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Abstract:We consider a conformal system of a string and a particle defined inD = 10+2 space-time

dimensions. The extra time-like dimension is a gauge artifact and can be eliminated by choosing a

gauge in which the SO(10, 1) Lorentz symmetry is manifest. The effective theory of string observables

is the 11d supergravity. The same theory compactified on T 2 provides a non-petrurbative unified

picture of the Type IIA, Type IIB and 11d supergravity. This is confirmed by explicit determination

of the R4-terms which are finite and manifestly SL(2, Z) invariant as expected by the U-duality

conjecture in nine non-compact dimensions with maximal supersymmetry.

1. Introduction

In space-time dimension lower than ten, all su-

pergravity theories with maximal supersymme-

try have a universal massless sector, e.g. the

gravity supermultiplet [1]. Indeed, all supergrav-

ities with Nmax are identical modulo field redef-

initions, which correspond to the vev’s of scalars

in the supergravity multiplet [1], and after per-

forming “electric-magnetic” duality-like transfor-

mations acting on the gauge fields (classical U-

duality transformations). These effective theo-

ries can be constructed either by compactifica-

tion on a T (n+1) torus from the N = 1, d = 11

supergravity [1] or by string compactification on

T (n) of the type IIA or type IIB ten dimensional

superstrings. This universality of the maximal

supergravities (Nmax = 8 in four dimensions)

leads to the conjecture that they are all iden-

tical at the non-perturbative level. This sug-

gests the existence of a more fundamental the-

ory, (M-theory?) [2], which is defined necessarily

in dimension higher than ten. In particular, the

eleven- dimensional supergravity is the effective

“low-energy” local field theory of the would be

fundamental theory [2]. Furthermore, the uni-

versality conjecture for Nmax seems to be valid

even for less supersymmetric theories with 1/2
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and 1/4 of Nmax [2]–[8]. This suggests further

that all superstring theories with the same num-

ber of supersymmetries in a given dimension are

equivalent at the non-perturbative level. Thus,

Heterotic↔ type I↔ type IIA↔ type IIB, must
be connected in lower dimensions by perturba-

tive and/or non-perturbative U -duality transfor-

mations [2]–[8].

What can be the origin of the U -duality con-

nections? Here we will be focus on a possible

geometrical origin due to the presence of some

extra “hidden” dimensions which are enable us

to describe the complete spectrum of all topo-

logical non-perturbative BPS states of the maxi-

mal supersymmetric theories in nine dimensions.

In the past few years, it has been realized that

one “hidden” dimension is not enough to describe

the spectrum of the topological BPS states. This

implies the existence of more than one hidden di-

mension. The type IIB theory, for instance, sug-

gests a fundamental theory (F-theory) in 10+2

dimensions [8]. Vafa and others suggested a work-

ing algorithm which extends in a consistent way

the type IIB non-perturbative BPS spectrum and

the U -duality properties in lower dimensions. If

there are more than one dimension and especially

a time-like one how do we interpret them? One of

the possibilities is to define a combined system of

a String and a Particle living in Dcrit = (10+ 2)

dimensions [9],[10].
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We will shortly review this possibility in the

next section and then we will study in more de-

tails the R4 terms of this theory in a special gauge

where SO(10, 1) Lorentz invariance is manifest

with one physical time.

2. String & Particle

Consider a string and a particle [9],[10] described

by a world-sheetXµ (τ, σ) and a world-line Y µ (τ)

Sstr(X
µ, Aα, gαβ, Qµ)+Spar(Y,B, e, Pµ)+Q ·P ,

(2.1)

Sstr =
1

2

∫ T
0

dτ

∫
dσ
√−ggαβ (∂αXµ − PµAα)

× (∂βXν − P νAβ) ηµν , (2.2)

Spart =
1

2

∫ T
0

dτ
[
e−1 (∂τY µ −QµB)2 − em2

]
.

(2.3)

The two actions Sstr and Spart are invariant un-

der independent reparametrizations on the world-

sheet and on the world-line. Then one can choose

the usual conformal gauge for the string,
√−ggαβ

=ηαβ , and e = 1 for the particle. The equations

of motion for Xµ (τ, σ) , Y µ (τ) , in the gauges we

have chosen, are:

∂+ (D−Xµ) + ∂− (D+Xµ) = 0, ∂τ qµ = 0, (2.4)

where

D±Xµ = (∂±Xµ − PµA±) ,
qµ = (∂τY

µ −QµB) . (2.5)

There are additional gauge invariances, which

may be understood in the spirit of gauged WZW

models

δ1X
µ = PµΛ1 (τ, σ) , δ1Aα = ∂αΛ1 (τ, σ) ,

δ2Y
µ = QµΛ2 (τ) , δ2B = ∂τΛ2 (τ) . (2.6)

We can solve the constraints [9],[10] and the

equations of motion (for m 6= 0)
Qµ ∼ pµ, Pµ ∼ qµ, p · q = 0. (2.7)

In the light-like case P 2 = 0 = q2 ( m = 0), the

action Sstr has no A+A− term, and acquires an
additional gauge symmetry:

δ3 X
µ (τ, σ) = 0, δ3 A± = ±∂±Λ3 (τ, σ) .(2.8)

In the background of the massless particle, two

string components, rather than only one, are elim-

inated by the gauge invariances and thus, ∂±Xµ−
c1q
µ, has no components along the light-like qµ

and q · ∂±X = 0. For a massive particle, these
two conditions correspond to one and the same

component [9],[10].

The equation of motion for the string is easily

solved, since it has the free string form ∂+∂−Xµ =
0. The general solution is given in terms of left-

and right- movers

Xµ = X
(+)
µ

(
σ+
)
+X(−)µ

(
σ−
)
+ c1(σ

++σ−)qµ,

X(±)µ
(
σ±
)
=
1

2

(
xµ+

σ±

2π
pµ

)
−i
∑
n6=0

1

n
α(±)nµ e

inσ± .

(2.9)

The solution of the particle equation,

Y µ (τ) = yµ + (qµ + c2p
µ) τ, (2.10)

shows that the particle moves freely, except for

the orthogonality constraint p · q = 0. Due to
this constraint, at the quantum level there are

anomalies in arbitrary space-time dimensions [9],

[10]; the String & Particle System is anomaly

free only in special dimensions depending on the

parameter. Furthermore, m = 0 when super-

reparametrization invariance is present on the

world-sheet of the string and on the world-line

of the particle, m = 0.

• When m = 0 Dcr = 28, for the bosonic
string with SO(26, 2) Lorenzt invariance.

• For superstring m = 0, Dcr = 12, with
SO(10, 2) Lorentz symmetry.

All quantization approaches, BRST quantization,

Light-cone quantization or gaugeWZW approach,

give the same critical dimensions [9],[10].

3. String & Particle Partition func-

tion and R4-terms

There is a gauge choice which solves the orthogo-

nality condition qµ∂±Xµ = 0 with SO(1, 10) co-
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variance for all string observables in the particle

background with momentum qµ:

qµ = ( ε, 0 | q10 , q9 , 0, 0, 0, 0, 0, 0, 0, 0 )

∂±Xµ = (0, V 0 | V 10± , V 9±, V I ), I = 1, ..., 8.

(3.1)

In this gauge, one of the two time-like string

coordinates is eliminated and one is left with the

one physical time coordinate as in usual string

theories. Notice that two orthogonal time-like

vectors cannot exist in a space with a single time-

like dimension. The initial SO(2, 10) covariant

constraints qµ∂±Xµ = 0 become in this gauge:

qi∂±X i = 0 , i = 9, 10. (3.2)

These constraints eliminate the quantum excita-

tions of the string oscillators parallel to the vec-

tor qi like in the gauge WZW-models. There is

however a remnant of the zero-mode topological

sector defined by the 9th and 10th left- and right-

moving compactified coordinates of the string.

The reduced (2,2) Lorentzian lattice Γ(2, 2)qi(T, U)

depends on both T and U moduli T ∼ iR9R10,
U ∼ iR9/R10.

Γ(2, 2)qi = e
−π Im τ(piGijpj+niGijnj )+2iπReτ pini ,

(3.3)

pi = mi +Bijn
j with piq

i = niGijq
j = 0.(3.4)

The orthogonality constraint projects the Γ(2, 2)

lattice on to a sum of Γ(1, 1) sectors according

to the co-prime integers (p, q) defined as qi =

M̂ q̂i = M̂(p, q). Then,

Γ(2, 2)qi = e
−π Im τ

(
M2 q̂iG

ij q̂j+
N2

q̂iG
ij q̂j

)
+2iπReτMN

.

(3.5)

In terms of T and U moduli:

q̂iG
ij q̂j =

1

ImT

|p+ qU |2
ImU

. (3.6)

The sum over (p, q)-sectors yields to SL(2, Z)U
invariant results.

In the zero winding sector N = 0 the sum

overM and (p, q) can be reorganized to twoKaluza-

Klein momenta,

mi =Mεij q̂
j

Γ(2, 2)qi |(N=0) = e−π Im τ(miG
ijmj ). (3.7)

After Poisson re-summation on mi:

Γ(2, 2)qi |(N=0) = ImTIm τ e
−π( m̃iGijm̃j )

Im τ . (3.8)

This result has an obvious eleven dimensional in-

terpretation. Thus the sum over all (p, q) string

sectors give rise to two instead of one Kaluza-

Klein momenta, with an obvious eleven-dimensional

interpretation.

We can go even further and calculate the R4-

gravitational corrections. This can be easily done

using the techniques developed in refs[11],[12] where

the flat space-time is replaced by a non trivial

gravitational background deformed by the left-

and right- helicity operators [11],[12]

vQleft, v̄Qright with:

R 6= 0→ v, v̄ 6= 0.
From the deformed partition function [11],[12]:

Z(τ, τ̄ |v, v̄) = ( Im τ)−1

η2(v) η̄2(v̄)

( Im τ)−5/2

η5 η̄5
Γ2,2(p, q)

η η̄

× 1
2

∑
a,b

(−)a+b+abϑ[
a
b ](v) ϑ[

a
b ]
3

η4

× 1
2

∑
ā,b̄

(−)ā+b̄+āb̄ ϑ̄[
ā
b̄
](v̄) ϑ̄[ā

b̄
]3

η̄4
.

(3.9)

one obtains the R4-term from the term which

is proportional to v4 v̄4 -term. Details of these

technics appear in refs[11],[12]. Here we display

and give some comments on our results.

FR4 =

∫
F

∂τ∂τ̄

t2
t1/2 Γ2,2(p, q), (3.10)

FR4 = ImT

(∫
F

∂τ∂τ̄

t2
+

∫ ∞
0

dt

t5/2
e−π

m̃iGijm̃
j

t

)
.

(3.11)
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In the second term m̃i 6= 0 (t = Im τ).

FR4 = ImT

(
π

3
+
ImT−3/2

2π

∑
m̃2

ImU3/2

|m̃1 + m̃2U |3
)

= ImT
π

3
+ ImT−1/2

ζ(3)

2π
E3/2(U), (3.12)

where E3/2 is the Eisenstein series with weight

w=3/2:

E3/2(U) =
∑
p,q

ImU3/2

|p+ qU |3 , (p, q) coprimes.

(3.13)

The same results was obtained previously by

M.B.Green, P.Vanhove, andM.Gutperle in refs[13]

calculating the one loop graviton scattering in

the eleven dimensional supergravity compactified

on T 2 after a regularization of the UV divergent

term proportional to ImT and assuming the va-

lidity of Type IIA ↔ Type IIB string duality.
In our case the calculations are done with-

out any assumption at all. The result is UV-

finite giving rise to an SL(2, Z) invariant answer

as expected from the type IIB string theory and

Type IIA ↔ Type IIB duality.

4. Conclusions

We presented a suitable conformal system of a

String and a Particle in D = (10 + 2) dimen-

sions. We show by using the extra symmetries

of this system that one of the two time-like coor-

dinates can be eliminated from all string observ-

ables remaining and leads to an effective string

dimensionality Dstring = (10 + 1). The 11th

dimension arise after the resuming all topolog-

ical non-trivial (p, q) string sectors. These sec-

tors appear as solution of the orthogonality con-

strain between string and particle compactified

momenta.

It is interesting that all perturbative and non-

perturbative BPS states in nine dimensions are

appearing with masses parametrised by the ge-

ometrical toroidal moduli of T 2 Γ(2, 2) lattice.

In the R4 calculations only the perturbative and

non- perturbative BPS states contributed giving

the finite result conjectured in refs[13] terms of

the Eisenstein E3/2(U) function:(
ImT

π

3
+ ImT−1/2

ζ(3)

2π
E3/2(U)

)
R4

In String & Particle Theory all Rn terms

with n > 4 are determined unambiguously as

in any conventional string theory replacing the

Γ1,1 Lattice of strings by the Γ2,2(p, q) restricted

lattice of the String & Particle theory. In the Rn

with n > 4 terms, non BPS-states (perturbative

and non-perturbative) give non-zero contribution

(contrary to R4-terms). The String & Particle

theory give the correct masses for all these states

and the multiplicities are provided by the string

oscillators.
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