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Abstract: The behavior of a brane universe in the background fields of other branes is studied.

Motion of the brane induces cosmological expansion driven by apparent (mirage) energy densities

some of them with |w| > 1. Inflation and/or quintessence can naturally arise in this context. A
mechanism for stabilising the univers-brane after supersymmetry breaking with the potential for a

natural resolution of the cosmological constant problem is also given.

1. Introduction

In this lecture we will elaborate on some ideas re-

lated to the possibility that our observable four-

dimensional world is a three-brane embedded in

ten dimensional string theory. There has been

earlier speculations [1] stating that our observ-

able four-dimensional universe is a domain wall

embedded in a higher dimensional space. Al-

though there is no strong theoretical or exper-

imental motivation for this idea, it has been re-

vived recently [2]-[11] motivated by the possibil-

ity of large compact internal dimensions [12] the

notion and existence of D-branes in string the-

ory [13], and the fact that orientifold [14] and

D-manifold [15] vacua of string theory can be

thought of as lower-dimensional D-branes em-

bedded in a ten-dimensional bulk. An early ex-

ample of this is the Horava-Witten picture for

the non-perturbative heterotic E8 × E8 string
[16], the relevance of this for gauge coupling uni-

fication upon compactification to five dimensions

[17] and the associated picture of supersymmetry

breaking [18].

An attractive feature of this idea is that it

can provide with potential new physics signals

the experimental physics community. Here, in

particular, the new physics can be string effects,

or quantum gravitational effects at scales that

are well below the four-dimensional Planck scale.

One can avoid typical string theory constraints

by focusing on type I (orientifold) vacua of string

theory. Although this approach has not obvi-

ously solved any major theoretical problem yet it

is an interesting alternative and its implications

should be pursued.

In the context we will assume, the Standard

Model gauge bosons as well as charged matter

arise as fluctuations of D-branes. Some of the re-

sults though depend only on the Nambu type of

action and are thus valid generally. We can con-

sider the universe (standard model) to be living

on a collection of coincident branes, while hid-

den gauge interactions can be localised on other

branes. Gravity as well as other universal inter-

actions is living in the bulk space.

There is an approximation which is very use-

ful in order to treat the dynamics of the universe

brane. This is the probe limit in which the influ-

ence of the probe brane source to the bulk fields

is negligible. This has been a natural and useful

tool [20]-[22] in order to understand issues in the

context of AdS/CFT correspondence [23]. How-

ever, for the spherically symmetric bulk configu-

rations we will consider, the probe limit will give

exact results. We should stress here that the uni-

verse branes are “microscopic” in the same sense

that electrons are microscopic: The classical so-

lution at the position of the brane is singular.

The dynamics of the brane is well defined how-

ever.

Here we will attempt to investigate two ques-

tions relevant to a brane universe: Cosmology

on the brane [40] as well as brane stabilisation.
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Both issues arise from the question: what hap-

pens when there is a non-vanishing force between

branes. In a typical low energy vacuum where

supersymmetry is broken, a given collection of

branes filling the bulk will experience non-zero

forces that tend to destabilise it. We will investi-

gate here a mechanism that stabilises the brane

in the presence of diverse sources of supersymme-

try breaking and provides a context where there

is no cosmological constant problem. We will also

investigate the effect of bulk motion of branes

and show that it provides a (sometimes exotic)

cosmological evolution on the brane.

There has been a lot of recent work on the

potential cosmological models associated to a brane

universe [24]-[47]. Our approach will be slightly

different. We can imagine the collection of other

branes to provide a gravitational background which

is felt by the universe brane treated as a probe.

In this context a universe three-brane (or higher

compactified brane) can be in motion in ten-

dimensional space in the presence of a the grav-

itational field of the other branes. We ignore its

back reaction to the ambient geometry. We will

show that the motion in ambient space induces

cosmological expansion (or contraction) on our

universe simulating various kinds of ”matter” or

a cosmological constant (inflation). This is what

we mean by mirage cosmology: the cosmological

expansion is not due to energy density on our

universe but somewhere else. This can be either

on other branes (that can be represented qual-

itatively by a black hole background) or in the

bulk.

There is a different limit in which our uni-

verse is moving to a region of ultra-weak bulk

fields, in which case the matter density on it

alone drives the cosmological expansion, in the

traditional fashion. We will show that this limit

is equally well described in our setup.

The holographic principle and AdS/CFT cor-

respondence ideas, are providing novel ways to

treat old mechanisms. In the case of cosmologi-

cal expansion, supersymmetry is very softly bro-

ken and it is expected that the probe approx-

imation may be valid even in the case where

the source is not hierarchically heavier than the

probe [22]. It was observed that for a D-brane

moving in the background of a black D-brane

the word-volume theory has an effective speed

of light which is field dependent [22]. Once the

probe brane is in geodesic motion the varying

speed of light is equivalent to cosmological ex-

pansion on the probe brane.

There are two possibilities to be explored in

relation with the bulk geometry. The bulk may

not be compact (but there is a mass gap [48] or

some way it makes low lying higher-dimensional

gravitons unobservable [6]). Then, there is no

bound on the mass of D-branes. If the bulk is

compact there are charge neutrality constraints

that must be satisfied and they constrain the

brane configurations. In simple situations they

limit the number of D-branes. A typical exam-

ple is the D9-branes in type-I string theory whose

number is limited to 32. We can bypass this con-

straint once we consider also anti-branes.

Here we will mostly focus in the non-compact

case. In the case where the space is compact the

generalisation (and limitation) of our arguments

will be straightforward. For regions which are

small compared to the size of the compact space

the description of geodesics is accurate. When a

geodesic reaches distances comparable with the

compact size we must use the form of bulk so-

lution which is periodic (and can be constructed

as an infinite periodic array of non-compact so-

lutions). Using such a matching formula the full

geodesics can be studied. This will imply that in

such a context the most probable cosmological

evolution is a bouncing one.

Thus, the central idea is that the universe

brane is moving into the bulk background fields

of other branes of the theory. The motion of

the brane follows thus, a classical geodesic in the

bulk geometry. The prototype branes we are us-

ing here are Dp-branes with maximal supersym-

metry. Any realistic type-I ground-state can be

viewed in big region of moduli space as inter-

secting such branes. Moreover we know well the

coupling of world-volume fields to the bulk su-

pergravity fields.

There are two steps in the procedure:

• Determine the brane motion by solving the
world-volume field equations for the scalar

fields determining the position of the brane

in the bulk
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• Determine the induced metric on the brane
which now becomes an implicit function of

time. This gives a cosmological evolution in

the induced brane metric. This cosmologi-

cal evolution can be reinterpreted in terms

of cosmological “mirage” energy densities

on the brane via a Friedman-like equation.

The induced metric on the brane is the

natural metric felt by the observers on the

brane. We assume that our universe lives

on the brane and is made off open string

fluctuations.

• Similarly one can determine the other in-
teractions on the brane

An important reminder here is that the cos-

mological evolution is not driven by four-dimensional

gravity on the brane. Our analysis indicates that

potential inflationary models where the position

scalar and its potential is used to generate infla-

tion on the brane via conventional four-dimensional

gravity couplings might not after all generate the

sought-after inflation. A necessary condition is

that the minimum of the potential (equal to the

brane tension) to be above the BPS limit.

Various combinations of branes and simple

background fields can be analysed. They cor-

respond to a stack of Dp-branes on and out of

extremality (black Dp-branes) as well as with

additional constant antisymmetric tensor back-

grounds. They provide a cosmological evolution

on the probe brane that can be simulated by var-

ious types of mirage matter on the brane. Most

prominent is radiation-types (w=1/3) or mass-

less scalars (w=1). It should be stressed however

that at small scale factor size, there are many

exotic types of mirage matter including w values

that are outside the range |w| ≤ 1 required by
four-dimensional causality. We interpret this as

an indication that superluminal (from that four-

dimensional points of view) ”shocks” are possible

in such cosmologies. Superluminal signal prop-

agation in a brane-world context have been re-

cently pursued independently in [41, 49].

Another peculiarity is that individual den-

sities of mirage dilute matter can be negative

(without spoiling the overall positivity at late

times). We think that this is linked to the fact

that in this type of cosmology the initial singu-

larity is an artifact of the low energy description.

This can be seen by studying brane motion

in simple spaces like AdS5 × S5 which are glob-
ally non-singular. The induced cosmological evo-

lution of a brane moving in such a space has

a typical expansion profile due to radiation and

an initial singularity (from the four-dimensional

point of view). However this singularity is an ar-

tifact. At the point of the initial singularity the

universe brane joins a collection of parallel sim-

ilar branes and there is (non-abelian) symmetry

enhancement. The effective field theory breaks

down and this gives rise to the singularity.

The next obvious question is how “real” mat-

ter/energy densities on the brane affect its geodesic

motion and consequently the induced cosmolog-

ical evolution. This can be studied by turning

on electromagnetic energy on the brane. We

find a solution of the moving brane with a co-

variantly constant electric field. We do show

that this gives an additional effect on the cosmo-

logical evolution similar to the analogous prob-

lem of radiation density in four-dimensions. Al-

though an electric field is an unrealistic cosmo-

logical background the solution we obtain is valid

when the electric energy density is thermal (and

thus isotropic) in nature. This indicates that the

formalism we present is capable of handling the

most general situation possible, namely cosmo-

logical evolution driven by bulk background fields

(mirage matter) as well as world-volume energy

densities (real matter).

A variant of the above can be used to pro-

vide for brane stabilisation in the presence of

supersymmetry breaking. Here we will assume

two distinct sources of supersymmetry breaking.

One come from distant branes. In the spirit of

the Scherk-Schwarz mechanism we model this by

a “quasi-Euclidean black brane”. Its near hori-

zon limit was argued to describe via AdS/CFT a

Minkowskian gauge theory compactified on a cir-

cle with supersymmetry breaking boundary con-

ditions [51]. In this background the universe

brane will equilibrate by aligning appropriately

in one of the longitudinal directions. This align-

ment is an extra source of supersymmetry break-

ing. This configuration is stable for p=6[50].

Moreover, corrections to the vacuum energy (cos-
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mological constant) on the brane or the bulk are

not expected to modify significantly the equilib-

rium and do not produce a large observable cos-

mological constant.

2. Brane geodesics

In this section we will consider a probe D-brane

moving in a generic static, spherically symmetric

background. The brane will move in a geodesic.

We assume the brane to be light compared to

the background so that we will neglect the back-

reaction. The idea here is that as the brane

moves in a geodesic, the induced world-volume

metric becomes a function of time, so that from

the brane “residents” point of view they are liv-

ing in a changing (expanding or contracting) uni-

verse.

We should mention here that most of our re-

sults will be valid for other than D-branes. In

all branes the Nambu action, being the most IR-

relevant determines the low energy dynamics of

the brane and this is universal. Only special cou-

plings like the to two-index antisymmetric tensor

are model or brane dependent.

The simplest case corresponds to a D3-brane

and we will focus mostly on this case. Later we

will consider Dp-branes with p > 3 and p − 3
coordinates compactified. The metric of a D3-

brane may be parametrised as

ds210 = g00(r)dt
2+g(r)(d~x)2+grr(r)dr

2+gS(r)dΩ5
(2.1)

and we may also generically have a dilaton φ(r)

as well as a RR background C(r) = C0...3(r) with

a self-dual field strength. The probe brane will in

general start moving in this background along a

geodesic and its dynamics is governed by the DBI

action. In the case of maximal supersymmetry it

is given by

S = T3

∫
d4ξe−φ

√
−det(Ĝαβ + (2πα′)Fαβ −Bαβ)

+T3

∫
d4ξ Ĉ4 + anomaly terms (2.2)

where we have ignored the world-volume fermions.

The embedded data are given by

Ĝαβ = Gµν
∂xµ

∂ξα
∂xν

∂ξβ
(2.3)

etc. Due to reparametrization invariance, there

is a gauge freedom which may be fixed by choos-

ing the static gauge, xα = ξα α = 0, 1, 2, 3. A

generic motion of the probe D3-brane will have

a non-trivial angular momentum in the trans-

verse directions. In the static gauge the relevant

(bosonic) part of the brane Lagrangian reads

L =
√
g(r)3[|g00| − grrṙ2 − gS(r)hij ϕ̇iϕ̇j ]−C(r)

(2.4)

where hij(ϕ)dϕ
iϕj is the line element of the unit

five-sphere. For future purposes (generality) we

will parametrise the Lagrangian as

L =
√
A(r) −B(r)ṙ2 −D(r)hij ϕ̇iϕ̇j − C(r)

(2.5)

with

A(r) = g3(r)|g00(r)|e−2φ

B(r) = g3(r)grr(r)e
−2φ (2.6)

D(r) = g3(r)gS(r)e
−2φ

and C(r) is the RR background. The problem is

effectively one-dimensional and can be solved by

quadratures.The momenta are given by

pr = − Bṙ√
A−Bṙ2 −D hijϕ̇iϕ̇j

(2.7)

pi == − Dhijϕ̇
j√

A−Bṙ2 −D hijϕ̇iϕ̇j

The angular momenta as well as the Hamiltonian

H = −E = C − A√
A−Bṙ2 −D hij ϕ̇iϕ̇j

(2.8)

are conserved. The conserved total angular mo-

mentum (SO(5) quadratic Casimir in our case)

is hijpipj = `
2 and

hij ϕ̇
iϕ̇j =

`2(A−Bṙ2)
D(D + `2)

(2.9)

Thus, the final equation for the radial variable is√
D

D + `2
(A−Bṙ2) = A

E + C
. (2.10)

In summary,

ṙ2 =
A

B

(
1− A

(C + E)2
D + `2

D

)
(2.11)
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hijϕ̇
iϕ̇j =

A2`2

D2(C + E)2

Here we see that we have the constraint that

C(r) + E ≥ 0 for the allowed values of r. A
stronger condition can be obtained from (2.11)

A

B

(
1− A

(C + E)2
D + `2

D

)
≥ 0 (2.12)

The induced four-dimensional metric on the

3-brane universe is

dŝ2 = (g00 + grrṙ
2 + gShijϕ̇

iϕ̇j)dt2 + g(d~x)2

(2.13)

and upon substituting from (2.6) it becomes

dŝ2 = −g
2
00g
3e−2φ

(C + E)2
dt2 + g(d~x)2 (2.14)

We can define the cosmic time η as

dη =
|g00|g3/2e−φ
|C + E| dt (2.15)

so that the universe metric is

dŝ2 = −dη2 + g(r(η))(d~x)2 (2.16)

The cosmic time is the same as the proper time of

the universe brane. Equation (2.16) is the stan-

dard form of a flat expanding universe. We can

now derive the analogues of the four-dimensional

Friedman equations by defining the scale factor

as a2 = g. Then,(
ȧ

a

)2
=
(C + E)2gS − |g00|(gSg3e−2φ + `2)

4|g00|grrgSg3e−2φ
(
g′

g

)2
(2.17)

where the dot stands for derivative with respect

to cosmic time while the prime stands for deriva-

tive with respect to r. The right hand side of

(2.17) can be interpreted in terms of an effective

matter density on the probe brane

8π

3
ρeff =

(C + E)2gS − |g00|(gSg3e−2φ + `2)
4|g00|grrgSg3e−2φ

(
g′

g

)2
(2.18)

We have also

ä

a
=

(
1 +
g

g′
∂

∂r

)
=

[
1 +
1

2
a
∂

∂a

]
8π

3
ρeff (2.19)

By setting the above equal to − 4π3 (ρeff + 3peff)
we can define the effective pressure peff .

In terms of the above we can calculate the

apparent scalar curvature of the four-dimensional

universe as

R4−d = 8π(ρeff − 3peff) = 8π (4 + a∂a) ρeff
(2.20)

The discussion above may easily be gener-

alised for the geodesic motion of a probe Dp-

brane in the field of a Dp’-brane with p′ > p. In
this case, the Dp’-brane metric is of the form

ds210 = g00(r)dt
2 + g(r)(d~xp′ )

2 + grr(r)dr
2+

+gS(r)dΩ8−p′ , (2.21)

and there exist in general a non-trivial dilaton

profile φ = φ(r) as well as a RR p′+1 from Cp′+1.
The Dp-brane probe in this background will feel

only gravitational and dilaton forces since it has

no p′-brane charge. Its motion will then deter-
mined by the DBI action

Sp = Tp

∫
dp+1ξe−φ

√
−det(Ĝαβ) (2.22)

In the static gauge and for a generic motion with

non-trivial angular-momentum in the transverse

directions of the Dp’-brane we find that the La-

grangian turns out to be

L =
√
Ap −Bpṙ2 −Dp hijϕ̇iϕ̇j (2.23)

where now

Ap(r) = g
p(r)|g00(r)|e−2φ

Bp(r) = g
p(r)grr(r)e

−2φ (2.24)

Dp(r) = g
p(r)gS(r)e

−2φ .

Proceeding as before, we find the induced

metric on the Dp-brane,

dŝ2 = (g00 + grrṙ
2 + gShij ϕ̇

iϕ̇j)dt2 + g(d~xp)
2

(2.25)

and upon substitution becomes

dŝ2 = −g
2
00g
pe−2φ

E2
dt2 + g(d~xp)

2 (2.26)

We can define now the cosmic time η as

dη =
|g00|gp/2e−φ
|E| dt (2.27)
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so that the universe metric is dŝ2 = −dη2 +
g(r(η))(d~x)2. The analogues of the p+1-dimensional

Friedman equations are determined by defining

the scale factor as a2 = g. As before we obtain a

Friedman type equation with an effective density

given by

4π

3
ρeff =

E2gSe
2φ − |g00|(gSgp + `2e2φ)
4|g00|grrgSgp

(
g′

g

)2
(2.28)

Note that in the case p = p′, there exist the
additional WZ term Tp

∫
Ĉp+1 in the action(2.22)

which modifies the equations of motion of the

probe brane as well as the induced metric. This

modification is nothing than the shift E → E+C
where C = C0...p.

3. Electric Fields on the brane

Let us now assume that we turn on an electric

field on the probe D3-brane. This obviously breaks

isotropy on the universe and thus this is not a

realistic configuration for cosmological purposes.

Our aim here is different. We would like to show

that when there is energy density due to the

gauge fields of the brane, our approach takes

them appropriately into account and they will

affect the evolution of the cosmological factor.

Moreover, it is not difficult to argue that if the

gauge-field energy density is thermal in nature

(and thus not isotropy breaking) this will not af-

fect our conclusions provided we substitute ~E2 →<
~E2 > etc. The end result turns out to be that our

approach takes into account properly both mi-

rage and real energy densities and one can even-

tually study the transition between the two.

When we keep track of the gauge fields, the

action for the D3-brane is given in (2.2) and for

the background in (2.1) the Lagrangian takes the

form

L =
√
A−Bṙ2 − E2g2 − C (3.1)

where E2 = 2πα′EiEi and Ei = −∂tAi(t) in the
A0 = 0 gauge and A,B are given in (2.6). For

simplicity we focus on radial motion.

The equations of motions for the electric field

turn out to be

∂t

(
g2Ei√

A−Bṙ2 − E2g2

)
= 0. (3.2)

and we find that

Ei =
µi

g

√
A−Bṙ2
µ2 + g2

, E2 = µ
2

g2
A−Bṙ2
g2 + µ2

, (3.3)

where µi is an integration constant and µ
2 =

(2πα′)µiµi. In the case ṙ = 0, Ei is constant as
it is required by ordinary Maxwell equations. A

first integral is given by

ṙ2 =
A

B

(
1− A

(C + E)2(1 + µ2g−2)

)
. (3.4)

Using (3.4), we obtain

E2 = µ2 A2

(C + E)2(g2 + µ2)2
. (3.5)

The induced metric on the probe D3-brane turns

out to be

dŝ2 = − g200g
5e−2φ

(C + E)2(µ2 + g2)
dt2 + g(d~x)2 (3.6)

and by defining the cosmic time η along similar

lines we obtain the following analog of the Fried-

man equations

(
ȧ

a

)2
=
(C + E)2

(
1 + µ

2

g2

)
− |g00|g3e−2φ)

4|g00|grrg3e−2φ
(
g′

g

)2
(3.7)

We note that the dominant contribution to

(ȧ/a)2 from the electric field is of order E2 as
can be seen from eq.(3.5) and thus proportional

to the energy density ρ ∼ E2. It should also be
noted that there exist a limiting value for the

electric field [52],[53] which is

E2 ≤ A2g−2 (3.8)

The gauge invariance of the bulk antisym-

metric tensor is closely tied with that of the world-

volume gauge fields. This is in agreement with

the observation that, comparing analogous equa-

tions for the presence of constant antisymmetric

tensor backgrounds [40] their presence is similar

to electric fields.

4. Cosmology of a probe D3-brane

in various backgrounds

In this section we will analyse several concrete

bulk configurations and elaborate on the induced

cosmological expansion on the universe brane.
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AdS5 black hole

The near-horizon geometry of a macroscopic

D3-brane is AdS5 × S5. Once the brane is black
we obtain the associated black hole solution with

metric

ds2 =
r2

L2
(−f(r) dt2 + (d~x)2)+L2

r2
dr2

f(r)
+L2dΩ25 ,

(4.1)

f(r) = 1 − ( r0r )4 and RR field C = C0...3 =[
r4

L4 − r40
2L4

]
. The constant part can be eventually

absorbed into a redefinition of the parameter E.

By using eqs.(2.1,2.18), the effective density

on a probe D3-brane in the above background

turns out to be

8π

3
ρeff =

1

L2

[(
1 +
E

a4

)2
−
(
1−

(r0
L

)4 1
a4

)
×

×
(
1 +
`2

L2
1

a6

)]
(4.2)

When the brane is falling towards the black-brane

the universe is contacting while if it moving out-

wards, it is expanding. Far from the black-brane

ρeff ∼ a−4. In this regime the brane motion
produces a cosmological expansion indistinguish-

able with the one due to (dilute) radiation on the

brane. As one goes backward in time there is a

negative energy density ∼ a−6 controlled by the
angular momentum `. It corresponds to ρeff =

peff , relation characteristic of a massless scalar.

Although the density is negative the overall effec-

tive density remains non-negative for 0 < a <∞.
At earlier times the factor ∼ a−8 dominates cor-
responding to dilute matter with p = w ρ and

w = 5/3 > 1. Such a behavior is unattainable by

real matter on the brane since causality implies

that |w| ≤ 1. Finally, at very early times the
evolution is dominated by mirage density with

w = 7/3.

More generally we can consider the D3-brane

moving in the background of a p > 3 black brane.

This problem has been considered in a previous

section. In this case we obtain an effective den-

sity using (2.28) with p=3:

8π

3
ρeff =

(
7− p
4L

)2
a
2(3−p)
7−p

[
E2

a2(7−p)
− (4.3)

−
(
1−

(r0
L

)7−p 1
a4

)(
1 +
`2

L2
1

a2(5−p)+
8
7−p

)]

As is obvious from the above, that the universe

brane cannot go far away from the black-brane.

It bounces back at some finite value of the scale

factor. This describes a closed universe where the

deceleration is provided by bulk fields rather than

curvature on the brane. Particularly interesting

is the case p = 5 where (4.3) reads

8π

3
ρeff =

1

4L2
1

a2

[
E2

a4
−
(
1−

(r0
L

)4 1
a4

)
×
(4.4)

×
(
1 +
`2

L2
1

a4

)]

The term −a−2 produces an effect similar to pos-
itive curvature and slows the expansion. The

terms a−6 simulate the density of a massless scalar
w = 1. This density increases with E and r0
while the angular momentum tends to decrease

the density. Moreover there is also a component

with w = 7/3 In the case ` = r0 = 0, the universe

expands until it eventually stops and eventually

recolapses. The general picture with recolapse is

also true for all p > 3. For p = 4 we obtain the

effective indices w = −7/9, 5/9, 11/9, 7/9, 19/9.
For p = 6 we obtain w = 1, 5/3, 7/3, 3, 13/3.

Dp-black brane

The metric is

ds2 = H−1/2p

(−fdt2 + (d~x)2)+ (4.5)

+H1/2p

(
dr2

f
+ r2dΩ28−p

)
,

with Hp = 1 +
L7−p
r7−p , f = 1 −

r7−p0

r7−p . The RR

field is C = ξ
1−Hp
Hp

with ξ =

√
1 +

r7−p0

L7−p and

the dilaton is eφ = H
(3−p)/4
p . A probe D3-brane

in this background has a cosmological evolution

driven by the effective density

8π

3
ρeff =

(1− a4)5/2
L2

[
(E + ξa4)2

a8
− (4.6)

−
(
ξ2 − ξ

2 − 1
a4

)(
1 +
`2

L2

√
1− a4
a6

)]

when p = 3 and

8π

3
ρeff =

(7 − p)2
16L2

a
2(3−p)
(7−p) (1−a4) 2(8−p)(7−p)

[
E2

a2(7−p)
−

(4.7)

7
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−
(
ξ2 − ξ

2 − 1
a4

)(
1 +
`2

L2
(1− a4) 2

(7−p)

a2(5−p)+
8
7−p

)]

when p > 3

Here there is a limiting size for the scale fac-

tor namely 0 ≤ a ≤ 1. the maximum value is
in general a free parameter that can always be

scaled to one in the equations. For a << 1 the

cosmological evolution is similar to the one dis-

cussed for the near-horizon geometries. When

a ' 1 there is a different type of evolution. De-
noting a4 = 1− ε, ε << 1 we obtain (for p < 7)

ε̇ =
|7 − p|
L

√
E2 − 1 ε 8−p7−p ⇒ (4.8)

⇒ ε = L7−p

(
√
E2 − 1)7−p t

−(7−p)

This is the typical behaviour of asymptotically

flat solutions. The case p = 7, 8 are not asymp-

totically flat. We will discuss p = 8 as an example

below. The effective density is in this case

8π

3
ρeff =

1

16L2
a10
[
E2 a2− (4.9)

−
(
ξ2 − ξ

2 − 1
a4

)(
1 +
`2

L2
a14

(1− a4)2
)]

For small a the dominant term in the evolution

is a6. For later times the scale factor will bounce

depending on parameters before a = 1.

As a conclusion for the asymptotic geome-

tries of spherically symmetric branes, the evolu-

tion equation for the scale factor is different from

standard evolution due to some kind of density

on the brane. On the other it will be expected

that once the universe brane is far away from the

source and the gravitational and other fields are

weak, in this regime the dominant source of cos-

mological expansion will be the matter density

on the brane.

Near horizon of a D3-brane with a world-

volume electric field

It is not difficult to see that the effect of the

electric field affects the cosmological evolution as

it would in a four dimensional universe.

In the case of the near-extremal D3-brane

(4.1) we obtain instead of (4.2)

8π

3
ρeff =

1

L2

[(
1 +
E

a4

)2(
1 +
µ2

a4

)
− (4.10)

−
(
1−

(r0
L

)4 1
a4

)(
1 +
`2

L2
1

a6

)]

Thus, the extra electric field adds at late times

an extra effective density ∆ρ = µ2 = E2.
This is a behaviour that is expected: extra

matter density on the brane, affects the geodesics

(motion) , and this in turn affects the effective

expansion of the brane universe. Moreover, this

gives for small fields (or large scale factors) effects

that are similar to those of a constant bulk NS

antisymmetric tensor. Both produce an effect

that can be interpreted as radiation in our brane

universe.

5. The resolution of the initial sin-

gularity

In four dimensions standard cosmological mod-

els always carry an initial singularity. This is

the point in the past of the evolution where the

scale factor a(t) goes to zero so that all space-like

sections of space-time collapse to a point. This

is a general feature and powerful theorems have

established the occurrence of the initial singular-

ity for matter obeying the energy-conditions [55].

Since the latter are satisfied for all known forms

of matter, the initial singularity seems to be un-

avoidable. The basic assumption in the above

is that the full description is given in terms of

four-dimensional general relativity. If one views

general relativity as an effective theory of a more

fundamental theory, then the presence of the ini-

tial singularity may be resolved in the fundamen-

tal theory. One could argue that the singular-

ity appears not because the fundamental solu-

tion is singular but because the effective field the-

ory used to describe, is not valid in this regime

[56, 57]. In particular, as discussed for exam-

ple in [57], due to T-duality an initial singularity

could really correspond to a decompactification

limit for the relevant low energy (dual) modes.

In our context, there are cases where “mi-

rage” energy violates the standard energy con-

ditions. For example for dilute matter we have

p = w ρ with |w| ≤ 1 for causality. In the pre-
vious section we have found the mirage matter

had |w| > 1 in most of the cases, (as well as
some components of the density being negative)

8
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leading to the possibility of singularity-free evo-

lution.

This can be seen in the simple example of the

geodesic motion of a probe D3-brane in the near-

horizon of macroscopic D5-branes with metric

ds2 =
r

L

(−dt2 + d~x25)+ Lr (dr2 + r2dΩ3) .
(5.1)

In this case, solving for r(t) with ` = 0 we get

r(t)4 = L4E cosh−2
(
2t

L

)
. (5.2)

The induced metric (2.13) turns out to be

dŝ = − E1/4

cosh5/2
(
2t
L

)dt2+ E1/4

cosh1/2
(
2t
L

)d~x23 . (5.3)
This four-dimensional metric has a singularity

for t = ∞ (initial singularity). However, the

higher dimensional geometry is regular. What

becomes singular is the embedding of the brane

in the bulk. Alternatively speaking, the four-

dimensional singularity is smoothed out once the

solution is lifted to higher dimensions. This is

a well known method for desingularizing four-

dimensional manifolds and appears here natu-

rally.

Similarly, we may consider the motion of a

probe D3-brane in AdS5 × S5 background. In-
deed we expect that for motion in this smooth

manifold no real singularity on the brane can be

encountered. Here we find from (2.12) and for

` = 0 that 0 ≤ r4 < ∞ for E > 0. The proper
time η is then given

η =
1

2L

√
2r4 + L4 − L

2
, (5.4)

defined such that η = 0 for r = 0 and thus 0 ≤
η <∞. On the other hand, solving for the scale
factor a(η) we find that

α(η)4 =
8E

L2

(
(η + η0)

2 − L
2

16

)
, (5.5)

where η0 is an integration constant. At η = 0 we

get that

α(0)4 =
8E

L2

(
η20 −

L2

16

)
, (5.6)

so that we obtain the standard singularity for

|η0| > L/4. This is the point that the brane

reaches r = 0 which is a coordinate singularity

and otherwise a regular point of the AdS5 space.

Again, the embedding becomes singular there.

From the string theory picture we do un-

derstand that the initial singularity here corre-

sponds to the probe brane coalescing with the

other branes that generate the bulk background.

The effective field theory on the brane is singular

at this point because one has to take into account

the non-abelian modes (zero length strings) that

become massless. The interpretation of the real

initial singularity here is as a breakdown of the

effective low energy field theory description.

6. Supersymmetry breaking and brane

stabilisation

A supersymmetric vacuum would consist of a col-

lection of branes set up in a supersymmetric fash-

ion with vanishing forces among them. An in-

teresting question is what happens to the brane

configuration when supersymmetry is broken. In

this context a phenomenologically interesting sit-

uation arises when supersymmetry is broken on

a “distant” brane (see [62] for string theory re-

alizations of this). Moreover extra sources of su-

persymmetry breaking may come from the bulk.

In the context of the AdS/CFT correspon-

dence a black Dp-brane is supposed to corre-

spond to field theory on the boundary at finite

temperature. By a double analytic continuation

we can consider a solution we will call a BDp-

brane with the following metric

ds210 =
−dt2 + d~x · d~x√

Hp(r)
+
√
Hp(r)

(
dr2

f(r)
+

f(r)

Hp(r)
dθ2 + r2dΩ28−p

)
(6.1)

while the other fields remain unchanged. This

will correspond in the α′ → 0 limit to a boundary
theory compactified on a space-like circle with

supersymmetry breaking boundary conditions. θ

is a compact coordinate with radius 1/T with

T =
7− p
2

r
(5−p)/2
0√
r7−p0 + L7−p

(6.2)

Consider now a probe Dp’-brane in the presence

of the previous solution. For simplicity we will

9
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take p′ = p. There will be a non-trivial potential
on the brane, similar to the one discussed before.

The configuration can be stabilised if r → r(θ)
so that it solves the equations of motion com-

ing from the DBI action. This is the Euclidean

analogue of the fact that a probe brane will fall

towards a black-brane. In order for the effec-

tive potential to have a well defined minimum

we must have a 1/r attraction balanced by the

universal 1/r2 centrifugal potential. Thus the

natural case to analyse is p = 6.

The relevant world-volume action governing

the radius is of the form

L =
√
A(r) +B(r)ṙ2 +D(r)hij ϕ̇iϕ̇j − C(r)

(6.3)

where we suppressed the dependence on other

coordinates but kept the θ-dependence. The dot

stands for θ-derivative andB is positive. A,B,C,D

are functions of the background metric, dilaton

and RR forms. In our case they read

A(r) =
f(r)

H6(r)2
, B(r) =

1

f(r)H6(r)

C(r) =
1−H6(r)
H6(r)

√
1 +
r0

L
, D(r) =

r2

H6
(6.4)

The equations of motion can be integrated again

to (2) which in our case read

ṙ2 =
(r − r0)2
r(r + L)

[
1− (r − r0)2(r3 + `2(r + L))
r3(E(L+ r) + L

√
1 + r0/L

]

(6.5)

where E is a constant of integration and ` is

the “angular momentum” on the transverse two-

sphere. The simplest solution is one where r(θ) is

constant and equal to a root of the potential r∗.
This type of solution corresponds to an alignment

of the brane along its fifth coordinate in order to

minimise its energy in the background. Moreover

it can be shown that in this case, this brane equi-

librium is stable. The various mass splittings can

be calculated on the brane by expanding around

the classical solution.

In this context the issue of the brane cos-

mological constant can be addressed. A priori, a

vacuum energy on the brane is not automatically

a cosmological constant in the sense that it does

not induce an inflation (fast expansion) on the

brane. In the case of standard D-branes in non-

compact space this is easy to understand since

there is no gravity on the brane. However in com-

pact space, this is non-trivial and suggests how

a small cosmological constant can be compatible

with a large(r) vacuum energy on the brane.

The brane in our example has been stabilised

as a probe in the background of other branes,

with broken supersymmetry. There are two sources

of perturbations:

• Bulk perturbations will give a vacuum en-
ergy that is suppressed like M10SUSY (we assume

supersymmetry broken softly in the bulk). This

induces an energy density on the brane that , in

four-dimensional Planck units is

Λbulk =
M10SUSY V6

M4P
= g2s

(
MSUSY

MPlanck

)2 (
MSUSY

Mstring

)8
(6.6)

For gs ∼ o(1) this can be at the 10−120 level if
the string scale is ∼ 1014GeV . However it can
be smaller if the string coupling is small or if

the vacuum energy comes from higher loop ef-

fects. It can be argued that when supersymme-

try is broken on a brane the bulk vacuum en-

ergy arises at least at three-loops. This is sug-

gested by AdS/CFT correspondence arguments

[22]. Since in this context there is no constraint

on gs (gauge couplings can be fit by adjusting the

parallel compact space) we can achieveMSUSY ∼
Mstring ∼ 103GeV and Λbulk ∼ 10−120 choosing
gs ∼ 10−14. If one keeps Λbulk sufficiently small
there is disturbance in the brane equilibrium.

• Corrections on the distant branes as well
as the universe brane. The former redefine the

supersymmetry breaking scale and make small

changes in the potential seen by the universe

brane. The important corrections on the universe

brane, renormalize the tension and in general the

scalar potential. These corrections are small if

the brane was supersymmetric (as it is here) or

if the string scale is low. However, we know that

they must be at least of order M4SUSY where

MSUSY is the brane supersymmetry breaking scale

(it may be different from the bulk). Data tell us

though that this cannot be smaller than 10−64

and therein lies the toughness of the cosmologi-

cal constant problem.

The important conclusion here is that after
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taking into account these corrections, the brane

with shift slightly in the corrected potential in

order to relax in the new minimum rather than

expanding its four large dimensions. This is the

essence of solving the cosmological constant prob-

lem on the brane.

7. Incorporation into string theory

Orbifold or orientifold backgrounds in string the-

ory have a brane interpretation.

A fixed hyperplane of an orientifold transfor-

mation can be thought of as a bound state of an

orientifold plane and a D-brane. The orientifold

plane carries no degrees of freedom localised on

it, but only some CP-odd couplings to cancel

similar couplings of the bound D-brane. When

moduli are varied, the D-brane(s) can move away

from orientifold planes. In open string vacua, ex-

tra D-branes can participate in the structure of

the vacuum.

In fact, a similar interpretation can be given

to ordinary orbifold vacua of the heterotic and

type II strings 1. The fixed planes of the orb-

ifold are bound states of an orbifold plane and

an NS-brane for a Z2 twist. For a ZN twist there

are N − 1 non-coincident NS5-branes. The de-
grees of freedom localised on the orbifold plane

are essentially composed of the twisted sector

fields of the orbifold. Turning on twisted mod-

uli expectation values corresponds to moving the

NS5-branes away from the orbifold plane.

Thus, a typical (orbifold) vacuum of type I

theory can be thought of as a collection of flat

(toroidal) intersecting D-branes in a ten-dimensional

flat bulk space. Constraints have to be satis-

fied, notably tadpole cancellation which ensures

anomaly cancellation and reflects charge neutral-

ity in a compact space. In the presence of some

unbroken space-time supersymmetry, the config-

uration of D-branes is stable. Stability is a non-

trivial requirement in the case of broken super-

symmetry. It is however known that supersym-

metric (BPS) D-branes have velocity dependent

interactions [19]. Thus, there is non-trivial dy-

namics in the case that a D-brane is disturbed

away from a stable configuration.

1This is implicit in [54].

In this context, the Standard Model gauge

bosons as well as charged matter arise as fluctu-

ations of the D-branes. We can thus consider the

universe (standard model) to be living on a col-

lection of coincident branes, while hidden gauge

interactions can be localised on other branes and

gravity as well as other universal interactions is

living in the bulk space.

The approximation which we are using is very

useful in order to treat the dynamics of the uni-

verse brane. This is the probe limit in which the

influence of the probe brane source to the bulk

fields is negligible. This has been a natural and

useful tool [20]-[22] in order to understand issues

in the context of AdS/CFT correspondence [23].

However, if we can approximate the collection

of other branes (except the universe brane) that

form the string vacuum as a spherically symmet-

ric configuration, then our treatment is (classi-

cally) exact. The reason is the back-reaction to

the bulk metric due to the probe brane modifies

the bulk metric for radii larger that the position

of the brane.

8. Conclusions and further directions

If our universe is a brane embedded in a higher

dimensional bulk, the motion of the brane in

nontrivial bulk backgrounds with a certain sym-

metry (spherical in our case) produces a homo-

geneous and isotropic cosmological evolution on

the universe brane. By considering various bulk

background fields, we have derived Friedman-like

equations. These provide cosmological evolution

that can be attributed to matter density on the

universe brane, although they are due to motion

in nontrivial bulk fields. From the universe brane

perspective such energy density is a mirage. The

only way to tell whether the energy density driv-

ing the evolution of the universe is in the universe

itself is by direct observation with conventional

means (light for example).

It is also important to point out that we con-

sider a situation where the spatial sections of

the universe brane are flat. Unlike the typical

four-dimensional case though, the effects of non-

trivial spatial curvature (a a−2 term in the Fried-
man equation) can be simulated by the brane

motion. We have seen in section 5 that a D3-
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brane moving in the field of parallel D5-branes

produces an effect similar to having a negative

constant curvature in the spatial slice.

We should also point out here that it is also

possible to consider situations where the induced

brane metric really does have positive constant

curvature. That should be produced by a bulk

Bµν field with Hµνρ ∼ εµνρ. Finding the pre-
cise solution in IIA,B supergravity is an interest-

ing problem. Such a solution though is known

in gauged-supergravity in five-dimensions. The

only difference in our equations is to replace the

spatial section metric on the brane by a constant

curvature one, and add the usual curvature con-

tribution −k/a2 to our Friedman-like equations.
When we have extra world-volume fields ex-

cited on the brane, these affect the universe brane

motion, the induced metric and thus the cosmo-

logical evolution. We have analysed the case of

electromagnetic energy (electric fields) and shown

that it affects the cosmological evolution as nor-

mal radiation would. This indicates that the

present formalism is capable of describing the

most general cosmological evolution on a uni-

verse brane. This is driven by bulk fields (that

we could label “bulk energy”) as well as world-

volume fields (“brane-energy”). The cosmologi-

cal evolution in this context has the simple and

appealing interpretation of brane motion in the

bulk.

Generically, the Friedman-like equations we

find, contain components that can be interpreted

as dilute matter with |w| > 1 that would oth-
erwise clash with causality in four-dimensions.

This may be an indication that the bulk can sup-

port superluminal signal propagation from the

brane point of view. Moreover, sometimes, some

effective density coefficients can be negative (with-

out spoiling the positivity of the overall effective

density). This violates typical four-dimensional

positive energy conditions.

A Friedman type cosmological evolution is

equivalent to a variable speed of light in the con-

text of non-dynamical gravity. Cosmological im-

plications of a variable light speed have been re-

cently discussed in [58, 59]. Our description here

can be cast in that language [22]. In [22] it was

pointed out that a natural way of inducing a

field-dependent light velocity of brane is in the

presence of a (cosmological) black brane. Subse-

quent motion of the probe brane, either falling

into the black brane, or escaping outwards (a

Hawking radiated brane ?) would make the ve-

locity of light field dependent and thus induce

cosmological evolution. This field dependent light

velocity is a natural realization of the ansatz used

in [59].

The issue of the initial singularity has a nat-

ural resolution in this context. Although the

universe brane has a singular geometry at zero

scale factor, this is due to a singular embedding

in the otherwise regular bulk space. This resolu-

tion of singularities in higher dimensions is not

new but occurs naturally here. Relativistic cor-

rections are important when one approaches the

initial singularity. They invalidate for example

naive treatments of brane fields when the uni-

verse brane approaches other branes.

There are some interesting open problems in

this line of thought.

• The first concerns the possibility of induc-
ing and ending inflation as a consequence of

brane motion. This is similar in spirit with

[24] but the context is different: here infla-

tion is not generated by four-dimensional

gravity on the brane. Inflation on the brane

will happen once the tension is not the criti-

cal one. An example was given in [60]. This

is a natural source of inflation since the in-

flaton is supplied automatically once we de-

cide that our four-dimensional universe is a

soliton-like object in a higher-dimensional

theory.

• A second direction is finding bulk config-
urations that induce a cosmological evolu-

tion on the brane similar to that of dust

(w=0). Such mirage matter might be a

component of dark matter on our universe.

It is conceivable that such “mirage” mat-

ter could gravitate and trace the visible

(world-volume) matter as observation sug-

gests.

• We have seen that mirage matter with w =
−7/9 can be generated due to brane mo-
tion. At late times this is the only relevant
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term from all these generated by brane mo-

tion. The next relevant one corresponds to

w = 5/9 and is much suppressed relative

to matter and radiation. This type of mi-

rage matter can serve as an alternative to

quintessence.
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