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1. Introduction

Studying the Physics that underly the Neuveu–

Schwarz two-form potential, the B-field, seems

to be a fruitful way of incresing our understand-

ing of nonperturbative structures in string the-

ory. This particular field appears in many differ-

ent contexts:

• NS5-branes are magnetically charged with
respect to it. The classical limit of the

world-volume theories realized on coincid-

ing type IIA NS5-branes is still poorly un-

derstood, as it involves a self-dual variant

of the B-field.

• A flat B-field, or at least torsion, is still
necessary for the classification of D-brane

charges in K-theory.

• The B-field enters the discussion of anoma-
lies in world-sheet σ-models in an interest-

ing way.

• In the presence of a constant B-field the ef-
fective world-volume theories on D-branes

can be described in terms noncommutative

geometry.

All of these appearances are somewhat related.

As argued in Refs. [1, 2] the underlying structures

seem to yield to a description in terms of gerbes

[3, 4, 5], that are generalizations of fiber bundles.
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In this article we shall discuss some aspects

of these structures, and give concrete examples

in terms of type II supergravity solutions.

2. Massive type IIA supergravity

The effective low-energy theory of the type IIA

string is the type IIA supergravity. The type IIA

string theory includes a ten-form field strength,

which can be treated by Hodge duality as a cos-

mological constant. If this gauge field is excited,

the correct low energy theory is the massive de-

formation of the type IIA supergravity. Its action

that was first discovered by Romans [6] is

S =

∫
e−2φ

( ∗R+ 4dφ ∧ ∗dφ− 1
2
G ∧ ∗G)

− 1

2
R(C) ∧ ∗R(C)

+
1

2
d−1
(
R[4] ∧R[4] ∧G)

+ (fermions) . (2.1)

The only non-trivial components ofR[2k] are those

for 2k = 0, 2, 4. These modified field strengths

can be summarized in the expansion

R(C) = dC −G ∧C +meB , (2.2)

where B is the NS two-form, G = dB, and m the

mass parameter.

This action possesses various gauge symme-

tries. In order to isolate the essential features

in these symmetries, let us concentrate on the
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trasformation properties of the RR one-form po-

tential C [1]. This field looks like a U(1)-gauge

field, as we are allowed to shift it (in a suitable

background of other fields) by any closed form.

Geometrically this means that we could try to

interpret it as a connection on a line bundle L.
Then the Chern class of this bundle c1(L) would
just be the D6-brane charge. However, we are

also allowed to shift it

C [1]′ = C[1] +mη (2.3)

using any one-form η. This symmetry can be

used to gauge away the one-form RR-potential

completely, after which the part of the Lagrangian

that involves the B-field is

∫
||dB||2 + 1

2
m2||B||2 + . . . (2.4)

In this way the B-field becomes a massive ten-

sor field, thus absorbing the together with the

RR-field disappearing degrees of freedom. In the

presence of D0 or D6-branes this interpretation

might seem problematic at the first sight, as elim-

inating the RR-field would seem to violate charge

conservation. Indeed, the system is actually also

invariant under shifts of dC[1] by any closed form.

If there is a topologically nontrivial two-cocycle

in the cohomology of the space-time, we can use

this symmetry to shift the D6-brane charge asso-

ciated naively to the bundle L arbitrarily.
The physical field strengths are really the

modified field strengths instead, and the bare

RR-fields have no independent meaning. The

above example raises the question, however, of

how to interpret the RR one-forms geometrically

and what really is their relation to the NS two-

form.

All of this is naturally also consistent with

the fact that D-brane charges are indeed know

to be classified rather in terms of K-theory than

directly in terms of the cohomoly of the RR-fields

[7]. However, this classification is completely un-

derstood only for G = 0. What happens for

G 6= 0? In order to attempt to answer these
question we seem to have to consider generalized

line bundles, gerbes.

3. Some tools

3.1 Line bundles

Let us briefly recapitulate the information that

is needed to build a line bundle. To start with,

we need the projection π : L −→M form the full
space to the base space. We also need to know

how the fibers U(1) ∼= Vα = π−1(p), p ∈ Uα ⊂M
transform when we move from one open neigh-

bourhood Uα of the base spaceM to another, Uβ .
This information is encoded in the U(1)-valued

transition functions gαβ .

Two consistency conditions ensue: First, g

must be antisymmetric in the sence that gαβ =

g−1βα and, second, δgαβγ = 1 where δg is short-
hand for

gβγ g
−1
αγ gαβ . (3.1)

Given the base space, the collection of these tran-

sition functions essentially defines the line bun-

dle.

Not all line bundles defined this way are in-

equivalent: one can always deform the transi-

tions functions gαβ multiplying them with any

U(1) valued functions of the form hαh
−1
β with-

out changing the topology of the bundle. These

deformations are nothing but gauge transforma-

tions. A convenient way of classifying these bun-

dles is available, if we have a connection ∇ =
d +A on L. Then the first Chern class

c1(L) =
[
dAα
2π

]
∈ H2(M,Z) (3.2)

distinguishes between inequivalent bundles in terms

of the cohomology of the base space M .

3.2 Gerbes

Gerbes are formal generalizations of line bundles

in the sense that, given the base space M , they

are (equivalence classes of) collections of U(1)-

valued functions gαβγ on each triple intersection

Uα ∩Uβ ∩Uγ . Also these functions must be anti-
symmetric and satisy δgαβγδ = 1, shorthand for

gβγδ g
−1
αγδ gαβδ g

−1
αβγ . (3.3)

Given a collection of functions hαβ on each

double intersection we can shift g by

g′βγδ = gβγδ δhβγδ, (3.4)
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where δhβγδ = hγδh
−1
βδ hβγ . Identifying g ∼ g′

we get a class in the second Čech -cohomology

group.

It is useful to equip the gerbe as defined

above with some additional structure. In the

following we shall consider a gerbe {gβγδ} with
curving G ∈ H3(M,Z) and connective structure.
Concretely, we need the following data:

gαβγ A Čech -cocycle.

Aαβ connections on a line bundles Lαβ defined
over the two-fold intersections Uα ∩ Uβ .

Bα A locally defined two-form potential of G =

dBα.

These differential forms are useful for character-

izing inequivalent gerbes and, as we shall presently

see, they are also the fields that would appear in

a supergravity realization of a gerbe.

The forms Aαβ and Bα satisfy the following

consistency conditions

1) Lαβ = L−1βα.
2) Lαβ ⊗ Lβγ ⊗ Lγα trivial where defined.
3) Bα −Bβ = dAαβ where defined.

Here the Čech -cocycle does not appear explicitly

any more, though the information of its topolog-

ical class is contained in the equations.

Let us consider the trivial situation first: If

there were bundles Lα that satisfy Lα ⊗ L−1β =

Lαβ then we could write

Bα + c1(Lα) = Bβ + c1(Lβ) . (3.5)

Identifying the Bα = mBNS and c1(Lα) = dC[1]RR
this condition just reduces to the statement that

R[2] = dC
[1]
RR +mBNS (3.6)

is a well defined gauge invariant quantity.

4. Solutions

In the following we will consider as in Ref. [1]

massive type IIA supergravity on a space time

M1,5×R× S3, where M1,5 is an arbitrary man-
ifold. Our constructions are analogues of Dirac’s

treatment of a monopole, though one dimension

higher. Here NS5-branes with world-volumes along

M1,5 play the role of the monopole sources, lo-

cated at the extracted point in R4∗ ∼= R×S3. The
Dirac string will turn out to be the D6-brane.

The strategy of solving the equations of mo-

tion is the following: We show here that the var-

ious charges are conserved and that all fields are

well defined. This amounts to solving the form-

field Bianchi identities and equations of motion.

The metric and the dilaton fields will adapt when

these sources are consistently put in place. The

actual solutions can be described most conve-

niently in the T-dual type IIB description (for

this, see Ref. [1]).

4.1 D6-branes ending on NS5-branes

In the spirit of the Dirac monopole bundle, we al-

ways cover the three-sphere with two open charts

U0 and U1, and study the behaviour of various
supergravity fields on their intersection. Choose

now a fixed point p ⊂ S3 from the sphere outside
U0. Let H satisfy1

∆H = [V ]− 2πδp ∈ H3(S3,Z) , (4.1)

where [V ] is the de Rham class of the volume

form i.e. generator ofH3(S3,Z), δp is the Poincaré

dual of the point p, Q is a parameter, and ∆ =

{d, d†} is the Hodge–de Rham Laplacian. On the
coordinate patch U1 we can similarly define

∆H1 = [V ] . (4.2)

The ansatz for the NS two-form is locally

B =

{
Q d†H on U0
Q d†H1 on U1 . (4.3)

The field strength is

G = dB = Q [V ] , (4.4)

which yields the NS5-brane charge 2πQ. Since

[G/2π] is in integral cohomology, Q must be an

integer.

For generality we consider the mass param-

eter in Romans’ supergravity as a local constant

m =

{
m0 on U0
m1 on U1 . (4.5)

1The present ansatz makes use of a construction in [5].
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On the intersection of charts U0∩U1 the charge is
the difference in cosmological constants q(D8) =

m1 −m0 = ∆m.
We shall further assume

dC
[1]
RR =

{
0 on U0
Q d†(m0H0 −m1H1) on U1 .(4.6)

Now R[2] turns out to be a globally defined differ-

ential form, as becomes a physical field strength.

4.2 Charge quantization

The D6-brane charge can be calculated integrat-

ing over the charge density on a disc D ⊂ U1
qD6 = (m0 −m1) Q vol(∂D)

− 2πm0Q . (4.7)

We want to interpret the restriction of the non-

gauge invariant two-form dC [1] on U0 ∩U1 as the
curvature F of a suitable line bundle on the inter-

section. If this can be done the whole structure

extends to a gerbe. The base space of the bundle

L01 we are looking for is topologically a cylinder.
The condition for L01 to be an on the cylinder
well defined line bundle is that the charge qD6 be

quantized. As the factor vol(∂D) in the formula

for the flux depends continuously on the choice

of D3, we are lead to the quantization conditions

m0 = m1 (4.8)

m0Q ∈ Z . (4.9)

The first one implies that a D8-brane would sepa-

rate two different gerbes from one another other.

As noted above, Q is an integer. This leads to the

quantization of the cosmological constant as well,

which is consistent with the results of Ref. [8].

4.3 Domain walls

Another instructive example is that of a domain

wall, wherem0 6= m1. This configuration will de-
scribe the boundary between two different gerbes

separated by the wall. Let us in particular con-

sider the above computation with the modifica-

tion

∆H = [V ] (4.10)

on U0 as well. Taking the limit U1 −→ {pt} we
see a charge qD6 = ∆m 2πQ. The geometrical in-

terpretation for this is that there are ∆mQ copies

of D6-branes ending on a NS5-branes located on

a D8-brane domain wall.

5. Holonomies

It is physically reasonable to be interested in a

description of these systems in terms of transition

functions gαβ , or their equivalents in gerbes gαβγ ,

because they are directly related to holonomies.

The connection on a line bundle, and the one

and the two-form fields on a gerbe, give tools

to calculate them effectively as was done, for in-

stance, in the treatment of world-sheet anomalies

in Ref. [9]. One of the intriguing but still open

problems is to find the classical limit of coincid-

ing NS5-branes in type IIA, cf. Refs. [10, 11].

In Ref. [2] a non-Abelian generalization of these

structures was suggested, where the interplay of

the holonomies of local Chan–Paton bundles and

the characteristic class of a gerbe was crucial.

6. Conclusions

We have reviewed a class of solutions of type IIA

supergravity that involve NS5-branes and D6-

branes. These configurations seem to defy the

traditional description in terms of global bundles

over submanifolds, and should be described in

terms of gerbes. Configurations of this kind ap-

pear generically in any theory that involves mas-

sive tensor fields, and in particular in supergrav-

ity in the presence of NS5-branes.

It seems reasonable to expect that the meth-

ods reviewed here might be instrumental in study-

ing consistency conditions for D-brane embed-

dings in nontrivial B-field backgrounds, as well

as in understanding the classical limit of coin-

ciding NS5-branes. Also the classification prob-

lem of D-branes in the presense of a topologically

nontrivial B-field seems to involve classification

of gerbes as a natural extension of the K-theory

classification of fiber bundles over the branes.
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