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Abstract: We compactify M(atrix) theory on Riemann surfaces Σ with genus g > 1. Following

[1], we construct a projective unitary representation of π1(Σ) realized on L
2(H), with H the upper

half–plane. As a first step we introduce a suitably gauged sl2(R) algebra. Then a uniquely determined

gauge connection provides the central extension which is a 2–cocycle of the 2nd Hochschild cohomology

group. Our construction is the double–scaling limit N →∞, k→ −∞ of the representation considered
in the Narasimhan–Seshadri theorem, which represents the higher–genus analog of ’t Hooft’s clock and

shift matrices of QCD. The concept of a noncommutative Riemann surface Σθ is introduced as a certain

C?–algebra. Finally we investigate the Morita equivalence.

1. Introduction

The P− = N/R sector of the discrete light–cone

quantization of uncompactified M–theory is given

by the supersymmetric quantum mechanics of

U(N) matrices. The compactification of M(atrix)

theory [2]–[4] as a model for M–theory [5] has

been studied in [6]. In [7]–[10] it has been treated

using noncommutative geometry [11]. These in-

vestigations apply to the d–dimensional torus T d,

and have been further dealt with from various

viewpoints in [12]–[18]. These structures are also

relevant in noncommutative string and gauge the-

ories [19, 20]. In this paper, following [1], we

address the compactification M(atrix) theory on

Riemann surfaces with genus g > 1.

A Riemann surface Σ of genus g > 1 is con-

structed as the quotient H/Γ, where H is the

upper half–plane, and Γ ⊂ PSL2(R), Γ ∼= π1(Σ),
is a Fuchsian group acting on H as

γ =

(
a

c

b

d

)
∈ Γ, γz =

az + b

cz + d
. (1.1)

In the absence of elliptic and parabolic genera-

tors, the 2g Fuchsian generators γj satisfy

g∏
j=1

(
γ2j−1γ2jγ−12j−1γ

−1
2j

)
= 1. (1.2)
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Inspired by M(atrix) theory, let us promote

the complex coordinate z = x+ iy to an N ×N
complex matrix Z = X + iY , with X = X† and
Y = Y †. This suggests defining fractional linear
transformations of Z through conjugation with

some non–singular matrix U :

UZU−1 = (aZ + b1)(cZ + d1)−1. (1.3)

Accordingly, operators Uk representing the Fuch-
sian generators γk can be constructed, such that

g∏
k=1

(U2k−1 U2k U−12k−1 U−12k ) = e2πiθ1. (1.4)

While we will find the solution to (1.4), we will

consider slightly different versions of (1.3). This

construction cannot be implemented for finite N ,

as taking the trace of (1.3) shows. It can be inter-

preted as defining a sort of M(atrix) uniformiza-

tion, in which the Möbius transformation of the

M(atrix) coordinate Z is defined through (1.3).

2. Compactification in g > 1

Next we present an explicit Ansatz to compactify

11–dimensional supergravity on a Riemann sur-

face with g > 1. The Einstein equations read

RMN − 1
2
GMNR
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=
1

3
(HML1L2L3HNL′1L′2L′3G

L1L
′
1GL2L

′
2GL3L

′
3

−1
8
GMNHL1L2L3L4HL′1L′2L′3L′4

×GL1L′1GL2L′2GL3L′3GL4L′4), (2.1)

where HMNPQ is the field strength of CMNP .

We try an Ansatz by diagonally decomposing

GMN into 2–, 4– and 5–dimensional blocks, with

HMNPQ taken along the 4–dimensional subspace:

GMN = diag (g
(2)
αβ , g

(4)
mn, g

(5)
ab ),

HMPQR = εmpqrf. (2.2)

The Einstein equations then decompose as

R
(k)
ikjk
− 1
2
g
(k)
ikjk
(R(2) +R(4) +R(5))

= εkdet g
(4) f2 g

(k)
ikjk

, (2.3)

where k = 2, 4, 5, (i2, j2) = (α, β), (i4, j4) =

(m,n), (i5, j5) = (a, b), and ε2 = ε4 = −ε5 = 1.
Some manipulations lead to

R(k) = ckf
2det g(4), (2.4)

with c2 = −4/3, c4 = 16/3 and c5 = −10/3.
We observe that f = 0 would reproduce the

toroidal case. A non–vanishing f is a deforma-

tion producing g > 1. It suffices that g(4) have

positive signature for R(2) to be negative, as re-

quired in g > 1. Then a choice for the 4– and

5–dimensional manifolds is S4 and AdS5.

3. Differential representation of Γ

3.1 The unitary gauged operators

For n = −1, 0, 1 and en(z) = zn+1 we consider

the sl2(R) operators `n = en(z)∂z. We define

Ln = e
−1/2
n `ne

1/2
n = en

(
∂z +

1

2

e′n
en

)
. (3.1)

These satisfy

[Lm, Ln] = (n−m)Lm+n, [L̄m, Ln] = 0,

[Ln, f ] = z
n+1∂zf. (3.2)

For k = 1, 2, . . . , 2g, consider the operators

Tk = e
λ
(k)
−1 (L−1+L̄−1)eλ

(k)
0 (L0+L̄0)eλ

(k)
1 (L1+L̄1),

(3.3)

with the λ
(k)
n picked such that TkzT

−1
k = γkz =

(akz + bk)/(ckz + dk) so that by (1.2)

g∏
k=1

(
T2k−1T2kT−12k−1T

−1
2k

)
= 1. (3.4)

On L2(H) we have the scalar product

〈φ|ψ〉 =
∫
H

dνφ̄ψ, (3.5)

where dν(z) = idz ∧ dz̄/2 = dx ∧ dy. The Tk
provide a unitary representation of Γ.

Next consider the gauged sl2(R) operators [1]

L(F )n = F (z, z̄)LnF
−1(z, z̄)

= en

(
∂z +

1

2

e′n
en
− ∂z lnF (z, z̄)

)
, (3.6)

where F (z, z̄) is an undetermined phase function,

to be determined later on. The L(F )n also satisfy

the algebra (3.2). The adjoint of L(F )n is given by

L(F )†n = −Fe1/2n ∂z̄e
1/2
n F−1, (3.7)

with L(F )†n = −L̄(F−1)n . Finally we define

Λ(F )n = L(F )n − L(F )†n = L(F )n + L̄(F−1)n . (3.8)

The Λ
(F )
n enjoy the fundamental property that

both their chiral components are gauged in the

same way by the function F , that is

Λ(F )n = F (Ln + L̄n)F
−1, (3.9)

while also satisfying the sl2(R) algebra:

[Λ(F )m ,Λ(F )n ] = (n−m)Λ(F )m+n,
[Λ(F )n , f ] = (zn+1∂z + z̄

n+1∂z̄)f. (3.10)

It holds that

eΛ
(F )
n = FeLn+L̄nF−1, (3.11)

which is a unitary operator since Λ
(F )†
n = −Λ(F )n .

Let b be a real number, and A a Hermitean

connection 1–form to be identified presently. Set

Uk = eib
∫ γkz
z

A
Tk, (3.12)

where the integration contour is taken to be the

Poincaré geodesic connecting z and γkz. As the

gauging functions introduced in (3.6) we will take

the functions Fk(z, z̄) that solve the equation

FkTkF
−1
k = e

ib
∫ γkz
z

A
Tk, (3.13)

that is

Fk(γkz, γkz̄) = e
−ib
∫ γkz
z

A
Fk(z, z̄). (3.14)

2
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3.2 The gauged algebra

With the choice (3.13) for Fk, (3.9) becomes

Λ
(F )
n,k = Fk(Ln + L̄n)F

−1
k

= zn+1
(
∂z +

n+ 1

2z
− ∂z lnFk

)

+ z̄n+1
(
∂z̄ +

n+ 1

2z̄
− ∂z̄ lnFk

)
. (3.15)

The Λ
(F )
n,k satisfy the algebra

[Λ
(F )
m,j,Λ

(F )
n,k ]

= (n−m)Λ(F )m+n,j + F−1k |en|Λ(F )n,k |en|−1Fk
×F−1j |em|Λ(F )m,j|em|−1Fj(lnFj − lnFk),

[Λ
(F )
n,k , f ] = (z

n+1∂z + z̄
n+1∂z̄)f. (3.16)

Upon exponentiating Λ
(F )
n,k one finds

Uk = eλ
(k)

−1Λ
(F )

−1,k eλ
(k)
0 Λ

(F )

0,k eλ
(k)
1 Λ

(F )

1,k , (3.17)

that is, the Uk are unitary, and

U−1k = T−1k e
−ib
∫ γkz
z

A
= e

−ib
∫
z

γ
−1
k
z
A

T−1k .

(3.18)

3.3 Computing the phase

It is immediate to see that the Uk defined in
(3.12) satisfy (1.4) for a certain value of θ:

g∏
k=1

(
U2k−1U2kU†2k−1U†2k

)
= e

ib
∫
γ1z

z
A
T1

×eib
∫ γ2z
z

A
T2e

−ib
∫
z

γ
−1
1
z
A
T−11 e

−ib
∫
z

γ
−1
2
z
A
T−12 . . .

= exp

[
ib

(∫ γ1z
z

A+

∫ γ2γ1z
γ1z

A

)]
×

exp

[
ib

(∫ γ−11 γ2γ1z
γ2γ1z

A+

∫ γ−12 γ−11 γ2γ1z
γ−11 γ2γ1z

A+ . . .

)]

×
g∏
k=1

(
T2k−1T2kT−12k−1T

−1
2k

)
= e

ib
∮
∂Fz

A
, (3.19)

where Fz = {z, γ1z, γ2γ1z, γ−11 γ2γ1z, . . .} is a fun-
damental domain for Γ. The basepoint z, plus

the action of the Fuchsian generators on it, deter-

mine Fz, as the vertices are joined by geodesics.

3.4 Uniqueness of the gauge connection

For (3.19) to provide a projective unitary repre-

sentation of Γ,
∫
Fz dA should be z–independent.

Changing z to z′ can be expressed as z → z′ = µz
for some µ ∈ PSL2(R). Then Fz → Fµz =
{µz, γ1µz, γ2γ1µz, γ−11 γ2γ1µz, . . .}. Now consider
Fz → µFz = {µz, µγ1z, µγ2γ1z, µγ−11 γ2γ1z, . . .}.
The congruence µFz ∼= Fµz follows from two
facts: that the vertices are joined by geodesics,

and that PSL2(R) maps geodesics into geodesics.

Since Γ is defined up to conjugation, Γ→ µΓµ−1,
if µFz is a fundamental domain, so is Fµz . Thus,
to have z–independence we need ∀µ ∈ PSL2(R)∫
Fz
dA =

∫
Fµz

dA =

∫
µFz

dA =

∫
F
dA. (3.20)

This fixes the (1,1)–form dA to be PSL2(R)–

invariant. It is well known that the Poincaré form

is the unique PSL2(R)–invariant (1,1)–form, up

to an overall constant factor. This is a particular

case of a more general fact [21]. The Poincaré

metric ds2 = y−2|dz|2 = 2gzz̄|dz|2 = eϕ|dz|2 has
curvature R = −gzz̄∂z∂z̄ ln gzz̄ = −1, so that∫
F dνe

ϕ = −2πχ(Σ), where χ(Σ) = 2− 2g is the
Euler characteristic. As the Poincaré (1,1)–form

is dA = eϕdν, this uniquely determines the gauge

field to be

A = Azdz +Az̄dz̄ = dx/y, (3.21)

up to gauge transformations. Using
∮
∂F A =∫

F dA we finally have that (3.19) becomes

g∏
k=1

(
U2k−1U2kU†2k−1U†2k

)
= e2πibχ(Σ). (3.22)

3.5 Non–Abelian extension

Up to now we considered the case in which the

connection is Abelian. However, it is easy to ex-

tend our construction to the non–Abelian case in

which the gauge group U(1) is replaced by U(N).

The operators Uk now become

Uk = Peib
∫
γkz

z
A
Tk, (3.23)

where the Tk are the same as before, times the

N ×N identity matrix. Eq.(3.19) is replaced by
g∏
k=1

(
U2k−1U2kU†2k−1U†2k

)
= Pe

ib
∮
∂Fz

A
. (3.24)

3
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Given an integral along a closed contour σz with

basepoint z, the path–ordered exponentials for

a connection A and its gauge transform AU =

U−1AU + U−1dU are related by [22]

Pe
i
∮
σz
A
= U(z)Pe

i
∮
σz
AU

U−1(z) =

U(z)Pe
i
∮
σz
dσµ
∫
1

0
dssσνU−1(sσ)Fνµ(sσ)U(sσ)

U−1(z).
(3.25)

Applying this to (3.24), we see that the only pos-

sibility to get a coordinate–independent phase is

for the curvature (1,1)–form F = dA+[A,A]/2 to

be the identity matrix in the gauge indices times

a (1,1)–form η, that is F = η1. It follows that

Pe
ib
∮
∂F A = e

ib
∫
F F . (3.26)

However, the above is only a necessary condition

for coordinate–independence. Nevertheless, we

can apply the same reasoning as in the Abelian

case to see that η should be proportional to the

Poincaré (1,1)–form. Denoting by E the vec-

tor bundle on which A is defined, we have k =

deg (E) = 1
2π tr

∫
F F . Set µ(E) = k/N so that∫

F F = 2πµ(E)1 and η = −µ(E)χ(Σ) e
ϕdν, i.e.

F = 2πµ(E)ω1, (3.27)

where ω =
(
eϕ/

∫
F dνe

ϕ
)
dν. Thus, by (3.26) we

have that Eq.(3.24) becomes

g∏
k=1

(
U2k−1U2kU†2k−1U†2k

)
= e2πibµ(E)1, (3.28)

which provides a projective unitary representa-

tion of π1(Σ) on L
2(H,CN ).

3.6 The gauge length

A basic object is the gauge length function

dA(z, w) =

∫ w
z

A, (3.29)

where the contour integral is along the Poincaré

geodesic connecting z and w. In the Abelian case

dA(z, w) =

∫ Rew
Re z

dx

y
= −i ln

(
z − w̄
w − z̄

)
, (3.30)

which is equal to the angle αzw spanned by the

arc of geodesic connecting z and w. Observe that

the gauge length of the geodesic connecting two

punctures, i.e. two points on the real line, is π.

This is to be compared with the usual divergence

of the Poincaré distance. Under a PSL2(R)–

transformation µ, we have (µx ≡ ∂xµx)

dA (µz, µw) = dA(z, w)− i

2
ln

(
µzµ̄w

µ̄zµw

)
. (3.31)

Therefore, the gauge length of an n–gon

d
(n)
A ({zk}) =

n∑
k=1

dA(zk, zk+1) = π(n−2)−
n∑
k=1

αk,

(3.32)

where zn+1 ≡ z1, n ≥ 3, and αk are the inter-
nal angles, is PSL2(R)–invariant. One can check

that the PSL2(R)–transformation (3.31) corre-

sponds to a gauge transformation of A. Further-

more, as we will see, the triangle length, that

by Stokes’ theorem corresponds to the Poincaré

area, is proportional to the Hochschild 2–cocycle.

3.7 Pre–automorphic forms

A related reason for the relevance of the gauge

length function is that it also appears in the def-

inition of the Fk. The latter, which apparently

never appeared in the literature before, are of

particular interest. Let us recast (3.13) as

Fk(γkz, γkz̄) =

(
γkz − z̄
z − γkz̄

)b
Fk(z, z̄). (3.33)

Since (γkz − z̄)/(z − γkz̄) transforms as an au-
tomorphic form under Γ, we call the Fk pre–

automorphic forms. Eq.(3.14) indicates that find-

ing the most general solution to (3.33) is a prob-

lem in geodesic analysis. In the case of the inver-

sion γkz = −1/z and b an even integer, a solution
to (3.33) is Fk = (z/z̄)

b
2 . By (3.30) Fk = (z/z̄)

b
2

is related to the A–length of the geodesic con-

necting z and 0:

e
i
2 b
∫ 0
z
A
= Fk(z, z̄) = (z/z̄)

b
2 . (3.34)

An interesting formal solution to (3.33) is

Fk(z, z̄) =

∞∏
j=0

(
γ−jk z − γ−j−1k z̄

γ−j−1k z − γ−jk z̄

)b
. (3.35)

To construct other solutions, we consider the uni-

formizing map JH : H −→ Σ, which enjoys the
property JH(γz) = JH(z), ∀γ ∈ Γ. Then, if Fk
satisfies (3.33), this equation is invariant under

Fk → G(JH, J̄H)Fk. Since |Fk| = 1, we should
require |G| = 1, otherwise G is arbitrary.

4
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4. Hochschild cohomology of Γ

The Fuchsian generators γk ∈ Γ are projectively
represented by means of unitary operators Uk
acting on L2(H). The product γkγj is repre-

sented by1 Ujk, which equals UjUk up to a phase:

UjUk = e2πiθ(j,k)Ujk. (4.1)

Associativity implies

θ(j, k) + θ(jk, l) = θ(j, kl) + θ(k, l). (4.2)

We can easily determine θ(j, k):

UjUk = exp
(
ib

∫ γjz
z

A+ ib

∫ γkγjz
γjz

A

)
×

exp

(
−ib

∫ γkγjz
z

A

)
Ujk = exp

(
ib

∫
τjk

A

)
Ujk,
(4.3)

where τjk denotes the geodesic triangle with ver-

tices z, γjz and γkγjz. This identifies θ(j, k) as

the gauge length of the perimeter of the geode-

sic triangle τjk. By Stokes’ theorem this is the

Poincaré area of the triangle. A similar phase,

introduced independently of any gauge connec-

tion, has been considered in [23] in the context

of Berezin’s quantization ofH and Von Neumann

algebras.

The information on the compactification of

M(atrix) theory is encoded in the action of Γ on

H, plus a projective representation of Γ. The lat-

ter amounts to the choice of a phase. Physically

inequivalent choices of θ(j, k) turn out to be in

one–to–one correspondence with elements in the

2nd Hochschild cohomology group H2(Γ, U(1))

of Γ. This cohomology group is defined as fol-

lows. A k–cochain is an angular–valued func-

tion f(γ1, . . . , γk) with k arguments in Γ. The

coboundary operator δ maps the k–cochain f

into the (k + 1)–cochain δf defined as

(δf)(γ0, . . . , γk) = f(γ1, . . . , γk)

+

k∑
l=1

(−1)lf(γ0, . . . , γl−1γl, . . . , γk)

+(−1)k+1f(γ0, . . . , γk−1). (4.4)

1The differential representation of PSL2(R) acts in re-

verse order with respect to the one by matrices.

Clearly δ2 = 0. A k–cochain annihilated by δ

is called a k–cocycle. Hk(Γ, U(1)) is the group

of equivalence classes of k–cocycles modulo the

coboundary of (k − 1)–cochains. The associa-
tivity condition (4.2) is just δθ(j, k) = 0. Thus

θ is a 2–cocycle of the Hochschild cohomology.

Projective representations of Γ are classified by

H2(Γ, U(1)) = U(1). Hence θ = bχ(Σ) is the

unique parameter for this compactification (θ =

bµ(E) in the general case).

5. Stable bundles and double scaling

limit

We now present some facts about projective, uni-

tary representations of Γ and the theory of holo-

morphic vector bundles [24, 25]. Let E → Σ be a
holomorphic vector bundle over Σ of rank N and

degree k. The bundle E is called stable if the

inequality µ(E′) < µ(E) holds for every proper

holomorphic subbundle E′ ⊂ E. We may take

−N < k ≤ 0. We will further assume that Γ
contains a unique primitive elliptic element γ0 of

order N (i.e., γN0 = 1), with fixed point z0 ∈ H
that projects to x0 ∈ Σ.
Given the branching order N of γ0, let ρ :

Γ→ U(N) be an irreducible unitary representa-

tion. It is said admissible if ρ(γ0) = e−2πik/N1.
Putting the elliptic element on the right–hand

side, and setting ρk ≡ ρ(γk), (1.2) becomes
g∏
j=1

(
ρ2j−1ρ2jρ−12j−1ρ

−1
2j

)
= e2πik/N1. (5.1)

On the trivial bundle H×CN → H there is
an action of Γ: (z, v)→ (γz, ρ(γ)v). This defines
the quotient bundle

H×CN/Γ→ H/Γ ∼= Σ. (5.2)

Any admissible representation determines a holo-

morphic vector bundle Eρ → Σ of rank N and
degree k. When k = 0, Eρ is simply the quotient

bundle (5.2) ofH×CN → H. The Narasimhan–
Seshadri (NS) theorem [26] now states that a

holomorphic vector bundle E over Σ of rank N

and degree k is stable if and only if it is isomor-

phic to a bundle Eρ, where ρ is an admissible

representation of Γ. Moreover, the bundles Eρ1

5
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and Eρ2 are isomorphic if and only if the repre-

sentations ρ1 and ρ2 are equivalent.

The standard Hermitean metric on CN gives

a metric on H×CN → H. This metric and the
corresponding connection are invariant with re-

spect to the action (z, v)→ (γz, ρ(γ)v), when ρ is
admissible. Hence they determine a (degenerate)

metric gNS and a connection ANS on the bun-

dle E = Eρ. The connection ANS is compatible

with the metric gNS and with the holomorphic

structure on E, but it has a singularity at the

branching point x0 ∈ Σ of the covering H → Σ.
The curvature FNS of ANS is a (1, 1)–current

with values in the bundle EndE, characterized

by the property2∫
Σ

f ∧ FNS = −2πiµ(E)tr f(x0), (5.3)

for every smooth section f of the bundle EndE.

The connection ANS is uniquely determined by

the curvature condition (5.3) and by the fact that

it corresponds to the degenerate metric gNS. The

connection ANS on the stable bundle E = Eρ is

called the NS connection.

A differential–geometric approach to stabil-

ity has been given by Donaldson [27]. Fix a Her-

mitean metric on Σ, for example the Poincaré

metric, normalized so that the area of Σ equals

1. Let us denote by ω its associated (1,1)–form.

A holomorphic bundle E is stable if and only if

there exists on E a metric connection AD with

central curvature FD = −2πiµ(E)ω1; such a
connection AD is unique.

The unitary projective representations of Γ

we constructed above have a uniquely defined

gauge field whose curvature is proportional to

the volume form on Σ. With respect to the rep-

resentation considered by NS, we note that NS

introduced an elliptic point to produce the phase,

while in our case the latter arises from the gauge

length. Our construction is directly connected

with Donaldson’s approach as F = iFD, where

F is the curvature (3.27). However, the main

difference is that our operators are unitary dif-

ferential operators on L2(H,CN ) instead of uni-

tary matrices on CN . This allowed us to obtain

a non–trivial phase also in the Abelian case.

2Note that our convention for A differs from the one

in the mathematical literature by a factor i.

It is however possible to understand the for-

mal relation between our operators and those of

NS. To see this we consider the adjoint represen-

tation of Γ on EndCN ,

Ad ρ(γ)Z = ρ(γ)Zρ−1(γ), (5.4)

where Z ∈ EndCN is understood as an N × N
matrix. Let us also consider the trivial bundle

H × EndCN → H. There is an action of Γ:

(z, Z) 7→ (γz,Adρ(γ)Z) that defines the quo-

tient bundle

H× EndCN/Γ→ H/Γ ∼= Σ. (5.5)

Then, the idea is to consider a vector bundle E′

in the double scaling limit N ′ → ∞, k′ → −∞,
with µ(E′) = k′/N ′ fixed, that is

µ(E′) = bµ(E). (5.6)

In this limit, fixing a basis in L2(H,CN), the ma-

trix elements of our operators can be identified

with those of ρ(γ).

6. Noncommutative Riemann surfaces

Let us now introduce two copies of the upper

half–plane, one with coordinates z and z̄, the

other with coordinates w and w̄. While the co-

ordinates z and z̄ are reserved to the operators

Uk we introduced previously, we reserve w and w̄
to construct a new set of operators. We now in-

troduce noncommutative coordinates expressed

in terms of the covariant derivatives

W = ∂w + iAw, W̄ = ∂w̄ + iAw̄, (6.1)

with Aw = Aw̄ = 1/(2 Imw), so that

[W, W̄ ] = iFww̄, (6.2)

where Fww̄ = i/[2(Imw)2]. Let us consider the

following realization of the sl2(R) algebra:

L̂−1 = −w, L̂0 = −1
2
(w∂w + ∂ww),

L̂1 = −∂ww∂w. (6.3)

We then define the unitary operators

T̂k = e
λ
(k)
−1(L̂−1+

¯̂
L−1)eλ

(k)
0 (L̂0+

¯̂
L0)eλ

(k)
1 (L̂1+

¯̂
L1),

(6.4)
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where the λ
(k)
n are as in (3.3). Set Vk = T̂kUk.

Since the T̂k satisfy (3.4), it follows that the Vk
satisfy (3.28) and

Vk∂wV−1k = T̂k∂wT̂−1k =
ak∂w + bk
ck∂w + dk

. (6.5)

Setting W = G∂wG
−1, i.e. G = (w − w̄)2, and

using Af(B)A−1 = f(ABA−1), we see that

VkWV−1k = T̂kWT̂−1k = G(w̃)T̂k∂wT̂
−1
k G−1(w̃),

(6.6)

where

w̃ = T̂kwT̂
−1
k = −e−λ(k)0 + 2λ(k)1 (L̂0 − λ(k)−1w)

−λ(k)21 eλ
(k)
0 (L̂1 + 2λ

(k)
−1L̂0 − λ(k)2−1 w), (6.7)

and by (6.5)

VkWV−1k = T̂kWT̂−1k =
akW̃ + bk

ckW̃ + dk
, (6.8)

where W̃ differs from W by the connection

W̃ = ∂w +G(w̃)[∂wG
−1(w̃)]. (6.9)

6.1 Morita equivalence and large N limit

By a natural generalization of the n–dimensional

noncommutative torus, one defines a noncommu-

tative Riemann surface Σθ in g > 1 to be an as-

sociative algebra with involution having unitary

generators Uk obeying the relation (3.22). Such
an algebra is a C?–algebra, as it admits a faith-

ful unitary representation on L2(H,CN ) whose

image is norm–closed. Relation (3.22) is also sat-

isfied by the Vk. However, while the Uk act on
the commuting coordinates z, z̄, the Vk act on
the operatorsW and W̄ of (6.1). The latter, fac-

torized by the action of the Vk in (6.8), can be
pictorially identified with a sort of noncommuta-

tive coordinates on Σθ.

Each γ 6= 1 in Γ can be uniquely expressed
as a positive power of a primitive element p ∈ Γ,
primitive meaning that p is not a positive power

of any other p′ ∈ Γ [28]. Let Vp be the represen-
tative of p. Any V ∈ C? can be written as

V =
∑

p∈{prim}

∞∑
n=0

c(p)n Vnp + c01, (6.10)

for certain coefficients c
(p)
n , c0. A trace can be

defined as trV = c0.

In the case of the torus one can connect the

C?–algebras of U(1) and U(N). To see this one

can use ’t Hooft’s clock and shift matrices

V1V2 = e
2πiMN V2V1. (6.11)

The U(N) C?–algebra is constructed in terms of

the Vk and of the unitary operators representing

the U(1) C?–algebra. Morita equivalence is an

isomorphism between the two. In higher genus,

the analog of the Vk is the U(N) representation

ρ(γ) considered above. One can obtain a U(N)

projective unitary differential representation of Γ

by taking Vkρ(γk), with Vk Abelian. This non–
Abelian representation should be compared with

the one obtained by the non–Abelian Vk con-
structed above. In this framework it should be

possible to understand a possible higher–genus

analog of the Morita equivalence.

The isomorphism of the C?–algebras is a di-

rect consequence of an underlying equivalence

between the U(1) and U(N) connections. The

z–independence of the phase requires F to be

the identity matrix in the gauge indices. This in

turn is deeply related to the uniqueness of the

connection we found. The latter is related to the

uniqueness of the NS connection. We conclude

that Morita equivalence in higher genus is inti-

mately related to the NS theorem.

Finally let us observe that, as our operators

correspond to the N → ∞ limit of projective
unitary representations of Γ, these play a role in

the N →∞ limit of QCD as considered in [29].
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