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Abstract: We review our study of generalised concavity conditions for potentials between static

sources obtained from Wilson loops coupling both to gauge bosons and a set of scalar fields. It

involves the second derivatives with respect to the distance in ordinary space as well as with respect

to the relative orientation in internal space. In addition we discuss the use of this field theoretical

condition as a nontrivial consistency check of the AdS/CFT duality.

1. Introduction

The AdS/CFT correspondence maps [1, 2, 3, 4],

in its most prominent example, N = 4, SU(N)
super Yang-Mills gauge theory on the conformal

boundary of AdS5 to the type IIB string the-

ory in AdS5 × S5 background. An essential part
of the mapping recipe equates the Wilson loop

W (C) in the gauge theory and the string parti-
tion function Z(C) under the boundary condition
that the string world sheet takes the contour C
as its boundary [5, 6]

W (C) = Z(C) = e−A(C) . (1.1)

The last equation in (1.1), with A denoting the

area of the minimal surface in AdS sense, is valid

in the largeN limit and for large t’Hooft coupling

g2YMN .

To be more precise, the Wilson loop under

consideration is given by

W (C) = tr(P exp∫
C
{iAµ(x(s))ẋµ(s)

+ φI(x(s))θ
I(s)|ẋ|}ds) , (1.2)

with Aµ, φI denoting the gauge and scalar fields

of N = 4 SYM, respectively. xµ(s) specifies the
contour C in 4-dim. (Euclidean) space-time and
θI(s) (with (θI)2 = 1) fixes the corresponding S5

part. The Wilson loop with the structure (1.2)

∗Talk delivered by H. Dorn.

is a special case of the generic one and has BPS

properties [7].

By standard arguments the Wilson loop can

be related to the potential between static sources

separated by a distance L in ordinary space and

an angle Θ between θQ̄ and θQ on S
5. Then the

relevant contour C is a rectangle of size L× T in
ordinary space-time and the S5 part stays at the

position θQ̄ or θQ along the large T-sides of the

rectangle and interpolates linearly on the great

circle through θQ̄ and θQ along the L-sides of

the rectangle. As a result one finds

V (L,Θ) = − limT→∞ 1
T
logW (C) . (1.3)

First principles of quantum field theory like

Osterwalder-Schrader reflection positivity have

been shown to enforce concavity for the static

QQ̄-potential, d
2V (L)
dL2

≤ 0, in usual non-SUSY
Yang-Mills, [8, 9]. Following our paper [10], we

now discuss the search for analogous statements

for the static potential V (L,Θ) in N = 4 SYM.
Before going into the details, let us recall the

virtues of such inequalities in the context of

AdS/CFT. Since they test the consequences of

OS positivity, they are one of the rare occasions

where one is able to check the AdS/CFT corre-

spondence without extensive input by the super-

conformal invariance. In addition, it makes sense

to test the arising inequalities already for approx-

imate potentials. If they would be violated in the

limit where the approximation is known to be-
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come reliable, this would indicate a breakdown

of the AdS/CFT correspondence.

2. Generalised concavity for poten-

tials derived from BPSWilson loops

We start with the functional (Aẋ = Aµẋ
µ, φθ =

φjθ
j , µ = 0, .., 3, j = 4, .., 9)

Uab[x, θ] =
(
P exp

∫
{iA(x(s))ẋ(s)

+ φ(x(s))θ(s)|ẋ|}ds)
ab
. (2.1)

The expectation value of its trace for a closed

path x(s) yields the Wilson loop under investi-

gation.

A reflection operation R is defined by

(Rx)1(s) = −x1(s) ;
(Rx)α(s) = xα(s), α 6= 1
RUab[x, θ] = Uab[Rx, θ] . (2.2)

In addition, it is useful to define in connection

with an isometry I ∈ O(6) of S5 acting on the
path θ(s)

IUab[x, θ] = Uab[x, Iθ] . (2.3)

For linear combinations of U ’s for different con-

tours we extend R and I linearly.
Using the hermiticity of the matrices A, φ in

the form A = At, φ = φt and introducing

(Bx)(s) = x(sf+si−s), (Bθ)(s) = θ(sf+si−s).
(2.4)

we get [10]

Uab[x, θ] = Uba[Bx,Bθ] . (2.5)

This, combined with (2.2),(2.3) yields finally

RIUab[x, θ] = Uba[BRx,BIθ] . (2.6)

It is worth pointing out that for the result (2.5)

the presence/absence of the factor i in front of

the A and φ term in U is crucial. One could

consider this as another argument for the choice

favoured by the investigations of ref. [7].

We now turn to a derivation of the basic

Osterwalder-Schrader positivity condition in a

streamlined form within the continuum functional

integral formulation. All steps can be made rig-

orously by a translation into a lattice version

with local and nearest neighbour interactions.

Let denote H± = {xµ| ± x1 > 0}, H0 =

{xµ|x1 = 0}. Then we consider for a functional
of two paths x(1), x(2) ∈ H+, λ real

f [x(1), θ(1);x(2), θ(2)] = Uab[x
(1), θ(1)]

+ λUab[x
(2), θ(2)], (2.7)

〈f [x, θ]RIf [x, θ]〉
=

∫
DADφf [x, θ]f [Rx, Iθ] e−S

=

∫
DA(0)Dφ(0) e−S0

·
∫
(b.c.)

DA(+)Dφ(+)f [x, θ] e−S+

·
∫
(b.c.)

DA(−)Dφ(−)f [Rx, Iθ] e−S− .(2.8)

±, 0 on the fields as well as on the action in-
dicates that it refers to points in H±, H0. The
index for the two paths has been dropped, and

the boundary condition (b.c.) is

A(±)|∂H± = A(0), φ(±)|∂H± = φ(0) .

With the abbreviation

h[A(0), φ(0), x, θ] =

∫
(b.c.)

DA(+)Dφ(+)f [x, θ]e−S+ ,
(2.9)

the standard reflection properties of the action

imply

〈f [x, θ]RIf [x, θ]〉
=

∫
DA(0)Dφ(0) e−S0

· h[A(0), φ(0), x, θ] · h[A(0), φ(0), x, Iθ] . (2.10)

For I =1 the integrand of the final integration
over the fields in the reflection hyperplane H0 is

non-negative, hence

〈f [x, θ]Rf [x, θ]〉 ≥ 0 . (2.11)

For nontrivial I the situation is by far more
involved. If there would be no boundary condi-

tion, the result of the half-space functional inte-

gral in (2.9) would be invariant with respect to
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θ → Iθ. A given boundary configuration in gen-
eral breaks O(6) invariance on S5. But due to

the O(6) invariance of the action, the functional

integration measure and the φθ coupling in f , we

have instead

h[A(0), Iφ(0), x, Iθ] = h[A(0), φ(0), x, θ] .
(2.12)

This implies

〈f [x, θ]RIf [x, θ]〉 =
∫
DA(0)Dφ(0)e−S0 (2.13)

· 1
2

(
h[A(0), φ(0), x, θ] h[A(0), φ(0), x, Iθ]

+h[A(0), φ(0), x, I−1θ] h[A(0), φ(0), x, θ]
)
,

which says us only (R real numbers)

〈f [x, θ]RIf [x, θ]〉 ∈ R for I2 = 1 . (2.14)
The statements (2.11) and (2.14) are rigorous

ones. Beyond them we found no real proof for

sharpening (2.14) to an inequality of the type

(2.11) for some nontrivial I. For later application
to the estimate of rectangular Wilson loops we

are in particular interested in nontrivial isome-

tries keeping the, by assumption common, S5

position of the endpoints of the contours on H0
fixed. Then I = Iπ , denoting a rotation around
this fixpoint with angle π, are the only candi-

dates.

At least for boundary fields φ(0) in (2.9),

which as a map R3 → S5 have a homogeneous
distribution of their image points on S5, we can

expect that for contours of the type discussed in

connection with fig.1 below in the limit of large

T the orientation of θ relative to φ(0) becomes

unimportant. Therefore, we conjecture for this

special situation

〈f [x, θ]RIπf [x, θ]〉 ≥ 0 . (2.15)

From (2.11) and (2.15) for any real λ in (2.7) we

get via the standard derivation of Schwarz-type

inequalities

〈Uab[x(1), θ(1)] RIUab[x(2), θ(2)]〉2
≤ 〈Uab[x(1), θ(1)] RIUab[x(1), θ(1)]〉 (2.16)
· 〈Uab[x(2), θ(2)] RIUab[x(2), θ(2)]〉 .

This is a rigorous result for I = 1 and a conjec-
ture for I = Iπ.

T

L L- L+

A

B

δδ

Fig.1 From left to right the contours

x+ ◦ x−, x+ ◦ BRx+, BRx− ◦ x−.

Let us continue with the discussion of a Wil-

son loop for a closed contour which crosses the

reflection hyperplane twice and which is the re-

sult of going first along x− ∈ H− and then along
x+ ∈ H+. In addition we restrict to cases of
coinciding S5 position at the intersection points

with H0 and treat in parallel I = 1, Iπ With
(2.5),(2.6) we get [10]

W [x+ ◦ x−, θ+ ◦ θ−]
≤ (W [x+ ◦ BRx+, θ+ ◦ BIθ+]) 12

· (W [BRx− ◦ x−,BI−1θ− ◦ θ−]) 12 . (2.17)
To evaluate the potential between two static

sources (QQ̄) separated by the distance L and lo-

cated at fixed S5-positions θQ, θQ̄ we need Wil-

son loops for rectangular contours of extension

L × T in the large T -limit. We choose the S5-
position on the two L-sides linearly interpolating

between θQ and θQ̄ on the corresponding great

circle. For this restricted set of contours the Wil-

son loop becomes a function of L, T and the an-

gle between θQ and θQ̄, called Θ.

In addition it is useful to restrict ourselves

to contours which are situated in planes orthogo-

nal to the reflection hyperplane and with T -sides

running parallel to it in a distance L±δ2 , see fig.1.
Then I = Iπ reflects θ±(s), which both lie on
the great circle through θQ and θQ̄, with respect

to the common S5-position of the points A and

B, see fig.1. As a consequence, (2.17) implies
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W (L, T,Θ) ≤
(
W (L− δ, T, L− δ

L
Θ)

) 1
2

·
(
W (L+ δ, T,

L+ δ

L
Θ)

) 1
2

, (2.18)

which by standard reasoning yields for the static

potential

V (L,Θ) ≥ 1

2

(
V (L− δ, L− δ

L
Θ)

+ V (L+ δ,
L+ δ

L
Θ)
)

.(2.19)

The last inequality implies the local statement
d2

dδ2V (L+ δ,
L+δ
L Θ) ≤ 0, i.e.(

L2
∂2

∂L2
+ 2LΘ

∂2

∂L∂Θ
+Θ2

∂2

∂Θ2

)
V (L,Θ) ≤ 0 .

(2.20)

It means concavity on each straight line across

the origin, in the relevant part of the (L,Θ)-

plane, 0 < L <∞, 0 < Θ ≤ π.

Both (2.19) and (2.20) rely on the conjecture

(2.15). From the rigorous point of view we are

allowed to use (2.17) for I = 1 only. Then the
paths generated on the r.h.s. are, with respect

to their S5 properties, no longer of the type with

which we started on the l.h.s. On the part of the

space time contour orthogonal to H0 we go e.g.

from θQ to the common S
5 position of the points

A and B and then back to θQ. Since in the large

T -limit, relevant for the extraction of the QQ̄-

potential, only the behaviour on the large T -sides

matters, we get

V (L,Θ) ≥ 1

2
(V (L − δ, 0) + V (L + δ, 0)) .

(2.21)

This means standard concavity at Θ = 0 and

V (L,Θ) ≥ V (L, 0) . (2.22)

If the same steps are repeated for rectangles with

large T -sides still parallel to H0, but spanning a

plane no longer orthogonal to H0 one finds

V (L,Θ) ≥ 1
2
(V (α(L − δ), 0) + V (α(L + δ), 0)) ,

0 ≤ α ≤ 1 . (2.23)
The only new information gained from (2.23) is

that V (L, 0) is monotonically non-decreasing in

L.

3. Test of the generalised concavity

condition for potentials derived via

AdS/CFT duality

The simplicity of the calculation recipe for Wil-

son loops in the classical SUGRA approxima-

tion via AdS/CFT duality allows to make state-

ments on universal properties of the arising QQ̄-

potential for a large class of SUGRA backgrounds

[11, 12]. We now enter a discussion of (2.20)

within this framework. The metric of the SUGRA

background is assumed in the form

GMNdx
MdxN =

G00(u)dx
0dx0 + G||(u)dxmdxm

+ Guu(u)dudu + GΩ(u)dΩ
2
5 . (3.1)

Then with

f(u) = G00G||, g(u) = G00Guu,

j(u) = G00GΩ (3.2)

we get along the lines of [6, 11, 12, 13]

L(Λ) = 2
√
f0
√
1− l2

·
∫ Λ
u0

√
gj

f

du√
j(f − f0) + (jf0 − j0f)l2

,

Θ(Λ) = 2l
√
j0

·
∫ Λ
u0

√
gf

j

du√
j(f − f0) + (jf0 − j0f)l2

,

V (Λ) =
1

π

·
∫ Λ
u0

√
gfj

du√
j(f − f0) + (jf0 − j0f)l2

. (3.3)

We defined f0 = f(u0) etc. Λ is a cutoff at large

values of u. In the following our discussion will be

restricted to values of L and Θ for which all ex-

pressions appearing under square roots above are

positive and where the inversion u0 = u0(L,Θ),

l = l(L,Θ) is well defined. (3.3) implies

V (Λ) =
1

π

∫ Λ
u0

√
g

fj

√
j(f − f0) + (jf0 − j0f)l2

+
1

2π

√
f0
√
1− l2 L(Λ) + 1

2π

√
j0 l Θ

(Λ). (3.4)

Now we differentiate with respect to u0 and l.

After this Λ can be sent to ∞ ending up with a
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relation for the renormalised potential V :

∂V

∂u0
=
1

2π

√
f0
√
1− l2 ∂L

∂u0
+
1

2π

√
j0l
∂Θ

∂u0
,

∂V

∂l
=
1

2π

√
f0
√
1− l2 ∂L

∂l
+
1

2π

√
j0l
∂Θ

∂l
. (3.5)

For V defined by (3.3) implicitly as a function of

L and Θ this means

∂V

∂L
=
1

2π

√
f0
√
1− l2, ∂V

∂Θ
=
1

2π

√
j0 l ,

(3.6)

i.e. V is monotonically nondecreasing both in L

and Θ. The monotony in Θ is in agreement with

our rigorous result (2.22).

Calculating now second derivatives one ar-

rives at (f ′0 =
df(u0)
du0

etc.)(
L2
∂2

∂L2
+ 2LΘ

∂2

∂L∂Θ
+Θ2

∂2

∂Θ2

)
V (L,Θ)

=
1

4π
√
f0j0

(Lf ′0
√
j0(1− l2) + Θj′0

√
f0 l)

· (L∂u0
∂L
+Θ
∂u0

∂Θ
)

+
1

2π
√
1− l2 (Θ

√
j0(1− l2)− L

√
f0 l)

· (L ∂l
∂L
+Θ

∂l

∂Θ
) . (3.7)

Neglecting for a moment the issue of internal

space dependence by restricting oneselves to the

case Θ = l = 0, one finds usual concavity in L

from (3.7) if f ′0
∂u0
∂L
≤ 0. The last inequality is

for f ′ > 0 guaranteed by theorem 1 of ref.[12]. 1

Therefore, for Θ = 0 standard concavity of

QQ̄-potentials with respect to the distance in

usual space is guaranteed for the wide class of

SUGRA backgrounds covered by theorem 1 of

ref.[12].

However, due to the more complicated struc-

ture of the l.h.s. of (3.7) for Θ 6= 0 we did not
found a similar general statement in the generic

case. We can only start checking (2.20) case by

case.

As our first example we consider the original

calculation of Maldacena [6] for the AdS5 × S5
background. The result was (R2 =

√
2g2YMN)

V (L,Θ) = − 2R
2

π

F (Θ)

L
, (3.8)

1Our f and g are called f2 and g2 in that paper.

with

F (Θ) = (1− l2) 32

·
(∫ ∞
1

dy

y2
√
(y2 − 1)(y2 + 1− l2)

)2
,

Θ = 2l

∫ ∞
1

dy√
(y2 − 1)(y2 + 1− l2) . (3.9)

Due to this special structure (L∂V
∂L
= −V,

L2 ∂
2

∂L2V = 2V,
∂Θ
∂u0
= 0), (2.20) is equivalent to

Θ3
d2

dΘ2

(
F

Θ

)
≥ 0 . (3.10)

A numerical calculation of FΘ confirms (3.10) clearly,

see fig.2.

Next we discuss the large L confining poten-

tial including internal space dependence and α′

corrections of the background derived in [13]. It

has the form (γ = 1
8ζ(3)R

−6, T̂ temperature pa-
rameter)

V (L,Θ) =
πR2T̂ 2

2
(1− 265

8
γ) · L

+
R2

4π
(1 +

15

8
γ)
Θ2

L
+ O(1/L3) . (3.11)

Although this potential for Θ 6= 0 violates naive
concavity ∂

2V
∂L2 ≤ 0, there is no conflict with the

correctly generalised concavity (2.20). Applied

to (3.11) the differential operator just produces

zero.

4. Concluding remarks

The QQ̄-potential derived [6] from the classical

SUGRA approximation for the type IIB string

in AdS5 × S5 fulfils our generalised concavity
condition at Θ ≥ 0. This adds another consis-
tency check of this most studied case within the

AdS/CFT duality.

Potentials have been almost completely stud-

ied only for Θ = 0 in other backgrounds. At

least partly, this might be due to the wisdom

to approach in some way QCD, where after all

there is no place for a parameter like this angle

between different orientations in S5. However,

one has to keep in mind that this goal, in the

approaches discussed so far, requires some addi-

tional limiting procedure. Before the limit the
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Fig.2 F
Θ as a function of Θ. Use has been made

of the representation in terms of elliptic integrals

given in [6].

full 10-dimensionality inherited by the string is

still present. Fluctuation determinants in all 10

directions have to be taken into account for quan-

tum corrections [14, 15, 16] and the Θ-dependence

of the potentials is of course not switched off.

Although we proved in classical SUGRA ap-

proximation monotony in L and Θ as well as con-

cavity at Θ = 0 for a whole class of backgrounds,

we were not able to get a similar general result

on concavity for Θ > 0. Further work is needed

to decide, whether at all general statements for

Θ > 0 are possible. Alternatively one should per-

form case by case studies for backgrounds derived

e.g. from rotating branes [17], type zero strings

[18] or nonsupersymmetric solutions of type IIB

string theory [19].

On the field theory side further work is nec-
essary to really prove the conjectured inequal-
ity (2.15), otherwise the available set of rigorous
constraints on the L and Θ dependent potential,
beyond the standard concavity at Θ = 0, would
contain only the very mild condition (2.22).
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