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Abstract: We construct a classical field theory action which upon quantization via the functional

integral approach, gives rise to a consistent Dirac–string independent quantum field theory. The

approach entails a systematic derivation of the correlators of all gauge invariant observables, and also

of charged dyonic fields. Manifest SO(2)–duality invariance and Lorentz invariance are ensured by

the PST–approach.

Keywords: Dyons, Quantum field theory, Duality.

1. Introduction

Each formulation of a quantum field theory of

dyons, particles which carry electric and mag-

netic charge, in four dimensions has to cope with

a fundamental problem: there is no natural or

consistent classical field theory action to start

with. Nevertheless, there exists a consistent quan-

tum field theory [1].

The pathologies of the classical field theory

action can be traded in several ways. One can re-

nounce to describe the dynamics of the charged

matter in terms of scalar or spinor fields [2], or

one sacrifices Lorentz–invariance introducing in

the kinetic term for the gauge fields a constant

four–vector nµ [1]. In the first case the quan-

tum field theory can not be based on a func-

tional integral and the identification of the cor-

rect field strength is an open problem. In the sec-

ond case the presence of the vector nµ obscures

the Lorentz–symmetry structure of the theory at

the classical level (it breaks it explicitly), and one

has to show that the quantum theory is indepen-

dent of nµ if the Dirac–Schwinger quantization

condition [3]

1

2
(ergs − esgr) = 2πnrs (1.1)

holds, with nrs integer. Here er(gr) is the electric
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(magnetic) charge of the r–th particle 1. Hence,

only a posteriori nµ acquires the meaning of the

direction of the Dirac–string.

The approach we present here relies on a

classical field theory action which is manifestly

invariant under Lorentz transformations and SO(2)

duality, but depends on a fixed external classical

vector field Uµ(x). The meaning of this vector

field is very simple: the unique integral curve

associated to Uµ starting from a point of a par-

ticle’s trajectory determines the Dirac–string at-

tached to the particle in that instant. The set of

all these integral curves determines then a two–

dimensional surface whose boundary is the tra-

jectory of the particle. This idea can be extended

to the case when the currents are not point–like,

as in the classical point–particle theory, but con-

tinuously distributed, as in the classical field the-

ory.

The consistency check of the construction

consists then in showing that the quantum field

theory, obtained from the classical field theory

action via the traditional functional integral ap-

proach, gives rise to correlators which are inde-

pendent of Uµ, if (1.1) holds. Below we give the

1We deal here only with the SO(2)–duality invari-

ant theory for which (1.1) is the appropriate quantiza-

tion condition. For a discussion of the theory which is

only invariant under the discrete duality group Z4, see

[4]. In that case the appropriate quantization condition

is Dirac’s original one ergs = 2πnrs.
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outline of the construction, and the proof that

the partition function is indeed U–independent.

For correlators of generic observables, and for

further developments and details we refer the

reader to [4].

2. A set of equations of motion

We start by searching for an appropriate set of

equations of motion describing the interaction of

a gauge field interacting with a certain number

N of dyons, with masses mr and charges e
I
r ≡

(er,−gr); I = 1, 2, r = 1, . . . , N . For simplicity
we consider bosonic dyons, described by complex

scalar fields ϕr. To implement SO(2)–invariance

in a manifest way we introduce for the photon a

doublet of one–forms AI , such that the covariant

derivative on the scalars is given by

Dµ(A)ϕr =
(
∂µ + ie

I
r ε
IJAJµ

)
ϕr. (2.1)

The hodge duals of the total electric and mag-

netic currents, a doublet of three–forms, can then

be written as

JI =
1

3!
dxρdxνdxµεµνρα

∑
r

eIr iϕ̄rD
αϕr + c.c.

(2.2)

In the language of differential forms current con-

servation reads then simply

dJI = 0. (2.3)

These equations allow in turn to introduce a dou-

blet of two–forms CI satisfying

JI = dCI . (2.4)

Clearly these forms are determined only modulo

exact forms (we suppose here to work in a four–

dimensional space–time with trivial topology).

Maxwell’s equations, in the presence of mag-

netic currents, read in this language

dF I = JI

F I = ∗εIJF J , (2.5)

where ∗ indicates the hodge dual and εIJ is the
two–dimensional antisymmetric SO(2)–invariant

tensor. F 2 is the standard field strength two–

form, and on-shell we have F 1 = ∗F 2. These

equations, together with (2.4), allow finally to

relate F I and CI to the vector potentials

F I = dAI + CI .

One could now close the dynamics of the sys-

tem by adding just the covariant Klein–Gordon

equation for the matter fields. This is, however,

not sufficient because the fields CI are deter-

mined only modulo exact forms, see (2.4).

A convenient way to close the system is rep-

resented by the introduction of a vector field U =

Uµ(x)∂µ. We will use the same symbol to indi-

cate the associated one–form U = dxµUµ, since

no confusion should arise. If we indicate with

iU the interior product of a form with the vector

field U the supplementary condition on CI can

be written as

iUC
I = 0, (2.6)

with the boundary condition that the fields CI

vanish as x goes to minus infinity along the inte-

gral curves of U . It can then be shown that the

system (2.4), (2.6) admits a unique solution. For

example, if we take a constant vector Uµ = Nµ,

the unique solution can be written as 2

CI =
1

∂N
iNJ

I ,

where ∂N = N
µ∂µ. The inverse operator

1
∂N
has

to cope with the above boundary condition and

is defined by the Kernel G(x) = Θ(xN )δ
3 (~x⊥N ),

∂NG(x) = δ
4(x), where ~x⊥N are the three coor-

dinates orthogonal to xN = x
µnµ, and Θ is the

step–function.

We collect here the closed system of equa-

tions of motion for the fields AI , CI , ϕr:

(
DµDµ +m

2
r

)
ϕr = 0 (2.7)

F I = ∗ εIJF J (2.8)

dCI = JI (2.9)

iUC
I = 0. (2.10)

This system is manifestly SO(2)– and Lorentz–

invariant, but depends on an external vector field

and is therefore inconsistent. Nevertheless, we

can write an invariant action which gives rise to

this system.

2Use the identity iNd+ diN = ∂N .
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Before doing that let us briefly comment on

the point–particle version of the above system.

In that case the Klein–Gordon equation is sub-

stituted by the generalized Lorentz–force law

mr
duµr
dτr
=
(
erI ε

IJ FµνJ
)
(xr)urν ,

and the three–forms JI become a sum of δ–functions

along the particle’s trajectories; more precisely,

we have JI → J I = ∑r eIrJr, where the three–
forms Jr are the Poincarè–duals in the space of
distributional forms (p–“currents”) of the closed

particle’s trajectories γr. Such p–forms, which

are δ–functions on a (D − p)–dimensional sub-
manifold, are called integer forms [5]. An impor-

tant property of such forms is that the integral

over all space of the product of two of them is

always an integer – hence the name – counting

the intersection points of the two manifolds.

The remaining equations remain the same.

In particular the solution for the forms CI be-

comes now CI =
∑
r e
I
rCr, where the two–forms

Cr, with dCr = Jr, are δ–functions on two–
dimensional surfaces whose boundaries are the

trajectories γr. The r–th surface is composed

of the integral curves of U which start from the

points of the trajectory γr. The boundary condi-

tion introduced above lets the integral curves just

end on the trajectories. Therefore, in this case

the forms Cr represent precisely the Dirac–string

”evolving” in time. The Dirac–strings do not re-

ally ”evolve” since they are completely fixed by

the currents, once one has chosen a vector field

U .

If the currents are continuously distributed,

as in the field theory, also the forms Cr are spread

out, but they are again uniquely determined by

the above equations.

3. Classical field theory action

We write now an action which gives rise to the

system (2.7)–(2.10). The scalars need the or-

dinary covariant Klein–Gordon action. For the

pseudo self–duality equation of motion for Maxwell’s

fields we employ the PST–approach [6]. One in-

troduces a scalar auxiliary field a and the one–

form

v =
da√−∂ρa ∂ρa ≡ dx

µvµ.

The PST–action can then be written as the inte-

gral of a four–form,

S0[A,C, a] =
1

2

∫
F I P(v)IJ F J + dAI εIJ CJ .

(3.1)

P(v) is a symmetric operator which acts in the
space of two–forms and on the SO(2)–indices as

PIJ(v) = viv ∗ δIJ +
(
viv − 1

2

)
εIJ .

We remember that the PST–symmetries ensure

that a is non propagating and that the (gauge–

fixed) equations of motion forAI are indeed (2.8).

The equations (2.9) and (2.10) are implied

by a convenient set of (auxiliary) Lagrange mul-

tiplier fields. We introduce a doublet of aux-

iliary one–forms ÃI and a doublet of auxiliary

two–forms C̃I . The action, which depends also

on the fixed vector U , can then be written as

(φ ≡ (A,C, Ã, C̃, ϕr, a)

SU [φ] = S0 −
∑
r

∫
d4x ϕ̄r(D

2
r(Ã) +m

2
r)ϕr

+

∫ (
ÃIεIJdCJ − 1

2
C̃IUiUε

IJCJ
)
.

(3.2)

Notice that in the covariant derivative for the

scalars we replaced AI with ÃI . So, variation

with respect to ÃI gives (2.9), while variation

with respect to C̃I gives (2.10). As shown in

detail in [4], the symmetry structure of (3.2) to-

gether with the equations of motion for CI de-

termine also the Lagrange multiplier fields,

ÃI = AI , C̃I = CI .

So there are no unwanted propagating degrees of

freedom, and the action (3.2) reproduces (2.7)–

(2.10).

4. A representation for the partition

function

The quantum field theory can be based in a tra-

ditional manner on the action (3.2) through the

functional integral approach. The correlation func-

tions of (gauge)–invariant operators are expressed

as

〈T O1 · · ·On〉 =
∫
{Dφ} eiSU [φ]O1 · · ·On,

3
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where in the functional integral measure gauge

fixings of the relevant invariances, PST–symmetries

and U(1)–symmetries are understood, and the

integration over the fields CI inherits the bound-

ary condition along U from the classical field the-

ory. As they stand, these correlation functions

depend on U . The fundamental point is that

one can show that the correlation functions of all

invariant operators are independent of U [4], if

the Dirac–Schwinger quantization condition (1.1)

holds. Here we limit ourselves to show that the

partition function is invariant, in that the strat-

egy followed in the proof extends rather directly

to the case of generic observables. To do this, we

need a convenient representation for the parti-

tion function. The rest of this section is devoted

to derive this representation, see (4.6).

We begin by performing the functional in-

tegration over the fields A and a which appear

only in the PST–action. Since a is auxiliary it

can be gauge–fixed to an arbitrary function a0(x)

by inserting a δ–function δ(a− a0). Clearly, the
partition function has to be independent of a0.

The integration over the fields AI is gaussian,

but one has to carefully fix the PST– and U(1)–

symmetries. The resulting effective action Γ[C],

which depends only on CI , can be computed to

be

eiΓ[C] ≡
∫
{DA} {Da} eiS0[A,C,a] (4.1)

Γ[C] = −1
2

∫ (
dCI
∗
dCI − dCI ε

IJ

∗ d ∗ CJ
)

Notice that it depends on the currents not only

through JI = dCI , but also through the “Dirac–

strings” CI in the second term.

The integration over the scalar fields amounts

to the evaluation of the corresponding covari-

ant Klein–Gordon determinants. These deter-

minants can be represented in a standard way

as Feynman path–integrals over classical parti-

cles trajectories [7]. In the case at hand, for the

product of all the determinants the relevant rep-

resentation can be written in a compact way as

N∏
r=1

det−1
(
−i
(
D2r(Ã) +m

2
r

))
=

∫
{Dγ}e−i

∑N

r=1

∮
γr
ÃI εIJ eJr . (4.2)

Here {Dγ} indicates a (complicated) measure over
the closed particle’s trajectories γr whose details

are, however, not needed for our purposes. The

essential feature of this representation is that it

retrieves in the quantum field theory a classical

point particle nature. This point is essential for

what concerns the proof of Dirac–string indepen-

dence, as we will see in a moment. The exponent

in this representation can also be rewritten as the

integral of a four–form

N∑
r=1

∮
γr

ÃI εIJ eJr =

∫
ÃIεIJJ J ,

where J I = ∑r eIrJr and the three–forms Jr
are just δ–functions on the curves γr, i.e. their

Poincarè–duals. Since these curves are closed we

have dJ I = 0 = dJr.
Integration over C̃I gives the δ–functions

δ(iUC) and, suppressing the SO(2)–indices, the

partition function can be written as

Z =

∫
{Dφ} eiSU [φ]

=

∫
{DγDCDÃ}δ(iUC)eiΓ[C]+i

∫
Ãε(dC−J )

=

∫
{DγDC}δ (iUC) δ (dC − J ) eiΓ[C].

The δ–functions restrict the variables CI to

dCI = J I (4.3)

iUC
I = 0, (4.4)

which, are precisely the classical field theory equa-

tions for these fields, but now the currents cor-

respond to classical point–like particles. Taking

the boundary conditions into account, we know

that these equations admit a unique solution,

CI(U) =
∑
r

eIrCr(U), (4.5)

which depends on Uµ and on the classical cur-

rents Jr. This allows eventually to write the
partition function as

Z =

∫
{Dγ} eiΓ[C(U)]. (4.6)

Using this representation for Z we can now show

that it is U–independent.

4
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5. Dirac–anomaly and Dirac–string

independence

We recall that the two–formsCr(U) are δ–functions

on the surfaces made out of integral curves of U

ending on the trajectories γr. Z depends on U

only through Cr(U). Under a (finite) change of

Uµ → U ′µ the two–forms Cr(U) change by an
exact form

Cr(U
′) = Cr(U) + dHr(U ′, U),

as can be seen from (4.3), (the currents J remain
clearly fixed). The important point is, however,

that the one–forms Hr are integer forms, they

are δ–functions on a three–manifold, which is

bounded by the two two–dimensional surfaces as-

sociated to Cr(U) and Cr(U
′). Therefore, chang-

ing U amounts precisely to change the Dirac–

string attached to the particle in each point: it

moves from an integral curve of U to an integral

curve of U ′. For the total CI we have then

C′I = CI + dHI , HI ≡
∑
r

eIrHr.

We can now evaluate the ”Dirac–anomaly”, i.e.

the variation of the effective action Γ[C(U)], see

(4.1), under this change. Since the CI change

by an exact differential, only the second term

in (4.1) contributes and one gets for the Dirac–

anomaly3

AD ≡ Γ[C(U ′)]− Γ[C(U)]
=
1

2

∫
J IεIJHI

=
1

2

∑
r,s

(eIr ε
IJ eJs )

∫
JrHs

= 2π
∑
r,s

nrs

∫
JrHs, (5.1)

where in the last line we used the charge quanti-

zation condition (1.1). Since the three–forms Jr
as well as the one–forms Hs are integer forms,

also the integrals in the last line are integer, and

the Dirac–anomaly becomes an integer multiple

of 2π. Therefore, under a change of U the ex-

ponent in (4.6) changes by an integer multiple of

2π and the partition function is U–independent.

3Use ∗d ∗ d+ d ∗ d∗ = .

6. Further developments and conclud-

ing remarks

The strategy illustrated above can be general-

ized to prove Dirac–string independence of the

correlators of generic observables. It extends in

a straightforward way to the correlators of cur-

rents, Wilson loops, and neutral Mandelstam–

string observables (”mesons”). The correlators of

the electromagnetic field strength F I = (F 1, F 2)

and of charged operators, instead, present addi-

tional problems.

The difficulty with the electromagnetic field

strength is related with the fact that, to cope

with manifest duality, we have introduced two of

them, F 1 and F 2. Only if the classical equations

of motion (2.8) hold we have the identification

F 1 = ∗F 2, but this relation does not hold in the
functional integral. This means that the correla-

tors of F 1 do not coincide with the correlators of

∗F 2. This mismatch is solved by the observation
that the quantities F I can not represent the elec-

tromagnetic field strength off–shell. They are, in

fact, gauge invariant, but they are not invariant

under the PST–symmetries. We need a couple

of two–forms KI which are invariant under the

PST–symmetries and which reduce on–shell (i.e.

under (2.8)) to the F I . Such forms exist, indeed,

and they are given by

KI = F I − viv
(
F I − ∗εIJF J) .

The key point is that the fields KI satisfy, more-

over, identically the pseudo self–duality relation

KI = ∗εIJKJ .

Their correlators solve, therefore, automatically

the problem related with the mismatch between

F 1 and ∗F 2. It can also be shown that, despite
the explicit appearance of the field a in their def-

inition, the correlators of the KI ’s are indepen-

dent of a0(x), the gauge–fixed a–field, manifestly

Lorentz–invariant and U–independent.

The problem regarding the correlators of charged

fields is related with the correct definition of the

related gauge–invariant charged field operators.

The extension of Mandelstam’s proposal [8] for

such field operators to the dyonic case would be

5
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given by4

φr(x, γx) = ϕr(x) exp

(
i

∫
γx

eIr ε
IJ ÃJ

)
, (6.1)

where γx indicates a path which goes from x

to infinity, the Mandelstam–string. The correla-

tors of these operators can indeed be seen to be

Dirac–string independent – in the present formu-

lation U–independent – but they are plagued by

(non–renormalizable) infrared divergences, due

to the infinite extension of the Mandelstam string.

An alternative proposal for charged opera-

tors, due to Dirac, corresponds to substitute in

(6.1) the “singular” Mandelstam–string with a

radially symmetric Coulomb potential, which be-

haves as 1/r2, and cures the infrared divergences.

But this time the electric flux is spread out con-

tinuously in space, and the correlators depend on

the Dirac–string (the Coulomb potential is not an

“integer form”).

A solution of the problem has been proposed

in [9], starting from Mandelstam’s proposal. One

replaces the single Mandelstam–string γx with a

sum over such strings, weighted by a convenient

measure

Φr(x) = ϕr(x)

∫
{Dγx} exp

(
i

∫
γx

eIr ε
IJ ÃJ

)
.

The corresponding correlators are now Dirac–

string independent. Moreover, the measure {Dγx}
has been constructed (implicitly) in [9], and there

it has also been shown that at large distances, on

average, it reproduces the Coulomb potential.

The method presented in this talk applies

equally well to fermions; the Feynman path–integral

representations for the determinants, like (4.2),

are available for spinor fields, too. Also, the in-

troduction of ϑ–angles does not encounter any

difficulty. Due to manifest Lorentz–invariance

of the PST–approach, it admits also a canon-

ical diffeomorphism invariant coupling to grav-

ity. Dirac–string independence follows in this

case from the analogous result in the flat case.

This is due to the fact that the Dirac–anomaly

(5.1) is a topological invariant, i.e. metric inde-

pendent.

4For an explanation of the appearance of the fields ÃI

instead of the fields AI see [4].

For the duality properties of the model we

refer the reader to [4].

The techniques illustrated in this talk can be

also applied to a system of interacting p–branes,

dual branes, and dyonic branes in a generic D–

dimensional space–time [10].

The formulation of a quantum field theory

for dyons presented here can be seen to be equiv-

alent to previous formulations [1, 2], for what

concerns the details which have been worked out

in those formulations.

The advantage of the present formulation is

constituted by the manifest Lorentz–invariance

at each step, by the clear identification of the

Dirac–string (represented by the field U) from

the beginning, and by a systematic derivation of

the observables which are triggered by the sym-

metries of the action (3.2).
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