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1. Introduction

Over two years have passed since the proposal of

Maldacena [1] of a correspondence between su-

pergravity and string theories on Anti de Sitter

(AdS) spaces and conformal field theories (CFT)

on their boundary, in large N limits. During

this period, this conjectured relation has been

expressed more precisely [2, 3], it has been in-

vestigated under many aspects, partially verified

in various cases and also extended in different

directions [4].

One of the tests which has been carried out

in great depth, giving also some unexpected new

results, is the matching of the spectra of confor-

mal operators on the CFT side with the Kaluza–

Klein (KK) excitations in the compactified su-

pergravity. The AdS/CFT correspondence in-

deed predicts a fixed relation between scaling

dimensions and KK mass modes, which can be

tested in many examples. This matching was

first proposed and used in [3], where it was called

the “comparison to experiment” of the AdS/CFT

conjecture. In a first stage, it had been per-

formed only for the maximal supersymmetric cases

(i.e. compactifications on spheres) and for the

lower supersymmetric models deriving from orb-
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ifold compactifications [4].

Our group has extensively focused on the

generalization of the spectra matching test to

lower supersymmetric models obtained by super-

gravity compactifications on the product of AdS

space with various Einstein manifolds [5, 6, 7].

Due to the presence of extra global symmetries

inherited from the isometries of the internal man-

ifold, beside theR-symmetries, these models have

a far richer structure and thus yield much more

probing proofs of the AdS/CFT conjecture. In

spite of the greater technical complexity of lower

(super)symmetric cases, we have chosen to en-

gage in their thorough study because we had at

our disposal quite powerful tools for supergrav-

ity analysis, such as harmonic expansion on coset

manifolds, that were developed in the old days

in the context of KK reduction of supergravity

models [8]. We would like to collect here our

main results and provide a brief resumé of the

lessons we have learned by exploring this sub-

ject.

2. A test of the correspondence

In the investigation of supergravity theories with

lower supersymmetry given by compactifications

on coset manifolds, one encounters a very inter-

esting and elaborate multiplet structure which

makes possible some non–trivial checks in the
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correspondence with the spectra of conformal op-

erators of the boundary field theory. In fact, dif-

ferently from the spheres, where all KK modes

belong to short representations of supersymme-

try and thus have mass values that are protected

against quantum corrections, for less symmetric

cosets one also finds long and semilong represen-

tations, that in principle do not have any protec-

tion mechanism to prevent them from running

with the couplings. It is thus quite remarkable

that one can nevertheless establish a full map

between each kind of KK multiplet and appro-

priate families of conformal operators and their

descendants.

We have essentially explored two directions:

the correspondenceAdS5/CFT4 andAdS4/CFT3.

The AdS5/CFT4 case is more directly rele-

vant from a physical point of view, since it in-

volves four dimensional gauge theories, but also

the AdS4/CFT3 one offers some intriguing chal-

lenges which could give us more insight in the

formulation of the conjecture.

For spontaneous compactifications of type IIB

supergravity on a five dimensional coset man-

ifold, there is only one space preserving some

supersymmetry[9]:

T 11 ≡ SU(2)× SU(2)
U(1)

where the U(1) factor is embedded diagonally in

the two SU(2). We have determined the full KK

spectrum on this manifold [10] (extending some

previous partial results [11, 12]) and then tested

the AdS/CFT map [5], by matching it against

the spectrum of primary conformal operators of

the dual CFT constructed in [13]. In this ex-

ample we have not only shown that the duality

works, but we have also some new hints on the

CFT behaviour.

The extension of such study to M–theory

compactifications on seven–manifolds is much more

complicated. It is indeed known that three di-

mensional CFT’s are difficult to analyze because

they emerge in non–perturbative limits of con-

ventional gauge field theories. Moreover, if for

type IIB on T 11 we had a well defined CFT to be

used towards the comparison, for the M–theory

compactifications a well established CFT was not

available. Thus we have used the correspondence,

at first to guess these CFT’s, and then to verify

by matching the spectra whether they were well–

defined.

M–theory allows a variety of supersymmet-

ric compactifications down to four dimensions.

The N = 2 examples can be divided into two
categories [14]: toric ones

M111 ≡ SU(3)× SU(2)× U(1)
SU(2)× U(1)× U(1) and

Q111 ≡ SU(2)× SU(2)× SU(2)
U(1)× U(1)

and non–toric ones

V(5,2) ≡ SO(5)
SO(3)

.

While for the first, toric geometry helps in the

definition of the CFT [6], in the non–toric case

one has to deal with even harder difficulties [15].

Summing up, in this analysis we have met

three main features which are worth describing in

some detail: i) the agreement between the CFT

expectations and the supergravity results, ii) the

existence of long multiplets with rational energy

quantum numbers predicted by supergravity, and

iii) the identification of the baryonic symmetries

as those deriving from the well known presence

of Betti multiplets [16] in the compactified su-

pergravity.

3. Matching the spectra

The AdS/CFT correspondence can be used in

two ways: either to control the validity of the

CFT by predicting properties of the supergravity,

such as the mass spectrum, or to obtain informa-

tion from tree level calculations in supergravity

on the strong coupling CFT behaviour.

Not only the fixed relation required by the

AdS/CFT map between the anomalous dimen-

sion of the various boundary conformal fields and

the masses of the bulk KK modes holds for lower

supersymmetry as for the highest symmetric cases

[5, 6, 15], but there exists a full correspondence

between all the KK modes and the conformal op-

erators of preserved scaling dimension.

In order to give a taste of how this works, we

turn to the simplest non–trivial example, that is

type IIB compactification on AdS5 × T 11.
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The dual four–dimensional CFT was given

in [13] as an N = 1 Yang–Mills theory with a fla-
vor symmetry G = SU(2)×SU(2). It should de-
scribe the physics of a large number (N) of D3–

branes placed at the singular point of the cone

over the T 11 manifold in the decoupling limit.

The “singleton” degrees of freedom of the

CFT, called A and B, are each a doublet of the

G factor groups and have a conformal anoma-

lous dimension ∆A,B = 3/4. The gauge group G
is SU(N)×SU(N) and the A and B chiral mul-
tiplets transform in the (N,N) and (N,N) of G
respectively. The gauge potentials lie in the ad-

joint of one of the two SU(N) groups, and their

field–strength in superfield notation is given by

Wα. They are singlet of the matter groups, with

R–symmetry charge r = 1 and ∆ = 3/2.

There is also a superpotential given by [13]

W = λεijεkl Tr(AiBkAjBl), (3.1)

which has ∆ = 3, r = 2. It plays an important

role in the discussion in that it determines to

some extent both the chiral spectrum and the

marginal deformations of the SCFT.

Knowing the fundamental degrees of freedom

of the conformal field theory, one could try to

write the conformal operators by simply com-

bining the above fields into all possible products

while respecting the symmetries of the theory.

The first operators one can build in this way

are the chiral operators

Tr(AB)k (3.2)

which are those with the lowest possible dimen-

sion for a given R–charge (they have indeed ∆ =
3
2r =

3
2k). We notice that in the (3.2) opera-

tors we can freely permute all the A’s and B’s

by using the equations for a critical point of the

superpotential

B1 Ak B2 = B2 Ak B1 , A1 Bl A2 = A2 Bl A1 .

(3.3)

Next to these, one could also have an op-

erator given by Tr[Wα(AB)
k] or Tr[W 2(AB)k],

and so on. But which are the operators with

protected dimension? This is a crucial question,

since only the protected operators find a match-

ing state among the KK fields, while those that

suffer from quantum corrections are to be found

within the full string theory.

It is a well–established result that operators

with protected conformal dimension correspond

to the short representations of the supergroup

which they belong to.

For T 11, this supergroup is SU(2, 2|1) , while
for the previously mentioned M–theory cases it

is OSp(4|2). More generally, for N supersymme-
tries the four dimensional case involves SU(2, 2|N )
whose shortening conditions in terms of super-

fields have been explained in [17], while the generic

three–dimensional case involvesOSp(4|N ) whose
shortenings have been recently discussed in [18].

In the T 11 example (α, α̇ are spinor indices.

x,θ and θ̄ are the bosonic and fermionic coordi-

nates) we have only three types of such operators,

namely the chiral

D̄α̇Sα1...α2J = 0, (3.4)

conserved

D̄α̇1Jα1...α2J1 ,α̇1...α̇2J2 = 0 (3.5)

and Dα1Jα1...α2J1 ,α̇1...α̇2J2 = 0 (3.6)

and semi–conserved superfields

D̄α̇1Lα1...α2J1 ,α̇1...α̇2J2 (x, θ, θ̄) = 0, (3.7)

(D̄2Lα1...α2J1 = 0 forJ2 = 0).

These differential constraints imply that these

fields satisfy certain specific restrictions on their

quantum numbers. As a consequence, their anoma-

lous dimension is fixed in terms of their spin and

R–symmetry charge. These constraints are re-

spectively:

r =
2

3
∆, (3.8)

for chiral ones,

r =
2

3
(∆− 2− 2J2) (3.9)

for semiconserved ones and

r =
2

3
(J1 − J2),

∆ = 2 + J1 + J2,
(3.10)

for conserved ones.

It is easy to relate operators of different type

by superfield multiplication. The product of a

3
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chiral (J1, 0) and an anti–chiral (0, J2) primary

gives a generic superfield with (J1, J2), ∆ = ∆
c+

∆a and r = 2
3 (∆

c −∆a). By multiplying a con-
served current superfield Jα1...α2J1 ,α̇1...α̇2J2 by a

chiral scalar superfield one gets a semi–conserved

superfield with ∆ = ∆c + 2 + J1 + J2 and r =
2
3 (∆− 2− 2J2).
These are the basic rules to construct opera-

tors with protected dimensions beside the chiral

ones, and they also apply in superconformal field

theories of lower or higher dimensions.

Since the anomalous dimensions of the pro-

tected operator is fixed in terms of their spin and

R–symmetry, it must be given by a rational num-

ber. This condition severely restricts the search

for the corresponding supergravity states, as it

imposes strong constraints on the allowed masses

and matter group quantum numbers.

We find in our analysis that the requirement

for the anomalous dimensions to be rational im-

plies that one must look for dual states also hav-

ing rational masses .

The virtue of KK harmonic analysis on a

coset space hinges on the possibility of reducing

the computation of the mass eigenvalues of the

various kinetic differential operators to a com-

pletely algebraic problem, while it allows to elim-

inate completely any explicit dependence on the

coordinates of the internal manifold. Harmon-

ics are uniquely identified by G quantum num-

bers, and they are acted upon by derivatives that

are reduced to algebraic operators. Such elegant

technique can be quite cumbersome for compli-

cated cosets [6, 15], but it is quite straightfor-

ward for the simple T 11 manifold, where it leads

beyond the computation of the scalar laplacian

eigenvalues [11], or of specific sectors of the mass

spectrum [12].

By diagonalizing different operators for fields

of various spin, we have found that all the masses

have a fixed dependence on the scalar laplacean

eigenvalue

H0(j, l, r) = 6[j(j+1)+ l(l+1)− 1/8r2] (3.11)

where (j, l, r) refer to the SU(2)× SU(2) and to
the R–symmetry quantum numbers.

This gives us a new element in the analysis

as we will soon see, since besides the SU(2, 2|1)

quantum numbers, we have also to match those

of the matter group.

The full analysis [10] reveals that the super-

gravity theory has one long graviton multiplet

with conformal dimensions

∆ = 1 +
√
H0(j, l, r) + 4, (3.12)

four long gravitino multiplets with

∆ = −1/2 +√H0(j, l, r ± 1) + 4,
∆ = 5/2 +

√
H0(j, l, r ± 1) + 4, (3.13)

and four long vector multiplets, with

∆ = −2 +
√
H0(j, l, r) + 4,

∆ = 4 +
√
H0(j, l, r) + 4, (3.14)

∆ = 1 +
√
H0(j, l, r ± 2) + 4.

Beside these long ones, there are the shortened

supermultiplets.

The above formulae clearly show that the

conformal dimensions become rational when the

square roots assume rational values

H0 + 4 ∈ Q2. (3.15)

This equation is found to admit some special

solutions for

j = l = |r/2|, (3.16)

j = l − 1 = |r/2| or l = j − 1 = |r/2|.(3.17)

Given these strong constraints on the possible

SU(2, 2|1) quantum numbers as well as on the
SU(2)× SU(2) ones, it becomes an easy task to
build the appropriate conformal operators satis-

fying such constraints and find the relevant bulk

supermultiplets.

While referring to [5] for all details, we list

some interesting examples of conformal opera-

tors.

The chiral operators of the conformal field

theory are given by

Sk = Tr(AB)k (3.18)

Φk = Tr
[
W 2(AB)k

]
(3.19)

T k = Tr
[
Wα(AB)

k
]

(3.20)

and are shown to correspond to hyper–multiplets

containing massive recursions of the dilaton or

4



Quantum aspects of gauge theories, supersymmetry and unification.A. Ceresolea, G. Dall’Agatab, R. D’Auriaa† and S.

the internal metric (3.18 and 3.19) or to tensor

multiplets (3.20).

Even more interesting are the towers of oper-

ators associated to the semi–conserved currents.

Some of them are

Jkαα̇ = Tr(Wαe
V W̄α̇e

−V (AB)k), (3.21)

Jk = Tr(AeV Āe−V (AB)k), (3.22)

which lead to short multiplets whose highest state

is a spin 2 and spin 1 field respectively, with

masses given by

MJk
αα̇
=

√
3

2
k

(
3

2
k + 4

)
, (3.23)

and MJk =

√
3

2
k

(
3

2
k + 2

)
. (3.24)

These bulk states correspond to massive recur-

sion of the graviton and of the gauge bosons of

the matter groups.

It has been explained that under certain con-

ditions the semi–conserved superfields can be-

come conserved, and this is indeed the case. If

we set k = 0 we retrieve the conserved currents

related to the stress–energy tensor and the mat-

ter isometries . In fact MJ0
αα̇
= MJ0 = 0 are

the massless graviton and gauge bosons of the

supergravity theory.

The above analysis can be carried out for

M–theory compactifications, where again a full

correspondence can be established for the short

operators on the CFT and the short multiplets

of the supergravity theory. We must say how-

ever that, while in the T 11 case the superpoten-

tial gives us a rule to discard all the sets of op-

erators which are not related to any KK state,

for the M–theory KK spectra to agree with the

CFT operators one has to uncover some unknown

quantum mechanism [6] or the existence of some

highly non trivial superpotential [15] that would

eliminate the mismatching states.

Up to now we have checked the AdS/CFT

correspondence as far as what the conformal field

theory imposes on the bulk states, but what can

we learn on the CFT from the analysis of the

supergravity states?

4. Supergravity predictions

There are essentially two aspects of the super-

gravity theory which can give us new insight on

the dual CFT. The first is the presence of long

multiplets that nevertheless have rational scal-

ing dimensions, which could provide us with new

non–renormalization theorems (at least in the

large N , gsN limit). The other is is the existence

of the so–called Betti multiplets, which give rise

to additional symmetries in the boundary theory.

Let us now turn to the first aspect.

We have shown that the conformal operators

with protected dimension are given by chiral ones

or by their products with the conserved currents.

The surprising output of the supergravity analy-

sis is that there exist some conformal operators

that in spite of not being protected by supersym-

metry, still have rational conformal dimension.

Confining ourselves to the T 11 case, if we

take the chiral operator

Tr(W 2(AB)k),

we can make it non–chiral by simply inserting

into the trace an antichiral combination of the

gauge field–strength

Tr(W 2eV W̄ 2e−V (AB)k).

This operator then corresponds to a long mul-

tiplet in the bulk theory and one should expect

its scaling dimension to be generically renormal-

ized to an irrational number. If we search for the

corresponding vector multiplet in the supergrav-

ity theory, we see that its anomalous dimension

is instead rational and matches exactly the naive

sum of the dimensions of the operators inside the

trace. We find this to be the case for all the low-

est non–chiral operators of general towers with

irrational scaling dimension. For instance, the

towers of operators

Tr
[
Wα(Ae

V Āe−V )n(AB)k
]
(4.1)

Tr
[
eV W̄α̇e

−V (AeV Āe−V )n(AB)k
]
(4.2)

have an irrational value of ∆ for generic n, but

when n = 1 we have found that they do have

rational anomalous dimension ∆ = 5/2 + 3/2k.

When n = 0 we retrieve the chiral, or semi–

conserved operators with protected ∆. This is
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a highly non–trivial prediction of the correspon-

dence on the CFT which comes only from the

computation of the spectrum on the KK side and

we hope it could receive in the future an expla-

nation from the CFT point of view.

If we restrict our attention to the protected

operators, we could say that the above peculiar

feature arises also in the AdS4/CFT3 case. How-

ever, we have a true one–to–one map and full

agreement on the two sides only for a specific

seven–dimensional compactification, that is the

Stiefel manifold SO(5)/SO(3) [15] (see the sum-

mary table therein).The latter seems to be rather

different from the other N = 2 compactifications
of [6]. Indeed, although the spectra look very

similar, it seems that in the examples dealt with

in [6], for some of the supergravity states it is not

easy to identify the related CFT operator.

5. Betti multiplets

The second AdS prediction on the CFT is the

existence of baryon symmetries.

As pointed out by Witten [19], the existence

of such baryon symmetries is related to non–

trivial Betti numbers of the internal manifold.

Moreover, from the supergravity point of view,

the non trivial value of such numbers implies

the appearance of extra massless multiplets, the

Betti multiplets [10]. It is then quite natural to

propose a relation between the existence of Betti

multiplets and of baryon symmetries.

Let’s see how this works.

The non–trivial b2 and b3 numbers of the T
11

manifold imply the existence of closed non–exact

2–form Yab and 3-form Yabc. These forms must be

singlets under the full isometry group, and thus

they signal the presence of new additional mass-

less states in the theory than those connected to

the SU(2)× SU(2)× UR(1) isometry.
From the KK expansion of the complex rank

2 AMN and real rank 4 AMNPQ tensors of type

IIB supergravity we learn that we should find

in the spectrum a massless vector (from Aµabc),

a massless tensor (from Aµνab) and two mass-

less scalars (from the complex Aab). This implies

the existence of the so called Betti vector, tensor

and hyper–multiplets, the last two being a pe-

culiar feature of the AdS5 compactification [10].

The additional massless vector can be seen to be

the massless gauge boson of an additional UB(1)

symmetry of the theory.

From the boundary point of view we need

now to find an operator counterpart for such vec-

tor multiplet and look for an interpretation of

the additional symmetry. The task of finding

the conformal operator is very easy, once we take

into account that it must be a singlet of the full

isometry group and must have ∆ = 3. The only

operator we can write is [5, 20]

U = Tr (AeV Āe−V )− Tr (BeV B̄e−V )
(D2U = D̄2U = 0), (5.1)

which represents the conserved current of a baryon

symmetry of the boundary theory under which

the A and B field transform with opposite phase.

We have shown that the occurrence of such Betti

multiplets is indeed due to the existence of non–

trivial two and three–cycles on the T 11 manifold.

This implies that, from the stringy point of view,

we can wrap the D3–branes of type IIB super-

string theory around such 3–cycles and the wrap-

ping number coincides with the baryon number

of the low–energy CFT [20].

We would like to point out that this feature

of some manifolds can be used to check the right

dimension of the singleton fields as done in [6].

One can indeed compute the conformal dimen-

sion of the CFT operator coupling to the baryon

field obtained by a Dp–brane wrapping a non–

trivial p–cycle and match it with its mass, which

should be proportional to the volume of the same

cycle.

6. A puzzle

An interesting case where the baryonic symme-

try does not appear to be simply related to the

Betti multiplets is that of type IIA compactifi-

cation on AdS4 × P3. This gives a supergrav-
ity theory which should be dual to an N = 6
CFT in three dimensions. It has been conjec-

tured that the supergravity spectrum should be

the same for M–theory on AdS4 × S7/Zk (for
k > 3) and for the Hopf reduction of AdS4 × S7
on AdS4 × P3 [21]. It can indeed be shown [22]
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that the surviving states of the M–theory ex-

pansion on AdS4 × S7/Zk are the same as those
of the N = 8 theory which are neutral under
the U(1) along which we Hopf reduce S7 to P3.

These are exactly the same as those appearing

in the harmonic expansion of type IIA theory on

AdS4 × P3.
From these facts, one should deduce that the

massless vector of the additional U(1) baryon

symmetry is simply the KK vector deriving from

the reduction of the eleven dimensional metric on

the ten dimensional space AdS4 × P3. But here
comes the puzzle.

Type IIA theory has a three–form C which

should give rise to Betti vector multiplets when

expanded on the internal manifold P3. The com-

plex projective space P3 has indeed a non–trivial

Betti two–form: the complex structure Jab. This

implies that the expansion of Cµab(x, y) in terms

of the harmonics of the internal manifold con-

tains a vector c0µ coupled to this form:

Cµab(x, y) =
∑
I

cIµ(x)Y
I
ab(y) + c

0
µ(x)Jab. (6.1)

This again could be interpreted as the mass-

less vector of the baryon symmetry, but we know

we have only one such vector.

The solution lies in the fact that this c0µ is

non–physical. It is actually a pure gauge mode

as we will shortly see.

Usually, type IIA supergravity is described

by a one–form A, a two–form B a three–form C

and a dilaton Φ with field–strengths:

F = dA, (6.2)

H = dB, (6.3)

G = dC +AdB. (6.4)

If we define

C′ ≡ C +AB, (6.5)

then dC′ = dC+A dB−dA B and the four–form
definition becomes

G = dC′ + FB. (6.6)

At this point G is trivially invariant under

δC′ = dK, and
{
δA = dΛ

δC′ = 0
, (6.7)

while δB = dΣ requires δC = FΣ. This implies

that the physical invariance ofBµν(x), δBµν(x) =

2∂[µΣν](x) requires C
′
µab to transform according

to

δC′µab(x, y) = FabΣµ. (6.8)

Keeping only linear terms in (6.8), we get

δC′µab(x) = JabΣµ(x), (6.9)

which tells us, by comparison with (6.1) now ap-

plied to C ′, that the generic mode cIµ is invariant
δΣc

I
µ = 0, while δΣc

0
µ = Σµ(x) is a pure gauge

field.
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