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Abstract: We review the boundary state description of the non-BPS D-branes in the type I string

theory and show that the only stable configurations are the D-particle and the D-instanton. We also

compute the gauge and gravitational interactions of the non-BPS D-particles and compare them with

the interactions of the dual non-BPS particles of the heterotic string finding complete agreement. In

this way we provide further dynamical evidence of the heterotic/type I duality.
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Dirichlet branes (or D-branes for short) are a

key ingredient in our understanding of the dual-

ity relations between superstring theories. They

are described by a boundary conformal field the-

ory, and admit a two-fold interpretation: on the

one hand, the D-branes are objects on which

open strings can end, and on the other hand

they can emit or absorb closed strings [1]. These

two descriptions can be related to each other by

world-sheet duality.

Introducing D-branes in a theory of closed

strings amounts to extend their conformal field

theory by introducing world-sheets with bound-

aries and imposing appropriate boundary condi-

tions on the closed string coordinates Xµ. In

the operator formalism these boundary condi-

tions are implemented through the so called boun-

dary state 1 |Dp〉, whose bosonic part is defined
by the following eigenvalue problem

∂τX
α(σ, 0) |Dp〉X = 0 ,(

X i(σ, 0)− xi
)
|Dp〉X = 0 , (1)

where the index α = 0, . . . , p labels the longitu-

dinal directions, the index i = p + 1, . . . , 9 la-

bels the transverse directions and the xi’s de-

note the position of the brane in the transverse

space. World-sheet supersymmetry requires that
1For a recent review on the boundary state formalism

and its applications, see Ref. [2]

analogous equations must be also imposed on the

left and right moving fermionic fields ψµ and ψ̃µ.

These equations, which define the fermionic part

of the boundary state, are(
ψα(σ, 0)− i η ψ̃α(σ, 0)

)
|Dp, η〉ψ = 0 ,(

ψi(σ, 0) + i η ψ̃i(σ, 0)
)
|Dp, η〉ψ = 0 , (2)

where η = ±1. Notice that there are two consis-
tent implementations of the fermionic boundary

conditions corresponding to the sign of η, and

consequently there are two different boundary

states

|Dp, η〉 = |Dp〉X |Dp, η〉ψ (3)

both in the NS-NS and in the R-R sectors. The

overlap equations (1) and (2) allow to determine

the explicit structure of the boundary states (3)

up to an overall factor. This normalization can

then be uniquely fixed by factorizing amplitudes

with closed strings emitted from a disk [3, 4] and

turns out to be given by (one half of) the brane

tension measured in units of the gravitational

coupling constant, i.e.

Tp =
√
π
(
2π
√
α′
)3−p

. (4)

We would like to remark that even if each bound-

ary state |Dp, η〉 is perfectly consistent from the
conformal field theory point of view, not all of
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them are acceptable in string theory. In fact, to

describe a physical D-brane a boundary state has

to satisfy three requirements [5]:

i) to be invariant under the closed string GSO

projection (and also under orbifold or ori-

entifold projections if needed);

ii) the tree level amplitude due to the exchange

of closed strings between two boundary sta-

tes, after modular transformation in the

open string channel, has to make sense as

a consistent open string partition function

at one-loop;

iii) the open strings introduced through the D-

branes must have consistent couplings with

the original closed strings 2.

Using these prescriptions, it is rather simple

to find the boundary state for the supersymmet-

ric BPS Dp-branes of type II. In particular, the

GSO projection of the type II theories forces us

to retain only the following linear combinations

|Dp〉NS = 1
2

[
|Dp,+〉NS − |Dp,−〉NS

]
|Dp〉R = 1

2

[
|Dp,+〉R + |Dp,−〉R

]
(5)

in the NS-NS and in the R-R sectors respectively,

with p = 0, 2, 4, 6, 8 for IIA, p = −1, 1, 3, 5, 7, 9
for IIB. The normalization of the boundary states

(5) can be deduced by requiring that the spec-

trum of the open strings living on the Dp-brane

(called p-p strings) be supersymmetric. To read

the spectrum of these open strings from the bound-

ary state, one has first to evaluate the closed

string exchange amplitude

〈Dp|P |Dp〉 , (6)

where P is the closed string propagator

P =
α′

2

∫ ∞
0

dt e−t(L0+L̃0−2a) (7)

(with aNS = 1/2 and aR = 0), and then perform

the modular transformation t → 1/s to exhibit
2This last condition, which is rather difficult to prove

in general, does not give more constraints than the first

two in the case of type I and II theories.

the open string channel. Applying this proce-

dure, one finds the following relations

NS〈Dp, η|P |Dp, η〉NS =
∫ ∞
0

ds

s
TrNS q

2L0−1 ,

NS〈Dp, η|P |Dp,−η〉NS =
∫ ∞
0

ds

s
TrR q

2L0 ,

R〈Dp, η|P |Dp, η〉R
=

∫ ∞
0

ds

s
TrNS (−1)F q2L0−1 , (8)

R〈Dp, η|P |Dp,−η〉R
=

∫ ∞
0

ds

s
TrR (−1)F q2L0 = 0 ,

where q = e−πs. It is then clear that in order to
obtain the supersymmetric (i.e. GSO projected)

open string amplitude∫ ∞
0

ds

s

[
TrNS

(
1 + (−1)F
2

)
q2L0−1

− TrR
(
1 + (−1)F
2

)
q2L0
]

(9)

one must consider the following boundary state

|Dp〉 = |Dp〉NS ± |Dp〉R (10)

where the sign ambiguity is related to the exis-

tence of branes and anti-branes. Note that both

the NS-NS and the R-R components of the bound-

ary state (10) have the same normalization so

that the tension of a Dp-brane essentially equals

the density of its charge under the R-R poten-

tial: this is the BPS relation which is typical of

the supersymmetric and stable branes of type II.

The criteria i) - iii) defining physical D-bra-

nes do not rely at all on space-time supersymme-

try, and thus one may wonder whether in type II

theories there may exist also non-supersymmetric

branes. This problem has been systematically

addressed in a series of papers by A. Sen [6] -

[9], who constructed explicit examples of non-

BPS (and hence non-supersymmetric) branes. In

particular in Ref. [8], he considered the superpo-

sition of a D-string of type IIB and an anti-D-

string (with a Z2 Wilson line on it) and by suit-

ably condensing the tachyons of the open strings

stretching between the brane and the anti-brane,

he managed to construct a new configuration of

type IIB which behaves like a D-particle, does

not couple to any R-R field and is heavier by

2
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a factor of
√
2 than the BPS D-particle of the

IIA theory. The boundary state for this non-

BPS D-brane has been explicitlely constructed

in Ref. [10]. This construction can be obviously

generalized to the case of a pair formed by two

BPS D(p + 1)-branes with opposite R-R charge

(and with a Z2 Wilson line) which, after tachyon

condensation, becomes a non-BPS Dp-brane. Al-

ternatively, this same non-BPS configuration can

be described starting from a superposition of two

BPS Dp branes with opposite R-R charge and

modding out the theory by the operator (−1)FL
whose effect is to change the sign of all states

in the R-R and R-NS sectors. In this second

scheme, a superposition of a Dp-brane and anti-

Dp-brane of type IIA (IIB) becomes in the re-

duced theory a non-BPS Dp-brane of type IIB

(IIA). In either way we therefore find that there

exist non-BPS Dp-branes for p = 0, 2, 4, 6, 8. For

reviews on this subject, see Refs. [11, 12].

These branes are manifestly non-supersym-

metric, but nevertheless they satisfy the condi-

tions i) - iii) mentioned above, and thus are per-

fectly consistent from the closed string point of

view. In particular, since they are not charged

under any R-R field, the boundary state for these

non-BPS D-branes has only the NS-NS compo-

nent, namely

|Dp〉 = µp |Dp〉NS (11)

where we have introduced a (positive) coefficient

µp to allow for a different normalization with

respect to the standard BPS case. This nor-

malization can be deduced by requiring that the

closed string amplitude between two non-BPS

branes, after a modular transformation, has the

interpretation of the partition function of a non-

supersymmetric (i.e. without the GSO projec-

tion 3 ) open string model. Indeed, by requiring

that

〈Dp|P |Dp〉 =
∫ ∞
0

ds

s

[
TrNS q

2L0−1 − TrR q2L0
]

(12)

we find that µp =
√
2, thus confirming that the

non-BPS D-branes are heavier by a factor of
√
2

3Note that the non-supersymmetric GSO projection

(1 − (−1)F )/2 cannot correspond to a single brane since
all NS open string zero-modes are projected out.

than the corresponding BPS ones. Although the-

se non-BPS D-branes of type II may have inter-

esting properties [13], it is clear from (12) that

they are not stable, because the absence of the

GSO projection on the open strings leaves the NS

tachyon on their world-volume. However, these

non-BPS branes could become stable in an orb-

ifold of the type II theory, say IIA(B)/P , pro-
vided that the tachyon be odd under the projec-

tion P . In the orbifold theory, the non-BPS vac-
uum amplitude of the p-p open-strings is clearly

given by

Zopen = n
∫ ∞
0

ds

s

[
TrNS

(
1 + P
2

q2L0−1
)

− TrR
(
1 + P
2

q2L0
)]
(13)

where n is a positive integer representing some

possible multiplicity. (In our present discussion

we take n = 1 for the sake of simplicity, but the

case n = 2 will appear later.) The natural ques-

tion to ask now is to which boundary state the

amplitude (13) could correspond. In the case of

a space-time orbifold, the perturbative spectrum

of the bulk theory contains only closed strings

which can be untwisted (U) or twisted (T) un-

der the orbifold. Therefore, there are four sectors

to which the bosonic states belong, namely (NS-

NS;U), (R-R;U), (NS-NS;T) or (R-R;T), and the-

re exist different types of boundary states de-

pending on which components in those sectors

they have. For example, when the orbifold pro-

jection P acts as the inversion of some space-time
coordinates, the boundary state which gives rise

to (13) turns out [7, 5, 14] to have only a compo-

nent in the unstwisted NS-NS sector and another

in the twisted R-R sector, i.e.

|Dp〉 = 1√
2

(√
2|Dp〉NS;U +

√
2|Dp〉R;T

)
.

(14)

In particular, if one computes the exchange am-

plitude 〈Dp|P |Dp〉 with this boundary state and
performs a modular transformation, one can see

that the terms of (13) with P originate precisely
from the twisted part of the boundary state.

In the case of a world-sheet orbifold, how-

ever, this simple picture does not hold. To il-

lustrate this point, we consider the specific case

of the type I theory which is the orbifold of the

3
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IIB theory by the world-sheet parity Ω [15]. The

distinctive feature of this model is that the per-

turbative states of the twisted sector of the bulk

theory now correspond to unoriented open strings

which should then be appropriately incorporated

in the boundary state formalism. Let us briefly

summarize how this is done (for more details

see [16]). The starting point is the projection

of the closed string spectrum onto states which

are invariant under Ω. The corresponding closed

string partition function is obtained by adding a

Klein bottle contribution to the modular invari-

ant (halved) torus contribution. The Klein bot-

tle is a genus one non-orientable self-intersecting

surface which may be seen equivalently as a cylin-

der ending at two crosscaps. A crosscap is a line

of non-orientability, a circle with opposite points

identified, and thus the associated crosscap state

|C〉 is defined by
Xµ(σ + π, 0) |C〉 = Xµ(σ, 0) |C〉 , (15)

∂τX
µ(σ + π, 0) |C〉 = −∂τXµ(σ, 0) |C〉 ,

and by the analogous relations appropriate for

world-sheet fermions. As is clear from these equa-

tions, the crosscap state does not have any space-

time interpretation but nevertheless it is related

to the boundary state of the BPS space-time fill-

ing D9 brane through

|C〉 ∝ iL0+L̃0 |D9〉 . (16)

The normalization of |C〉, which may be fixed
up to an overall sign using the action of Ω on the

massless closed string modes and the world-sheet

duality, turns out to be 32 times the normal-

ization of the boundary state for the D9-brane.

Consequently, the (negative) charge for the un-

physical 10-form R-R potential created by the

crosscap must be compensated by the introduc-

tion of 32 D9 branes. In this way we then intro-

duce unoriented open strings which start and end

on these 32 D9 branes, whose vacuum amplitude

is given by

Zopen = 1
2

(
210〈D9|P |D9〉 (17)

+ 25〈D9|P |C〉+ 25〈C|P |D9〉
)
,

where the first line represents the contribution of

the annulus and the second line the contribution

of the Möbius strip. By adding to (17) the contri-

bution of the Klein bottle we obtain a modular

invariant expression, in which the tadpoles for

the massless unphysical states cancel if and only

if we choose the still unfixed overall sign in front

of the crosscap state to be +. A moment thought

shows that this corresponds to choose the open

string gauge group to be SO(32) (the other sign

instead leads to the gauge group Sp(32)). Thus,

we can say that the type I theory possesses a

“background” boundary state given by

1√
2

(
|C〉+ 32|D9〉

)
. (18)

where the factor of 1/
√
2 has been introduced

to obtain the right normalization of the various

spectra. Performing a modular transformation,

we can rewrite the amplitude Zopen of eq. (17)
in the open string channel as follows∫ ∞

0

ds

s

[
TrNS

(
1 + (−1)F
2

1 + Ω

2
q2L0−1

)
− TrR

(
1 + (−1)F
2

1 + Ω

2
q2L0
)]

,

where the part depending on Ω comes from the

Möbius contribution. Thus, we see that in the

type I theory the crosscap state plays the same

role that the twisted part of the boundary state

had in the space-time orbifolds. In the following,

we shall use this remark in order to classify the

stable non-BPS branes of type I theory.

We have seen before that the type IIB theory

contains unstable non-BPS Dp-branes with p =

0, 2, 4, 6, 8 which are described by the boundary

state (11). Now, we address the question whether

these D-branes become stable in the type I the-

ory, i.e. we examine whether the tachyons of

the p-p open strings are removed by Ω. As ex-

plained in [10], the world-sheet parity can be used

to project the spectrum of the p-p strings only

if p = 0, 4, 8. Thus, the non-BPS D2 and D6

branes will not be further considered. However,

in order to be exhaustive, we must take into ac-

count also another kind of configuration, namely

the superposition of a Dp-brane and an anti-Dp-

brane of type IIB. This pair clearly does not carry

any R-R charge, is represented by a boundary

state of the form (11) and is unstable due to the

4
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presence of tachyons in the open strings stretch-

ing between the brane and the anti-brane. In

the type I theory, however, these tachyons might

be projected out. A systematic analysis [17, 10]

shows that in this case Ω can be used as a pro-

jection only if p = −1, 3, 7.
In conclusion, we have to analyze the sta-

bility of the non-BPS Dp-branes of type I with

p = −1, 0, 3, 4, 7, 8 whose corresponding bound-
ary states |Dp〉 are given by eq. (11) with suit-
able values of µp. To address this problem, we

need to consider the spectrum of the unoriented

strings living on the brane world-volume (the p-p

sector), and also the spectrum of the open strings

stretched between the Dp-brane and each one of

the 32 D9-branes of the background (the p-9⊕9-p
sector), in which tachyonic modes could develop.

Let us first analyze the p-p sector, whose to-

tal vacuum amplitude is given by

Atot = 1
2

(
A+M+M∗

)
(19)

where A andM are respectively the annulus and
the Möbius strip contributions

A = 〈Dp|P |Dp〉 and M = 〈Dp|P |C〉 . (20)
After a modular transformation, in the open string

channel these amplitudes read respectively

A = µ2p Vp+1 (8π
2α′)−

p+1
2

∫ ∞
0

ds

2s
s−

p+1
2

×
[
f83 (q)− f82 (q)

f81 (q)

]
, (21)

and

M = 2
7−p
2 µp Vp+1 (8π

2α′)−
p+1
2

∫ ∞
0

ds

2s
s−

p+1
2[

ei(p−9)π/4
fp−14 (i q) f9−p3 (i q)

fp−11 (i q) f9−p2 (i q)

−ei(9−p)π/4 f
p−1
3 (i q) f9−p4 (i q)

fp−11 (i q) f9−p2 (i q)

]
, (22)

where f1, f2 f3 and f4 are the standard one-loop

functions defined for example in Ref. [1]. The

spectrum of the p-p open strings can be analyzed

by expanding the total amplitude Atot in powers
of q. The leading term in this expansion is

Atot ∼
∫ ∞
0

ds

2s
s−

p+1
2 q−1

×
[
µ2p − 2µp sin

(π
4
(9 − p))] . (23)

The q−1 behavior of the integrand signals the
presence of tachyons in the spectrum; therefore,

in order not to have them, we must require that

µp = 2 sin
(π
4
(9− p)) . (24)

Since µp has to be positive, the only possible so-

lutions are
p −1 0 7 8
µp 2

√
2 2

√
2

(25)

From this table we see that in the type I the-

ory there exist two even non-BPS but stable Dp-

branes: the D-particle and the D8-brane. Both

of them have a tension that is a factor of
√
2

bigger than the corresponding BPS branes of the

type IIA theory. Moreover, there exist two odd

non-BPS but stable Dp-branes of type I: the D-

instanton and the D7-brane. Their tension is

twice the one of the corresponding type IIB branes,

in accordance with the fact that, as mentioned

above, they can be simply interpreted as the su-

perposition of a brane with an anti brane, so that

the R-R part of the boundary state cancels while

the NS-NS part doubles.

This classification of the stable non-BPS D-

branes of type I based on the table (25) is in

complete agreement with the results of Refs. [17,

18] derived from the K-theory of space-time.

Let us now analyze the p-9⊕9-p sector. The
relevant quantity to consider is the ”mixed” cylin-

der amplitude

Amix = 32
2

(
〈Dp|P |D9〉+ 〈D9|P |Dp〉

)
, (26)

which, after a modular transformation in the open

string channel, reads

Amix = 25 µp Vp+1 (8π2α′)−
p+1
2

∫ ∞
0

ds

2s
s−

p+1
2

×
[
fp−13 (q)f9−p2 (q)

fp−11 (q)f9−p4 (q)
− fp−12 (q)f9−p3 (q)

fp−11 (q)f9−p4 (q)

]
,

where the first and second term in the square

brackets account respectively for the NS and R

sector. This expression needs some comments.

First, for p = −1, 0 we see that there are no
tachyons in the spectrum; moreover, the values of

µp for the D-instanton and D-particle are crucial

in order to obtain a sensible partition function for

5
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open strings stretching between the non-BPS ob-

jects and the 32 D9-branes. Indeed, they are the

smallest ones that make integer the coefficients

in the partition functions. Secondly, for p = 7, 8

we directly see the existence of a NS tachyon, so

that the corresponding branes are actually un-

stable [10]. Hence, only the D-instanton and the

D-particle are fully stable configuration of type

I string theory [10, 12]. Nevertheless, the strict

relation connecting the D0-brane and the D(-1)-

brane to the D8-brane and the D7-brane respec-

tively suggests however that also the latter may

have some non trivial meaning. Finally, we ob-

serve that the zero-modes of the Ramond sector

of these p-9 ⊕ 9-p strings are responsible for the
degeneracy of the non-BPS Dp-branes under the

gauge group SO(32): in particular the D-particle

has the degeneracy of the spinor representation

of SO(32), as discussed in [8, 9]. Thus the D-

particle accounts for the existence in type I of

the non-perturbative non-BPS states required by

the heterotic/type I duality.

These same methods may be used in order

to study the stability of a non-BPS Dp-brane in

presence of another Dq-brane. Indeed the spec-

trum of open strings stretching between two such

(distant) objects at rest has a vacuum amplitude

given by

µpµq

2

(
NS〈Dp|P |Dq〉NS + NS〈Dq|P |Dp〉NS

)
.

(27)

The overall factor of one-half indicates that, re-

spectively to the IIB case, only the Ω symmetric

combinations are retained. By explicitly comput-

ing this amplitude, one can see that for |p−q| ≤ 3
and for sufficiently small values of the distance

between the branes, a NS tachyon develops in the

open string spectrum, thus signalling the unsta-

bility of the configuration. As a first consequence

of this, we can conclude that the superposition

of two non-BPS D-particles with trivial quantum

numbers, decays into the vacuum [8]. As a mat-

ter of fact, a stable non-BPS Dp-brane is its own

anti-brane, as may be also inferred from the K-

theory analysis which shows that the conserved

D-brane charge in that case is Z2 valued [17].

This analysis shows that there is no hope to form

a stable superposition of N non-BPS Dp-branes

of type I as they always exert an attractive force

on each other, as may be seen from (27). This

is to be contrasted with the case of a space-time

orbifold [14] where, for some particular values of

the compactification radii, a compensation oc-

curs between the attractive force due to exchange

of untwisted NS-NS states and the repulsive force

due to exchange of twisted R-R states. As a sec-

ond consequence, and for analogous reasons, the

superposition of a D-particle and of a D1-string

is unstable and decays in the vacuum. Note that

in that case, the 0-1 open string is T-dual of the

8-9 string responsible for the unstability of the

D8-brane.

Up to now we have investigated the flat ten

dimensional case. However, this analysis can be

easily extended also to the case in which some di-

rections are compactified. Contrarily to the BPS

D-branes, the non-BPS one are not stable in all

moduli space. As an example, let us consider the

non-BPS D-particle and compactify one space di-

rection along a circle of radius R. Then, one can

observe that a tachyon develops in the 0-0 open

string sector if R < Rc =
√
α′/2, so that below

the critical radius Rc the configuration is unsta-

ble. The corresponding stable non-BPS config-

uration which carries the same quantum num-

bers in this range of moduli is a superposition of

wrapped D1 and anti-D1 strings with a Z2 Wil-

son line. Notice that when the time direction

is compactified, the D-particle is stable for any

value of the radius.

We now present the basic ideas and results

about the gravitational and gauge interactions of

two stable non-BPS D-particles of type I string

theory (the detailed calculations and analysis of

these interactions can be found in [19]).

In the type I theory, D-branes interact via

exchanges of both closed and open bulk strings.

Since the dominant diagram for open strings has

the topology of a disk, it gives a subleading (in

the string coupling constant) contribution to the

diffusion amplitude of two branes which is thus

dominated by the cylinder diagram, i.e. by the

exchange of closed strings. In the long distance

limit, this accounts for the gravitational interac-

tions. Let us now use this observation to calcu-

late the dominant part of the scattering ampli-

tude between two D-particles of type I moving

6
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with a relative velocity v. This process can be

simply analyzed using the boundary state for-

malism as explained in [20]. What we need to

compute is the cylinder amplitude between the

boundary state of a static D-particle |D0〉 and
the boundary state of a moving D-particle |D0, v〉.
The latter is simply obtained by acting with a

Lorentz boost on |D0〉, i.e.

|D0, v〉 = eiπθJ01|D0〉 , (28)

where θ is the rapidity along direction of motion

(which we have taken to be x1) defined through

v = tanhπθ, and J01 is the corresponding Lorentz

generator. Thus, the amplitude we are looking

for is

A = 〈D0|P |D0, v〉+ 〈D0, v|P |D0〉 , (29)

which indeed reduces to (27) for v → 0. From
this expression, we can extract the long range

gravitational potential energy, which, in the non

relativistic limit, reads [19]

V grav(r) = (2κ10)
2 M2

0

7Ω8 r7

×
(
1 +
1

2
v2 + o(v2)

)
, (30)

where r is the radial coordinate, Ω8 is the area

of the unit 8-dimensional sphere,M0 = T0/κ10 is

the D-particle mass and κ10 is the gravitational

coupling constant in ten dimensions. Hence the

boundary state calculation correctly reproduces

the gravitational potential we expect for a pair

of D-particles in relative motion.

Although they are subdominant in the string

coupling constant, the interactions of the D-parti-

cle with the open strings of the bulk are never-

theless interesting because they account for the

gauge interactions. Since the non-BPSD-particles

of type I are spinors of SO(32), their gauge cou-

pling is fixed by the spinorial representation they

carry (except possibly by the overall strength).

The stringy description of such a coupling has

been provided in [19] where we have shown that

it is represented by an open string diagram with

the topology of a disk with two boundary com-

ponents, one lying on the D9-branes from which

the gauge boson is emitted, and the other lying

on the D-particle (see Figure 1).

X
 

gauge

X
V

V

V

90

09

90

Figure 1: The disk diagram describing the gauge

coupling of a type I D-particle.

At the points where the two boundary com-

ponents join, we thus have to insert a vertex op-

erator V90 (or V09) that induces the transition

from Neumann to Dirichlet (or from Dirichlet to

Neumann) boundary conditions in the nine space

directions. As we have mentioned before, the

SO(32) degeneracy of the D-particle is due to

the fermionic massless modes of the open strings

stretching between the D-particle and each of the

32 D9-branes; therefore it is natural to think that

the boundary changing operators V90 and V09 are

given by the vertex operators for these massless

fermionic modes [19]. By construction, these op-

erators carry Chan Paton factors in the funda-

mental representation of SO(32), while the ver-

tex operator Vgauge for the gauge boson carries

a Chan-Paton factor in the adjoint. As a conse-

quence, the diagram represented in Figure 1 must

be considered as the one point function of the

gauge boson in the background formed by a D-

particle seen as an object in the bi-fundamental

representation of SO(32). Hence, we do not see

the entire gauge degeneracy of the D-particle be-

cause the degrees of freedom we use to describe

it are not accurate enough. This is reminiscent

from the fact that, in the boundary state formal-

ism, also the Lorentz degeneracy of a D-brane is

hidden. Using this result, we can easily compute

the Coulomb potential energy V gauge(r) for two

D-particles placed at a distance r. Indeed, this is

simply obtained by gluing two diagrams like that

of Figure 1 with a gauge boson propagator, and

its explicit expression turns out to be [19]

V gauge(r) = − g2YM
2

1

7Ω8 r7
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× (δAB δCD − δAC δDB) , (31)

where gYM is the gauge coupling constant in ten

dimensional type I string theory, and A, B, C

and D are indices in the fundamental represen-

tation of SO(32).

We conclude by recalling that the non-BPS

D-particles of type I are dual to perturbative

non-BPS states of the SO(32) heterotic string

which also have gravitational and gauge inter-

actions among themselves. These can be com-

puted using standard perturbative methods and

if one takes into account the known duality rela-

tions and renormalization effects, one can explic-

itly check that they agree with the expressions

(30) and (31). This agreement provides further

dynamical evidence of the heterotic/type I dual-

ity beyond the BPS level.
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