scale MGUT ≡ V −1/6 >∼ g2MP . Taking into account the numerical
factors, on finds for the lower bound the right order of magnitude MGUT ∼ 1016
GeV, providing a solution to the perturbative discrepancy between the unification

and heterotic string scales, discussed in section 2.1 [11]. Note that this bound does CIT: w

not hold in the case of symmetric embedding, where one has trF ′∧F ′− trF ∧F = 0
and thus the correction in eq.(3.5) vanishes.

4. Type I/I′ string theory and D-branes

In ten dimensions, the strongly coupled SO(32) heterotic string is described by the

type I string, or upon T-dualities to type I′ [18, 2].1 Type I/I′ is a theory of closed CIT: pw,sao

and open unoriented strings. Closed strings describe gravity, while gauge interactions

are described by open strings whose ends are confined to propagate on D-branes.

It follows that the 6 internal compact dimensions are separated into longitudinal

(parallel) and transverse to the D-branes. Assuming that the Standard Model is

localized on a p-brane with p ≥ 3, there are p− 3 longitudinal and 9− p transverse
compact dimensions. In contrast to the heterotic string, gauge and gravitational

interactions appear at different order in perturbation theory and the corresponding

effective action reads [1, 2]: CIT: strings,sao

SI =
∫
d10x

1

λ2I l
8
I

R+
∫
dp+1x

1

λI l
p−3
I

F 2 , (4.1) LAB: SI

where the 1/λI factor in the gauge kinetic terms corresponds to the disk diagram.

Upon compactification in four dimensions, the Planck length and gauge couplings

are given to leading order by

1

l2P
=
V‖V⊥
λ2I l
8
I

,
1

g2
=
V‖
λI l
p−3
I

, (4.2) LAB: I

1In lower dimensions, type I′ theories can also describe a class of M-theory compactifications.
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where V‖ (V⊥) denotes the compactification volume longitudinal (transverse) to the
p-brane. From the second relation above, it follows that the requirement of weak

coupling λI < 1 implies that the size of the longitudinal space must be of order of

the string length (V‖ ∼ lp−3I ), while the transverse volume V⊥ remains unrestricted.
One thus has

M2P =
1

g4v‖
M2+nI Rn⊥ , λI = g

2v‖ , (4.3) LAB: treei

to be compared with the heterotic relations (2.2). Here, v‖ >∼ 1 is the longitudinal
volume in string units, and we assumed an isotropic transverse space of n = 9 − p
compact dimensions of radius R⊥.

4.1 Low-scale strings and extra-large transverse dimensions

From the relations (4.3), it follows that the type I/I′ string scale can be made hi-
erarchically smaller than the Planck mass at the expense of introducing extra large

transverse dimensions that interact only gravitationally, while keeping the string cou-

pling weak [14, 19]. The weakness of 4d gravity MI/MP is then attributed to the CIT: aadd,st

largeness of the transverse space R⊥/lI . An important property of these models is
that gravity becomes strong at the string scale, although the string coupling remains

weak. In fact, the first relation of eq.(4.3) can be understood as a consequence of

the (4 + n)-dimensional Gauss law for gravity, with

G
(4+n)
N = g4l2+nI v‖ (4.4) LAB: GN

the Newton’s constant in 4 + n dimensions.

To be more explicit, taking the type I string scale MI to be at 1 TeV, one finds a

size for the transverse dimensions R⊥ varying from 108 km, .1 mm (10−3 eV), down
to .1 fermi (10 MeV) for n = 1, 2, or 6 large dimensions, respectively. The case n = 1

corresponds to M-theory and is obviously experimentally excluded. On the other

hand, all other possibilities are consistent with observations, although barely in the

case n = 2 [20]. In particular, sub-millimeter transverse directions are compatible CIT: add2

with the present constraints from short-distance gravity measurements which tested

Newton’s law up to the cm [21]. The strongest bounds come from astrophysics and CIT: price

cosmology and concern mainly the case n = 2. In fact, graviton emission during

supernovae cooling restricts the 6d Planck scale to be larger than about 50 TeV,

implying MI >∼ 7 TeV, while the graviton decay contribution to the cosmic diffuse
gamma radiation gives even stronger bounds of about 110 TeV and 15 TeV for the

two scales, respectively.

If our brane world is supersymmetric, which protects the hierarchy in the usual

way, the string scale is an arbitrary parameter and can be at higher energies, in

principle up to the Planck scale. However, in the context of type I/I′ theory, the
string scale should not be higher than intermediate energies MI <∼ 1011 GeV, due to
the generic existence of other branes with non supersymmetric world volumes [22]. CIT: li
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Indeed, in this case, our world would feel the effects of supersymmetry breaking

through gravitationally suppressed interactions of order M2I /MP , that should be less

than a TeV. In this context, the value MI ∼ 1011 GeV could be favored, since it
would coincide with the scale of supersymmetry breaking in a hidden sector, without

need of non-perturbative effects such as gaugino condensation. Moreover, the gauge

hierarchy would be minimized, since one needs to introduce transverse dimensions

with size just two orders of magnitude larger than lI (in the case of n = 6) to account

for the ratio MI/MP ' 10−8, according to eq.(4.3). Note also that the weak scale
MW ∼M2I /MP becomes T-dual to the Planck scale.

4.2 Relation type I/I′ – heterotic

We will now show that the above type I/I′ models describe particular strongly coupled
heterotic vacua with large dimensions [24, 8]. More precisely, we will consider the CIT: aq,ap

heterotic string compactified on a 6d manifold with k large dimensions of radius

R� lH and 6−k string-size dimensions and show that for k ≥ 4 it has a perturbative
type I′ description [8]. CIT: ap

In ten dimensions, heterotic and type I theories are related by an S-duality:

λI =
1

λH
lI = λ

1/2
H lH , (4.5) LAB: het-I

which can be obtained for instance by comparing eqs.(2.2) with eqs.(4.2) in the case

of 9-branes (p = 9, V⊥ = 1, V‖ = V ). Using from eq.(2.2) that λH ∼ (R/lH)k/2, one
finds

λI ∼
(
R

lH

)−k/2
lI ∼

(
R

lH

)k/4
lH . (4.6)

It follows that the type I scale MI appears as a non-perturbative threshold in the

heterotic string at energies much lower than MH [17]. For k < 4, it appears at CIT: ckm

intermediate energies R−1 < MI < MH , for k = 4, it becomes of the order of
the compactification scale MI ∼ R−1, while for k > 4, it appears at low energies
MI < R

−1 [24]. Moreover, since λI � 1, one would naively think that weakly CIT: aq

coupled type I theory could describe the heterotic string with any number k ≥ 1 of
large dimensions. However, this is not true because there are always some dimensions

smaller than the type I size (6− k for k < 4 and 6 for k > 4) and one has to perform
T-dualities (1.4) in order to account for the multiplicity of light winding modes in the

closed string sector, as we discussed in section 1.1. Note that open strings have no

winding modes along longitudinal dimensions and no KK momenta along transverse

directions. The T-dualities have two effects: (i) they transform the corresponding

longitudinal directions to transverse ones by exchanging KK momenta with winding

modes, and (ii) they increase the string coupling according to eq.(1.4) and therefore

it is not clear that type I′ theory remains weakly coupled.
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Indeed for k < 4, after performing 6− k T-dualities on the heterotic size dimen-
sions, with respect to the type I scale, one obtains a type I′ theory with D(3 + k)-
branes but strong coupling:

lH → l̃H=
l2I
lH
∼
(
R

lH

)k/2
lH λI → λ̃I=λI

(
lI

lH

)6−k
∼
(
R

lH

)k(4−k)/4
�1 . (4.7) LAB: kl4

For k ≥ 4, we must perform T-dualities in all six internal directions.2 As a result,
the type I′ theory has D3-branes with 6− k transverse dimensions of radius l̃H given
in eq.(4.7) and k transverse dimensions of radius R̃ = l2I/R ∼ (R/lH)k/2−1, while its
coupling remains weak (of order unity):

λI → λ̃I = λI
(
lI

lH

)6−k (
lI

R

)k
∼ 1 . (4.8)

It follows that the type I′ theory with n extra-large transverse dimensions offers a
weakly coupled dual description for the heterotic string with k = 4, 5, 6 large dimen-

sions [8]. k = 4 is described by n = 2, k = 6 (for SO(32) gauge group) is described CIT: ap

by n = 6, while for n = 5 one finds a type I′ model with 5 large transverse dimensions
and one extra-large. The case k = 4 is particularly interesting: the heterotic string

with 4 large dimensions, say at a TeV, is described by a perturbative type I′ theory
with the string scale at the TeV and 2 transverse dimensions of millimeter size that

are T-dual to the 2 heterotic string size coordinates. This is depicted in the following

diagram, together with the case k = 6, where we use heterotic length units lH = 1:
LAB: scal04

H: k = 4

I′: n = 2
l - (4.9)

lH , R5,6

1

R1,2,3,4 = R

lI

R2

R̃5,6

LAB: scal06

H: k = 6

I′: n = 6
l - (4.10)

lH

1

R1,···,6 = R R3/2

lI

R2

R̃1,···,6

5. Type II theories

Upon compactification to 6 dimensions or lower, the heterotic string admits another

dual description in terms of type II (IIA or IIB) string theory [25, 2]. Since in CIT: ht,sao

10 dimensions type II theories have N = 2 supersymmetry,3 in contrast to the

heterotic string which has N = 1, the compactification manifolds on the two sides

2The case k = 4 can be treated in the same way, since there are 4 dimensions that have type I

string size and remain inert under T-duality.
3Type IIA (IIB) has two 10d supercharges of opposite (same) chirality.
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should be different, so that the resulting theories in lower dimensions have the same

number of supersymmetries. The first example arises in 6 dimensions, where the

E8 × E8 heterotic string compactified on the four-torus T 4 is S-dual to type IIA
compactified on the K3 manifold that has SU(2) holonomy and breaks half of the

supersymmetries. In lower dimensions, type IIA and type IIB are related by T-

duality (or mirror symmetry).

Here, for simplicity, we shall restrict ourselves to 4d compactifications of type

II on K3 × T 2, yielding N = 4 supersymmetry, or more generally on Calabi-Yau
manifolds that are K3 fibrations, yielding N = 2 supersymmetry. They are obtained

by replacing T 2 by a “base” two-sphere over which K3 varies, and they are dual to

corresponding heterotic compactifications on K3×T 2. More interesting phenomeno-
logical models with N = 1 supersymmetry can be obtained by a freely acting orbifold

on the two sides, although the most general N = 1 compactification would require

F-theory on Calabi-Yau fourfolds, which is poorly understood at present [26]. CIT: pm

In contrast to heterotic and type I strings, non-abelian gauge symmetries in

type II models arise non-perturbatively (even though at arbitrarily weak coupling)

in singular compactifications, where the massless gauge bosons are provided by D2-

branes in type IIA (D3-branes in IIB) wrapped around non-trivial vanishing 2-cycles

(3-cycles). The resulting gauge interactions are localized on K3 (similar to a Neveu-

Schwarz five-brane), while matter multiplets would arise from further singularities,

localized completely on the 6d internal space [27]. CIT: kv

5.1 Low-scale IIA strings and tiny coupling

In type IIA non-abelian gauge symmetries arise in six dimensions from D2-branes

wrapped around non-trivial vanishing 2-cycles of a singular K3.4 It follows that

gauge kinetic terms are independent of the string coupling λIIA and the corresponding

effective action is [2]: CIT: sao

SIIA =
∫
d10x

1

λ2IIAl
8
IIA

R+
∫
d6x

1

l2IIA
F 2 , (5.1) LAB: SIIA

which should be compared with (3.1) of heterotic and (4.1) of type I/I′. As a result,
upon compactification in four dimensions, for instance on a two-torus T 2, the gauge

couplings are determined by its size VT 2 , while the Planck mass is controlled by the

6d string coupling λ6IIA:

1

g2
=
VT 2

l2IIA

1

l2P
=

VT2
λ26IIAl

4
IIA

=
1

λ26IIA

1

g2l2IIA
. (5.2) LAB: IIA

4Note though that the abelian Cartan subgroup is already in the perturbative spectrum of the

Ramond-Ramond sector.
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The area of T 2 should therefore be of order l2IIA, while the string scale is expressed

by

MIIA = gλ6IIAMP = gλIIAMP
l2IIA√
VK3
, (5.3) LAB: IIA2

with VK3 the volume of K3. Thus, in contrast to the type I relation (4.3) where

only the volume of the internal six-manifold appears, we now have the freedom to

use both the string coupling and the K3 volume to separate the Planck mass from a

string scale, say, at 1 TeV [12, 8]. In particular, we can choose a string-size internal CIT: l,ap

manifold, and have an ultra-weak coupling λIIA = 10
−14 to account for the hierarchy

between the electroweak and the Planck scales [8]. As a result, despite the fact that CIT: ap

the string scale is so low, gravity remains weak up to the Planck scale and string

interactions are suppressed by the tiny string coupling, or equivalently by the 4d

Planck mass. Thus, there are no observable effects in particle accelerators, other

than the production of KK excitations along the two TeV dimensions of T 2 with

gauge interactions. Furthermore, the excitations of gauge multiplets have N = 4

supersymmetry, even when K3× T 2 is replaced by a Calabi-Yau threefold which is
a K3 fibration, while matter multiplets are localized on the base (replacing the T 2)

and have no KK excitations, as the twisted states of heterotic orbifolds.

Above, we discussed the simplest case of type II compactifications with string

scale at the TeV and all internal radii having the string size. In principle, one can

allow some of the K3 (transverse) directions to be large, keeping the string scale low.

From eq.(5.3), it follows that the string coupling λIIA increases making gravity strong

at distances lP
√
VK3/l

2
IIA larger than the Planck length. In particular, it becomes

strong at the string scale (TeV), when λIIA is of order unity. This corresponds to

VK3/l
4
IIA ∼ 1028, implying a fermi size for the four K3 compact dimensions.

5.2 Large dimensions in type IIB

Above we assumed that both directions of T 2 have the string size, so that its volume

is of order l2IIA, as implied by eq.(5.2). However, one could choose one direction much

bigger than the string scale and the other much smaller. For instance, in the case of

a rectangular torus of radii r and R, VT 2 = rR ∼ l2IIA with r � lIIA � R. This can
be treated by performing a T-duality (1.4) along R to type IIB: R → l2IIA/R and
λIIA → λIIB = λIIAlIIA/R with lIIA = lIIB. One thus obtains:

1

g2
=
r

R

1

l2P
=

VT2
λ26IIBl

4
IIB

=
R2

λ26IIB

1

g2l4IIB
. (5.4) LAB: IIB

which shows that the gauge couplings are now determined by the ratio of the two

radii, or in general by the shape of T 2, while the Planck mass is controlled by its size,

as well as by the 6d type IIB string coupling. The string scale can thus be expressed

as [8]: CIT: ap

11
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M2IIB = gλ6IIB
MP
R
. (5.5) LAB: IIB2

Comparing these relations with eqs.(5.2) and (5.3), it is clear that the situation

in type IIB is the same as in type IIA, unless the size of T 2 is much larger than

the string length, R � lIIB. Since T 2 is felt by gauge interactions, its size cannot
be larger than O(TeV−1) implying that the type IIB string scale should be much
larger than TeV. From eq.(5.5) and λ6IIB < 1, one finds MIIB <∼

√
MP/R, so that

the largest value for the string tension, when R ∼ 1TeV−1, is an intermediate scale
∼ 1011 GeV when the string coupling is of order unity.
As we will show below, this is precisely the case that describes the heterotic

string with one TeV dimension, which we discussed is section 2. It is the only

example of longitudinal dimensions larger than the string length in a weakly coupled

theory. In the energy range between the KK scale 1/R and the type IIB string scale,

one has an effective 6d theory without gravity at a non-trivial superconformal fixed

point described by a tensionless string [9, 10]. This is because in type IIB gauge CIT: w95,sei

symmetries still arise non-perturbatively from vanishing 2-cycles of K3, but take

the form of tensionless strings in 6 dimensions, given by D3-branes wrapped on the

vanishing cycles. Only after further compactification does this theory reduce to a

standard gauge theory, whose coupling involves the shape rather than the volume

of the two-torus, as described above. Since the type IIB coupling is of order unity,

gravity becomes strong at the type IIB string scale and the main experimental signals

at TeV energies are similar to those of type IIA models with tiny string coupling.

5.3 Relation type II – heterotic

We will now show that the above low-scale type II models describe some strongly

coupled heterotic vacua and, in particular, the cases with k = 1, 2, 3 large dimensions

that have not a perturbative description in terms of type I′ theory [8]. As we described CIT: ap

in the beginning of section 5, in 6 dimensions the heterotic E8 × E8 superstring
compactified on T 4 is S-dual to type IIA compactified on K3:

λ6IIA =
1

λ6H
lIIA = λ6H lH , (5.6) LAB: het-II

which can be obtained, for instance, by comparing eqs.(5.2) with (2.2), using λ6H =

λH l
2
H/
√
VT 4. However, in contrast to the case of heterotic – type I/I

′ duality, the
compactification manifolds on the two sides are not the same and a more detailed

analysis is needed to study the precise mapping of T 4 to K3, besides the general

relations (5.6).

This can be done easily in the context of M-theory compactified on the product

space of a line interval of length πRI with four circles of radii R1, · · ·, R4 [28, 8]: CIT: op,ap
S1/Z2(RI)× S1(R1)× T 3(R2, R3, R4). One can then interpret this compactification
in various ways by choosing appropriately one of the radii as that of the eleventh

12
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dimension. Considering for instance RI = R11, one finds the (strongly coupled)

heterotic string compactified on T 4(R1, · · · , R4), while choosing R1 = R11, one finds
type IIA compactified on K3 of “squashed” shape S1/Z2(RI)×T 3(R̃2, R̃3, R̃4), where
the 3 radii R̃i will be determined below. In each of the two cases, one can use the

duality relations (3.3) to obtain

RI = λH lH = λ6H
V
1/2
T 4

lH
R1 = λIIAlIIA = λ6IIA

V
1/2
K3

lIIA
, (5.7)

while using eqs.(5.6) one finds a mapping between the volume of the internal 4-

manifold of one theory and a preferred radius of the other, in corresponding string

units:
RI

lIIA
=
V
1/2
T 4

l2H

R1

lH
=
V
1/2
K3

lIIA
. (5.8) LAB: RV

The correspondence among the remaining 3 radii can be found, for instance, by

noticing that the S-duality transformations leave invariant the shape of T 3:

Ri

Rj
=
R̃i

R̃j
i, j = 2, 3, 4 , (5.9)

which yields R̃i = l
3
M/(RjRk) with i 6= j 6= k 6= i and l3M = λH l3H . This relation,

together with eq.(5.8), gives the precise mapping between T 4 and K3, which com-

pletes the S-duality transformations (5.6). We recall that on the type II side, the

four K3 directions corresponding to RI and R̃i are transverse to the 5-brane where

gauge interactions are localized.

Using the above results, one can now study the possible perturbative type II

descriptions of 4d heterotic compactifications on T 4(R1, · · · , R4) × T 2(R5, R6) with
a certain number k of large dimensions of common size R and string coupling

λH ∼ (R/lH)k/2 � 1. From eq.(5.6), the type II string tension appears as a non-
perturbative threshold at energies of the order of the T 2 compactification scale,

lII ∼
√
R5R6. Following the steps we used in the context of heterotic – type I dual-

ity, after T-dualizing the radii which are smaller than the string size, one can easily

show that the T 2 directions must be among the k large dimensions in order to obtain

a perturbative type II description.

It follows that for k = 1 with, say, R6 ∼ R � lH , the type II threshold appears
at an intermediate scale lII ∼

√
RlH , together with all 4 directions of K3, while the

second, heterotic size, direction of T 2 is T-dual (with respect to lII) to R: R̃5 ≡
l2II/lH ∼ R. Thus, one finds a type IIB description with two large longitudinal
dimensions along the T 2 and string coupling of order unity, which is the example

discussed in sections 2.2 and 5.2.
LAB: scal01

H: k = 1

IIB, λ∼1
l - (5.10)

lH , R1,···,4, R5

1

√
R

lIIB, K3

R6 = R

T 2(R̃5, R6)
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For k ≥ 2, the type II scale becomes of the order of the compactification scale,
lII ∼ R. For k = 2, all directions of K3× T 2 have the type II size, while the type II
string coupling is infinitesimally small, λII ∼ lH/R, which is the example discussed
in section 5.1.

LAB: scal02

H: k = 2

II,λ∼1/R
l - (5.11)

lH , R1,···,4

1

R5,6 = R

lII , K3, T
2(R5,6)

For k = 3, lII ∼ R5,6 ∼ R, while the four (transverse) directions of K3 are extra
large: RI ∼ R̃i ∼ R3/2/lH .

LAB: scal03

H: k = 3

II, λ∼1
l - (5.12)

lH , R2,3,4

1

R1 = R5,6 = R

lII , T
2(R5,6)

R3/2

K3

For k = 4, the type II dual theory provides a perturbative description alternative

to the type I′ with n = 2 extra large transverse dimensions. For k = 5, there is no
perturbative type II description, while for k = 6, the heterotic E8 × E8 theory is
described by a weakly coupled type IIA with all scales of order R apart one K3

direction (RI) which is extra large. This is equivalent to type I
′ with n = 1 extra

large transverse dimension. Note that this case was not found from heterotic SO(32)

– type I duality since the heterotic SO(32) string is equivalent to E8 × E8 only
up to T-duality, which cannot be performed when k = 6 and there are no leftover

dimensions of heterotic size. In table 1, we summarize the weakly coupled dual

descriptions of the heterotic string with large (TeV) dimensions, which also provide

all possible (perturbative) low-scale string realizations.

Theories ‖ TeV−1 dims ⊥ dims strong gravity string scale

type I/I′ 6− n n ≥ 2 (mm - fm) TeV TeV

type IIA 2 TeV−1 1019 GeV TeV

6− n 2 ≤ n ≤ 4 (mm - fm) TeV TeV

type IIB 2 1011 GeV 1011 GeV 1011 GeV

Table 1: Realizations of large dimensions and/or low string scale.
LAB: theories

6. Physics

6.1 Gauge hierarchy

In the context of TeV strings, the question of gauge hierarchy, i.e. of why the Planck

mass is much bigger than the weak scale, is translated into the question of why
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there are transverse dimensions much larger than the string scale, or why the string

coupling is infinitesimally small. From eq.(4.3) in type I/I′ strings, the required
hierarchy R⊥/lI varies from 1015 to 105, when the number of extra dimensions in the
bulk varies from n = 2 to n = 6, respectively, while in type II strings with no large

dimensions, the required value of the coupling λII is 10
−14.

Besides the hard dynamical question on the origin of the hierarchy, there is a

technical aspect, which consists of understanding its stability against possible large

quantum corrections. This is precisely the problem that supersymmetry solves, softly

broken at the TeV scale. In our context, this problem can be studied by examining

the limit of decompactification R⊥/lI → ∞, or of vanishing coupling λII → 0. As
we will see below, in general this limit does not exist, implying for instance that the

transverse space does not decouple in the decompactification limit [15]. The reason CIT: ab

is that the UV cutoff of the effective field theory on the brane is not always the

string scale but the winding scale R⊥M2I , dual to the large transverse dimensions,
which is much larger than the type I/I′ string tension [29]. This can happen when CIT: cb

the number of transverse dimensions is less or equal to two, or more generally when

there is effective propagation of gravity in one or two transverse dimensions.

The source of this divergence is the emission of (massless) closed string tadpoles

in the bulk, which can be attached to any physical amplitude involving open string

fields living on our world-brane. Thus, the potential divergence is a string infrared

effect but, from the point of view of the brane theory, it looks as a UV correction that

modifies its low-energy effective couplings. The contribution of these local tadpoles

T to the world-brane amplitudes can be estimated easily as follows [15]: CIT: ab

T ∼ 1

V⊥

∑
|p⊥|<Ms

1

p2⊥
F (~p⊥) , (6.1) LAB: tadpole

where V⊥ = R⊥d⊥ is the volume of the transverse space, ~p⊥ = (m1/R⊥· · · md⊥/R⊥)
is the transverse momentum carried away by the massless closed string, and the

sum is restricted to transverse distances l⊥ large compared to the string length l⊥ ∼
1/p⊥ � ls. F (~p⊥) are the local tadpoles, Fourier-transformed to momentum space,
arising from the distribution of the D-branes and the orientifolds that act as classical

point-like sources in the transverse space. Consistency of the theory requires the

global tadpole cancellation condition F (0) = 0, implying the vanishing of the total

charge (D-branes versus orientifolds) [1]. In the simplest toroidal compactification CIT: strings

(with vanishing antisymmetric tensor), this fixes the number of D-branes to 32 and

tadpoles take the generic form:

F (~p⊥) ∼

32 d⊥∏

i=1

1 + (−)mi
2

− 2
16∑
a=1

cos(~p⊥~xa)


 , (6.2)

where the orientifolds are located at the corners of the cell [0, πR⊥]d⊥ , and ±~xa are
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the transverse positions of the 32 D-branes, which correspond to Wilson lines of the

T-dual picture.

For generic positions of the D-branes, the tadpole contribution (6.1) has the

following behavior in the decompactification limit:

T ∼



O(R⊥) for d⊥ = 1
O(lnR⊥) for d⊥ = 2
O(1) for d⊥ > 2

, (6.3)

which is dictated by the large-distance behavior of the two-point function in the d⊥-
dimensional transverse space. It follows that when there is one dimension much larger

than the others (d⊥ = 1), there are in general large linear corrections yielding through
eq.(4.3) quadratic UV divergences regulated by the 4d Planck mass, R⊥ ∼M2P/M3I .
In general, one expects such large corrections to occur in particular in gauge kinetic

terms, that drive the theory rapidly to a strong coupling singularity and, thus, forbid

the size of the transverse space to become much larger than the string length. This is

precisely the phenomenon we studied in section 3, for the 11th dimension of M-theory

compactified on S1/Z2“× ”CY.
The conclusion is that the technical aspect of gauge hierarchy is solved without

the need of supersymmetry in the following two cases [15]. (i) In special models in CIT: ab

which tadpoles cancel locally in the transverse space. In the one-dimensional case

(d⊥ = 1), this happens when D-branes are equally distributed at the two fixed points
of the orientifold, generalizing the condition of symmetric embedding in M-theory

compactifications discussed in section 3. (ii) When d⊥ ≥ 2. The limiting case d⊥ = 2
is particularly attractive because it allows the effective couplings of the brane theory

to depend logarithmically on the size of the transverse space, or equivalently on

MP , exactly as in the case of softly broken supersymmetry. Moreover, similarly to

renormalizable quantum field theories, the logarithmic divergences can be absorbed

into a finite number of parameters, that correspond to the values of bulk fields at

the (transverse) position of our world-brane which determine all effective couplings

of the brane theory. In addition, the renormalization group resummation is replaced

by the classical equations of motion of the effective 2d supergravity in the transverse

space, with higher-derivative terms being ignored because the variations of fields are

logarithmic. As a result, the case of d⊥ = 2 leaves open the possibility of dynamically
determining the hierarchy, by minimizing an effective potential on our world-brane

that depends logarithmically on the size of transverse space [30]. This is again in CIT: gv

analogy to the inverse hierarchy idea in supersymmetric field theories.

It turns out that low-scale type II theories with infinitesimal string coupling share

many common properties with type I′ when d⊥ = 2 [8]. In fact, the limit of vanishing CIT: ap

coupling does not exist due to subtleties related to the singular character of the

compactification manifold and to the non perturbative origin of gauge symmetries.
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In general, there are corrections depending logarithmically on the string coupling,

similarly to the case of type I′ strings with 2 transverse dimensions.

6.2 Unification

One of the motivations for supersymmetry comes from the apparent unification of

gauge couplings discussed in section 2.1. It is then important to study this issue in the

context of the new framework of low-scale strings. One possibility is to use power-

law running that may accelerate unification in an energy region where the theory

becomes higher dimensional [31]. Within the effective field theory, the summation CIT: ddg

over the KK modes above the compactification scale and below some energy scale

E � R−1 yields:

1

g2a(E)
=

1

g2a(R
−1)
− b

SM
a

2π
ln(ER)− b

KK
a

2π

{
cd
[
(ER)d − 1

]
− ln(ER)

}
, (6.4) LAB: powerev

where cd = π
d/2/dΓ(1 + d/2) for d extra (longitudinal) dimensions. The first loga-

rithmic term corresponds to the usual 4d running controlled by the Standard Model

beta-functions bSMa , while the next term is the contribution of the KK tower domi-

nated by the power-like dependence (ER)d associated to the effective multiplicity of

KK modes and controlled by the corresponding beta-functions bKKa .

In supersymmetric theories, the KK excitations have at least N = 2 extended su-

persymmetry obtained by standard dimensional reduction of the higher-dimensional

theory. Assuming the MSSM particle content below the compactification scale, its

minimal N = 2 extension requires gauge boson excitations to form N = 2 vector mul-

tiplets, containing for every spin-1 a Dirac fermion and 2 real scalars, while higgs and

matter multiplets do not apriori need to have excitations if they belong to boundary

(twisted-like) states. It was observed however that if higgs excitations form, level

by level, one N = 2 hypermultiplet5 (containing 1 Dirac fermion and 4 scalars), the

unification of gauge couplings is approximately maintained for any value of R, but

it arises very rapidly above the compactification scale due to the power evolution

(6.4) [31]. For instance, when d = 1 and R−1 ' 1 TeV, the gauge couplings meet CIT: ddg

around 50 TeV within 2%, while the five-dimensional coupling ga(ER)
1/2 remains

perturbative. The main disadvantage of this approach is that the result is very sen-

sitive (power-like) to the initial conditions and thus to string threshold corrections,

in contrast to the usual unification based on logarithmic evolution.

This scenario requires obviously that the string scale is low and, therefore, should

be analyzed in the context of type I/I′ superstring theory. It turns out that in
supersymmetric vacua string loop corrections to gauge couplings diverge at most

quadratically with the radius, even if there are more than two large dimensions

5This is the case when for instance one higgs doublet comes from the bulk and the other from

the boundary.
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(d > 2). Moreover, in type I/I′ theory the quadratic terms are included in the tree-
level expression of the couplings, leaving only the possibility of linearly divergent

corrections when d = 1 [29, 32]. CIT: cb,abd

On the other hand, following the analysis of the previous subsection 7.1, there

is an alternative possibility to obtain large threshold corrections when the effective

transverse dimensionality of the bulk is d⊥ ≤ 2. In particular, when d⊥ = 2, there
are logarithmic corrections that could restore the “old” unification picture with a

GUT scale given by the winding scale, which for millimeter-size dimensions has the

correct order of magnitude [29, 15, 33]. In this way, the running due to the large CIT: cb,ab,admr

desert in energies is replaced by an effective running due to the “large desert” in

transverse distances from our world-brane. However, an explicit computation of

string threshold corrections in N = 1 orientifolds shows that both the linear and

logarithmic contributions are controlled by the corresponding N = 2 β-functions

and, thus, are model dependent [32]. CIT: abd

Indeed, the one-loop corrected gauge couplings in N = 1 orientifolds are given

by the following expression:

1

g2a(µ)
=
1

g2
+ sam+

ba

4π
ln
M2I
µ2
−

3∑
i=1

bN=2a,i

4π
{lnTi + f(Ui)} , (6.5) LAB: thresholds

where the first two terms in the r.h.s. correspond to the tree-level (disk) contribution

and the remaining ones are the one-loop (genus-1) corrections. Here, we assumed

that all gauge group factors correspond to the same type of D-branes, so that gauge

couplings are the same to lowest order (given by g). m denotes a combination of

the twisted moduli, whose VEVs blow-up the orbifold singularities and allow the

transition to smooth (Calabi-Yau) manifolds. However, in all known examples, these

VEVs are fixed to m = 0 from the vanishing of the D-terms of anomalous U(1)’s.

As expected, the one-loop corrections contain an infrared divergence, regulated

by the low-energy scale µ, that produces the usual 4d running controlled by the

N = 1 beta-functions ba. The last sum displays the string threshold corrections

that receive contributions only from N = 2 sectors, controlled by the corresponding

N = 2 beta-functions bN=2a,i . They depend on the geometric moduli Ti and Ui,

parameterizing the size and complex structure of the three internal compactification

planes. In the simplest case of a rectangular torus of radii R1 and R2, T = R1R2/l
2
I

and U = R1/R2. The function f(U) = ln (ReU |η(iU)|4) with η the Dedekind-eta
function; for large U , f(U) grows linearly with U . Thus, from expression (6.5), it

follows that when R1 ∼ R2, there are logarithmic corrections ∼ ln(R1/lI), while
when R1 > R2, the corrections grow linearly as R1/R2. Note that in both cases, the

corrections are proportional to the N = 2 β-functions. Obviously, unification based

on logarithmic evolution requires the two (transverse) radii to be much larger than

the string length, while power-low unification can happen either when there is one
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longitudinal dimension a bit larger than the string scale (R1/R2 ∼ R‖/lI keeping
λI < 1), or when one transverse direction is bigger than the rest of the bulk.

6.3 Supersymmetry breaking

Following the discussion of subsection 7.1, TeV scale strings offer a solution to the

technical (at least) aspect of gauge hierarchy without the need of supersymmetry,

provided there is no effective propagation of bulk fields in a single transverse dimen-

sion, or else closed string tadpoles should cancel locally. It is then natural to ask the

question whether there is any motivation leftover for supersymmetry or not. This

comes from the problem of the cosmological constant [14]. CIT: aadd

In fact, in a non-supersymmetric string theory, the bulk energy density behaves

generically as Λbulk ∼ M4+ns , where n is the number of transverse dimensions much

larger than the string length. In the type I/I′ context, this induces a cosmological
constant on our world-brane which is enhanced by the volume of the transverse

space V⊥ ∼ Rn⊥. When expressed in terms of the 4d parameters using the type I/I′
mass-relation (4.3), it is translated to a quadratically dependent contribution on the

Planck mass:

Λbrane ∼M4+nI Rn⊥ ∼M2IM2P , (6.6) LAB: lambda

where we used s = I. This contribution is in fact the analogue of the quadratic

divergent term StrM2 in softly broken supersymmetric theories, with MI playing

the role of the supersymmetry breaking scale.

The brane energy density (6.6) is far above the (low) string scale MI and in

general destabilizes the hierarchy that one tries to enforce. One way out is to resort

to special models with broken supersymmetry and vanishing or exponentially small

cosmological constant [34]. Alternatively, one could conceive a different scenario, CIT: ks

with supersymmetry broken primordially on our world-brane maximally, i.e. at the

string scale which is of order of a few TeV. In this case the brane cosmological con-

stant would be, by construction, O(M4I ), while the bulk would only be affected by
gravitationally suppressed radiative corrections and thus would be almost supersym-

metric [14, 35]. In particular, one would expect the gravitino and other soft masses CIT: aadd,ads

in the bulk to be extremely small O(M2I /MP ). In this case, the cosmological constant

induced in the bulk would be

Λbulk ∼M4I /Rn⊥ ∼M6+nI /M2P , (6.7) LAB: lambdasmall

i.e. of order (10 MeV)6 for n = 2 and MI ' 1 TeV. The scenario of brane super-
symmetry breaking is also required in models with a string scale at intermediate

energies ∼ 1011 GeV (or lower), discussed in section 4.1. It can occur for instance
on a brane distant from our world and is then mediated to us by gravitational (or

gauge) interactions.

Brane supersymmetry breaking
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In the absence of gravity, brane supersymmetry breaking can occur in a non-BPS

system of rotating or intersecting D-branes. Since brane rotations correspond to

turning on background magnetic fields, they can be easily generalized in the presence

of gravity, in the context of type I string theory [36]. The main problems of this CIT: ba

approach are the generic appearance of tadpoles, the presence of tachyons and the

lack of gaugino masses. Stable non-BPS configurations of intersecting branes have

been studied more recently [37], while their implementation in type I theory was CIT: sen

achieved only very recently [35]. CIT: ads

The simplest examples are based on orientifold projections of type IIB, in which

some of the orientifold 5-planes have opposite charge, requiring an open string sector

living on anti-D5 branes in order to cancel the RR (Ramond-Ramond) charge. As

a result, supersymmetry is broken on the intersection of D9 and anti-D5 branes

that coincides with the world volume of the latter. The simplest construction of

this type is a T 4/Z2 orientifold with a flip of the Ω-projection (world-sheet parity)

in the twisted orbifold sector. It turns out that several orientifold models, where

tadpole conditions do not admit naive supersymmetric solutions, can be defined by

introducing non-supersymmetric open sector containing anti-D-branes. A typical

example of this type is the ordinary Z2 × Z2 orientifold with discrete torsion.
The resulting models are chiral, anomaly-free, with vanishing RR tadpoles and

no tachyons in their spectrum [35]. Supersymmetry is broken at the string scale CIT: ads

on a collection of anti-D5 branes while, to lowest order, the closed string bulk and

the other branes are supersymmetric. In higher orders, supersymmetry breaking is

of course mediated to the remaining sectors, but is suppressed by the size of the

transverse space or by the distance from the brane where supersymmetry breaking

primarily occurred. The models contain in general uncancelled NS (Neveu-Schwarz)

tadpoles reflecting the existence of a tree-level potential for the NS moduli, which is

localized on the (non-supersymmetric) world volume of the anti-D5 branes.

As a result, this scenario implies the absence of supersymmetry on our world-

brane but its presence in the bulk, a millimeter away! The bulk supergravity is needed

to guarantee the stability of gauge hierarchy against large gravitational quantum

radiative corrections.

Low-scale type II models

Note that the above destabilization problem does not exist in low-scale type II vacua

with no large dimensions but infinitesimal string coupling, since in this case the (one-

loop) vacuum energy behaves as Λ ∼ M4II . On the other hand, in type IIB vacua
with two large (TeV−1) longitudinal dimensions and string scale at intermediate
energies, discussed in section 5.2, supersymmetry breaking could arise for instance

by Scherk-Schwarz compactification at a scale msusy ∼ R−1 ' M2IIB/MP [6, 3, 38]. CIT: kp,ia,ssopen
This is in line with the original motivation of large dimensions in the context of

the heterotic (dual) theory, discussed in section 2.2, and leads to a vacuum energy

20



JHEP 2.0 DRAFT (draft,published,notoc) TMR˙JHEP, January 25, 2000, 16:16

that behaves as Λ ∼ 1/R4, up to logarithmic corrections [3, 39]. This behavior is CIT: ia,iadd

due to the extreme softness of the mechanism of supersymmetry breaking realized

through a change of boundary conditions, similarly to the effects of finite temperature

upon the identification T ≡ R−1. Indeed, the summation over the KK excitations
amounts to inserting the Boltzmann factors e−E/T to all thermodynamic quantities
–or equivalently to the soft breaking terms– that suppresses exponentially their UV

behavior.

The extreme softness of supersymmetry breaking by compactification implies

a particular spectroscopy of superparticles that differs drastically from other sce-

narios [3, 40]. In the simplest case, supersymmetry breaking generates a universal CIT: ia,adpq

tree-level mass for gaugini, while scalar masses vanish to lowest order. Moreover,

the latter are insensitive to the UV cutoff at one loop, and thus squarks and leptons

are naturally an order of magnitude lighter than gaugini. On the other hand, if the

Higgs scalar lives in the bulk of the extra (TeV) dimension(s), a heavy higgsino mass

is automatically generated and there is no µ-problem. These models offer also the

possibility of determining the hierarchy by minimizing the effective potential which

acquires at higher loops logarithmic corrections in R.
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