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Abstract: We present a class of static supersymmetric multi-center black hole solutions arising in

four-dimensional N = 2 supergravity theories with terms quadratic in the Weyl tensor. We also

comment on possible corrections to the metric on the moduli space of these black holes solutions.

1. Introduction

In this note we briefly describe a class of extremal

static multi-center black hole solutions arising

in four-dimensional N = 2 supergravity theories

with terms quadratic in the Weyl tensor. These

configurations preserve N = 1 supersymmetry.

They are determined in terms of harmonic func-

tions associated with the electric and magnetic

charges carried by the black holes. We refer to

an upcoming publication [1] for a detailed de-

scription of the construction of these solutions.

2. Supersymmetry transformation

rules

The N = 2 supergravity theories that we con-

sider are based on vector multiplets and hyper-

multiplets coupled to the supergravity fields and

contain the standard Einstein-Hilbert action as

well as terms quadratic in the Riemann tensor.

To describe such theories in a transparent way we

make use of the superconformal multiplet calcu-

lus [2], which incorporates the gauge symmetries

of the N = 2 superconformal algebra. The corre-

sponding high degree of symmetry allows for the

use of relatively small field representations. One

is the Weyl multiplet, whose fields comprise the
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gauge fields corresponding to the superconfor-

mal symmetries and a few auxiliary fields. The

other are abelian vector multiplets and hyper-

multiplets, as well as a general chiral supermulti-

plet. The latter will be treated as independent in

initial stages of the analysis but at the end will be

expressed in terms of the fields of the Weyl multi-

plet. Some of the additional (matter) multiplets

will provide compensating fields which are neces-

sary in order that the superconformal action be-

comes gauge equivalent to a Poincaré supergravi-

ty theory. The compensating fields bridge the

deficit in degrees of freedom between the Weyl

multiplet and the Poincaré supergravity multi-

plet. For instance, the graviphoton, represented

by an abelian vector field in the Poincaré super-

gravity multiplet, is provided by an N = 2 su-

perconformal vector multiplet.

It is possible to analyze the conditions for

residual N = 1 supersymmetry directly in this

superconformal setting, postponing a transition

to Poincaré supergravity till the end. This im-

plies in particular that our intermediate results

are subject to local scale transformations. Only

towards the end we will convert to expressions

that are scale invariant. We will use this strate-

gy in the following in order to construct black

hole solutions with residual N = 1 supersymme-

try. This is exactly the same strategy we em-

ployed when we determined N = 2 supersymme-
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tric backgrounds in the presence of R2-interac-

tions [3].

The superconformal algebra contains general-

coordinate, local Lorentz, dilatation, special con-

formal, chiral SU(2) and U(1), supersymmetry

(Q) and special supersymmetry (S) transforma-

tions. The gauge fields associated with general-

coordinate transformations (eaµ), dilatations (bµ),

chiral symmetry (V iµ j , Aµ) and Q-supersymme-
try (ψiµ), are realized by independent fields. The

remaining gauge fields of Lorentz (ωabµ ), special

conformal (faµ) and S-supersymmetry transfor-

mations (φiµ) are dependent fields. They are com-

posite objects, which depend in a complicated

way on the independent fields [2]. The corre-

sponding curvatures and covariant fields are con-

tained in a tensor chiral multiplet, which com-

prises 24+ 24 off-shell degrees of freedom; in ad-

dition to the independent superconformal gauge

fields it contains three auxiliary fields: a Majo-

rana spinor doublet χi, a scalar D and a self-

dual Lorentz tensor Tabij (where i, j, . . . are chi-

ral SU(2) spinor indices). We summarize the

transformation rules for some of the indepen-

dent fields of the Weyl multiplet under Q- and

S-supersymmetry and under special conformal

transformations, with parameters εi, ηi and ΛaK,

respectively,

δeµ
a = ε̄iγaψµi + h.c. ,

δψiµ = 2Dµεi − 18T ab ijγab γµεj − γµηi ,
δbµ =

1
2 ε̄
iφµi − 34 ε̄iγµχi − 12 η̄iψµi + h.c.

+ΛaK e
a
µ , (2.1)

δAµ =
1
2 iε̄
iφµi +

3
4 iε̄
iγµχi +

1
2 iη̄
iψµi + h.c. ,

δT ijab = 8ε̄
[iR(Q)

j]
ab ,

δχi = − 112γabD/T ab ijεj + 16R(V)abij γabεj
− 13 iR(A)abγabεi +D εi + 1

12T
ij
abγ

abηj ,

where Dµ are derivatives covariant with respect
to Lorentz, dilatational, U(1) and SU(2) trans-

formations, whereas Dµ are derivatives covari-

ant with respect to all superconformal transfor-

mations. The quantities R(Q)iµν , R(A)µν and

R(V)µνij are supercovariant curvatures related
to Q-supersymmetry, U(1) and SU(2) transfor-

mations. We suppress terms of higher order in

the fermions throughout this paper, as we will

be dealing with a bosonic background.

Let us now turn to the abelian vector mul-

tiplets, labelled by an index I = 0, 1, . . . , n. For

each value of the index I, there are 8 + 8 off-

shell degrees of freedom, residing in a complex

scalar XI , a doublet of chiral fermions Ω Ii , a vec-

tor gauge field W I
µ , and a real SU(2) triplet of

scalars Y Iij . Under Q- and S-supersymmetry the

fields XI and Ω Ii transform as follows:

δXI = ε̄iΩ Ii ,

δΩ Ii = 2D/X
Iεi +

1
2εij(F

−I
µν − 14εklT klµνX̄I)γµνεj

+Y Iij ε
j + 2XIηi , (2.2)

where the quantity F−Iµν denotes the anti-selfdual
part of the abelian field strength F Iµν = 2∂[µW

I
ν].

The covariant quantities of the vector mul-

tiplet constitute a reduced chiral multiplet. A

general chiral multiplet comprises 16+16 off-shell

degrees of freedom and carries an arbitrary Weyl

weight w (corresponding to the Weyl weight of its

lowest component). The covariant quantities of

the Weyl multiplet also constitute a reduced chi-

ral multiplet, denoted by W abij , whose lowest-θ

component is the tensor T abij. From this mul-

tiplet one may form a scalar (unreduced) chiral

multiplet W 2 = [W abij εij ]
2 which has Weyl and

chiral weights w = 2 and c = −2, respectively
[4].

In the following, we will also allow for the

presence of an arbitrary chiral background super-

field [5], whose component fields will be indicated

with a caret. We denote its bosonic component

fields by Â, B̂ij , F̂
−
ab and by Ĉ. Here Â and Ĉ

denote complex scalar fields, appearing at the θ0-

and θ4-level of the chiral background superfield,

respectively, while the symmetric complex SU(2)

tensor B̂ij and the anti-selfdual Lorentz tensor

F̂−ab reside at the θ
2-level. The fermion fields at

level θ and θ3 are denoted by Ψ̂i and Λ̂i. Under

Q- and S-supersymmetry Â and Ψi transform as

δÂ = ε̄iΨ̂i ,

δΨ̂i = 2D/ Âεi +
1
2εijF̂abγ

abεj + B̂ijε
j

+2wÂηi , (2.3)

where w denotes the Weyl weight of the back-

ground superfield. Eventually this multiplet will

be identified with W 2 in order to generate the

R2-terms in the action. This identification im-

plies the following relations [4], which we will

2
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need in due time,

Â = (εij T
ij
ab)
2 ,

Ψ̂i = 16 εijR(Q)
j
ab T

klab εkl ,

B̂ij = −16 εk(iR(V)kj)ab T lmab εlm
−64 εikεjlR̄(Q)kabR(Q)l ab ,

F̂−ab = −16R(M)cdab T klcd εkl
−16 εij R̄(Q)icdγabR(Q)j cd ,

Λ̂i = 32 εij γabR(Q)
j
cdR(M)cdab

+16 (R(S)ab i + 3γ[aDb]χi)T klab εkl
−64R(V)abki εkl R(Q)lab ,

Ĉ = 64R(M)−cdabR(M)−cdab
+32R(V)−abkl R(V)−ablk
−32T ij abDaDcTcb ij
+128 R̄(S)abi R(Q)iab

+384 R̄(Q)ab iγaDbχi . (2.4)

We refer to [1] for a precise definition of the var-

ious curvature tensors. The derivatives Da are

superconformally covariant.

In the presence of a chiral background su-

perfield, the coupling of the abelian vector mul-

tiplets to the Weyl multiplet is encoded in a func-

tion F (XI , Â), which is holomorphic and homoge-

nous of degree two,

XI FI + wÂFÂ = 2F ,

FI = ∂XIF , FÂ = ∂ÂF . (2.5)

The field equations of the vector multiplets are

subject to equivalence transformations correspon-

ding to electric-magnetic duality, which will not

involve the fields of the Weyl multiplet and of the

chiral background. As is well-known, two com-

plex (2n + 2)-component vectors can be defined

which transform linearly under the SP(2n+2;R)

duality group, namely

(
XI

FI(X, Â)

)
and

(
F+Iµν

G+µν I

)
. (2.6)

The first vector has weights w = 1 and c = −1,
whereas the second one has zero Weyl and chiral

weights. The field strengths G±µν I are defined as
follows:

G+µνI = F̄IJ F
+J
µν +O+µνI ,

G−µνI = FIJF
−J
µν +O−µνI , (2.7)

where

O+µνI = 1
4 (FI − F̄IJXJ)Tµνijεij + F̂+µν F̄IÂ .

(2.8)

They appear in the field equations of the vec-

tor fields. Eventually we will solve the Bianchi

identities, Dµ(F− − F+)Iµν = 0, and the field

equations, Dµ(G− −G+)Iµν = 0, for a given con-
figuration of magnetic and electric charges in a

static spacetime geometry with the chiral back-

ground turned on. These charges, which will be

denoted by (pI , qI), comprise a symplectic vec-

tor.

Next, let us introduce a particular spinor

that transforms inhomogenously under S-super-

symmetry transformations. This spinor is given

by

ζVi ≡ −
(
ΩIi

∂

∂XI
+ Ψ̂i

∂

∂Â

)
K (2.9)

= −i eK
[
(F̄I − X̄JFIJ )ΩIi − X̄IFIÂ Ψ̂i

]
,

where we introduced the symplectically covariant

factor (with w = 2 and c = 0),

e−K = i
[
X̄I FI(X, Â)− F̄I(X̄, ¯̂A)XI

]
, (2.10)

which resembles (but is not equal to) the Kähler

potential in special geometry. It can be shown,

using the results contained in [5], that ζVi trans-

forms covariantly under symplectic reparametri-

zations. UnderQ- and S-supersymmetry ζVi trans-

forms as (ignoring higher-order fermionic terms)

δζVi = e
KD/ e−Kεi + 2iA/ εi − 12 iεij F−µν γµνεj

+eK
[
(F̄I − X̄J F̄IJ )N IKFKA B̂ij

−(F̄I − X̄JFIJ )N IK F̄KA εikεjlB̂kl
]
εj

+2 ηi , (2.11)

where

Aµ = 1
2 e
K
(
X̄J

↔
Dµ FJ − F̄J

↔
Dµ XJ

)
,

F−µν = eK
(
F̄I F

−I
µν − X̄I G−µν I

)
. (2.12)

In arriving at (2.11) we have used the field equa-

tions for the auxiliary fields Y Iij [5], which is ne-

cessary for δζVi to take a symplectically covariant

form.
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We note that δζVi is not the only spinor that

can be constructed which transform inhomoge-

nously under S-supersymmetry transformations.

Another such spinor, which we denote by ζHi , is

constructed out of the hypermultiplet fermions

[1]. It transforms as follows under Q- and S-

supersymmetry,

δζHi =
1
2χ
−1D/χ εij εj + k/ ij εj + εij ηj , (2.13)

where χ denotes the hyper-Kähler potential and

where kµij denotes a quantity that is symmetric

in i, j [1] , but whose explicit form is not impor-

tant here.

Since the ζi transform inhomogenously under

S-supersymmetry, they can act as compensators

for this symmetry. This observation is relevant

when constructing supersymmetric backgrounds,

where one requires (some of) the Q-supersymme-

try variations of the spinors (as well as of deriva-

tives of the spinors) to vanish modulo a uni-

form S-transformation. This can conveniently

be done by considering S-invariant spinors, con-

structed by employing ζi. Relevant examples of

such spinors are, for instance, ΩIi − XIζVi and

Ψ̂i − wÂ ζVi .

3. The ansatz

We seek to construct static multi-center black

hole solutions with N = 1 residual supersym-

metry. For the line element we make the ansatz

ds2 = −e2g(~x)dt2 + e2f(~x)d~x2 . (3.1)

We impose the following restriction on the Q-

supersymmetry transformation parameter εi,

εi = h εij γ0 ε
j , (3.2)

where h(~x) denotes a phase factor of chiral weight

c = 1. The condition (3.2) is covariant with re-

spect to SU(2) and spatial rotations. The multi-

center solutions that we wish to construct have

the feature that, when the centers are made to

coincide, they lead to one-center solutions that

are invariant with respect to SU(2) and spatial

rotations. The latter satisfy condition (3.2).

In addition to (3.2), we impose that Aµ = 0
as well as F−µν = 0.

We denote the magnetic and electric charges

associated to each center by (pIA, qAI). In the

geometry (3.1) the Bianchi identities and field

equations for the vector fields are solved by

F−Iti − F+Iti = −i eg−f∂iHI ,

G−tiI −G+tiI = −i eg−f∂iHI , (3.3)

whereHI andHI denote harmonic functions given

by

HI =
∑
A

(
hIA +

pIA
|~x− ~xA|

)
,

HI =
∑
A

(
hAI +

qAI

|~x− ~xA|
)
. (3.4)

Here hIA and hAI denote integration constants.

We now identify Â with (εijT
abij)2 so that we are

dealing with black hole solutions in the presence

of R2-interactions.

4. Static multi-center solutions

It will be convenient [3] to use rescaled variables

Y I = eK/2Σ̄XI and Υ = eKΣ̄2Â. Here Σ̄ is taken
to have weights c = 1 and w = 0 so that Y I and

Υ have vanishing chiral and Weyl weights. Then,

from (2.10) and from (2.12), we obtain

|Σ|2 = i
[
Ȳ I FI(Y,Υ)− F̄I(Ȳ , Ῡ)Y I

]
,

Aµ =
i
2∂µ log

Σ
Σ̄
−AYµ , (4.1)

AYµ = 1
2
1
|Σ|2
(
Ȳ J

↔
∂ µ FJ − F̄J

↔
∂ µ Y

J
)
.

Using (3.1), we find [1] that the vanishing of the

Q-supersymmetry variation (subject to (3.2)) of

the various S-invariant spinors yields a number of

restrictions on the N = 1 background, as follows.

In a Poincaré frame (where bµ = 0 and K =
const.) we find that

e−2g = e2f = eK|Σ|2 ,

eK/2Σ̄T−ti = 4 ∂if , Υ = −64(∂if)2 ,

F Iti = −∂i
[
e−2f(Y I + Ȳ I)

]
,

AYµ = 0 . (4.2)

The symplectic vector (Y I , FI(Y,Υ)) is deter-

mined in terms of the symplectic vector (HI , HI)
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as follows:

∂i

(
Y I − Ȳ I

FI(Y,Υ)− F̄I(Ȳ , Ῡ)
)
= i ∂i

(
HI

HI

)
.

(4.3)

Thus, we see that as one approaches the indivi-

dual centers (|~x − ~xA| → 0) the scalar fields Y I
are entirely determined in terms of the charges

associated to these individual centers. This be-

haviour, namely that the values of the Y I near

the centers are independent of the constants hIA
and hAI which determine the values of the Y

I

far away from the centers, is the same that has

been observed without R2-interactions [6].

In addition, we find that h = Σ̄/|Σ|, whereas
the field D is determined to be D = − 13R. The
SU(2) curvature R(V)µν i j , and hence B̂ij , van-
ishes. Since AYµ = 0, also the U(1) curvature
R(A)µν vanishes.

The solution given above describes a static

multi-center black hole with residual N = 1 su-

persymmetry in the presence of R2-interactions.

It approaches flat Minkowski spacetime at spatial

infinity. Setting eK|Σ|2∞ = 1 expresses its ADM
mass as MADM = e

K∑
A(p

I
AFI(Y∞)− qAIY I∞).

In the case of one center, the solution in-

terpolates between two N = 2 supersymmet-

ric vacua [7]: flat spacetime at spatial infinity

and Bertotti-Robinson spacetime at the horizon.

When switching off R2-interactions this solution

agrees with the one constructed in [8]. Its macro-

scopic entropy is given by [3]

S = πr2
[
|Σ|2 + 4 Im

(
ΥFΥ(Y,Υ)

)]∣∣∣
r=0

. (4.4)

5. Outlook

The static multi-center solution (4.2) can now be

used as the starting point for computing the me-

tric on the moduli space of four-dimensional BPS

black holes in the presence of R2-interactions. In

the absence of R2-interactions, it was found [9,

10] that the moduli metric of electrically charged

BPS black holes is determined in terms of a mod-

uli potential µ given by µ =
∫
d3x e4f . It was fur-

thermore established [9, 10] that for small black

hole separations the associated one-dimensional

Lagrangian describing the slow-motion of these

BPS black holes exhibits an enhanced supercon-

formal symmetry. It was suggested [9] that it

should be possible to reproduce the macroscopic

entropy of BPS black holes by performing a state

counting in this superconformal quantum mecha-

nics model. This would imply that the degene-

racy of states of such a model is encoded in the

moduli potential µ. In view of the formula (4.4)

for the macroscopic entropy one thus expects that

µ will receive corrections steming from R2-inter-

actions. This is indeed likely to be the case, since

the one-dimensional Lagrangian describing the

slow-motion of the black holes will now be de-

rived from a four-dimensional action containing

R2-interactions. Schematically, since the four-

dimensional Einstein-Maxwell action gives rise

to a moduli potential µ =
∫
d3x e4f , the term

ImFÂR |T |2, which appears in the four-dimen-
sional Lagrangian with R2-interactions, suggests

a correction to the moduli potential of the form∫
d3x e2f Im(ΥFΥ). In view of (4.4), this suggests

that in the presence of R2-terms the moduli po-

tential µ will be given by µ =
∫
d3x e2f [e2f +

4 Im(ΥFΥ(Y,Υ))]. This feature is currently un-

der investigation [11].
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