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Abstract: The cutting and sewing procedure is used for getting two-loop order Feynman diagrams

of Φ4-theory with an internal SU(N) symmetry group, starting from tachyon amplitudes of the open

bosonic string theory. In a suitably defined field theory limit, we reproduce the field theory amplitudes

properly normalized and expressed in the Schwinger parametrization.
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It is well-known that a string theory can pro-

vide a consistent quantum theory of gravity, uni-

fied with non-abelian gauge theories in the so-

called zero-slope limit where the inverse string

tension α′ → 0. The reasons of such a consis-
tency lie in the fact that this latter is a physical

dimensional parameter acting as an ultraviolet

cutoff in the integrals over loop momenta. There-

fore it makes multiloop amplitudes free from ul-

traviolet divergences.

Consequently, string theory provides an al-

ternative technique of computing field theory am-

plitudes. In fact, since its scattering amplitudes

are organized in a very compact form, one can

compute, for instance, non-abelian gauge theory

amplitudes by starting from a string theory and

performing the zero-slope limit, rather than us-

ing traditional field theory techniques. The ex-

pression of string amplitudes is known explicitly,

including also the measure of integration on mod-

uli space, in the case of the bosonic open string

for any perturbative order [1].

These interesting features of string theory

have led some authors to use it as an efficient tool

to compute gluon amplitudes in Yang-Mills the-

ory [2] ÷ [6] or graviton amplitudes in quantum
gravity [7], and some improvements have been

achieved in understanding the perturbative rela-

tions between gravity and gauge theory [8]. Such

string-methods have also inspired some authors

in developing very interesting techniques based
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on the world-line path-integrals [9].

In order to derive field theory amplitudes

from the corresponding string ones one has to

start, for example in the case of Yang-Mills am-

plitudes, from a given multiloop gluon string am-

plitude and to single out different regions of the

moduli space that, in the low-energy limit, repro-

duce different field theory diagrams. This pro-

gram has been carried out at one-loop [10] [11]

and, at this order, the five-gluon amplitude has

been obtained for the first time [12].

This procedure, when extended to the two-

loop case [11] [13] [14], becomes difficult to han-

dle in the case of amplitudes with external states.

The computational difficulties associated with this

kind of multiloop Yang-Mills amplitudes, which

are inessential for understanding the field the-

ory limit, can be avoided if amplitudes involving

scalar particles are considered. In fact, differ-

ently from what happens in gauge theories, in

string theory there is not a big conceptual differ-

ence between gluon and scalar diagrams. There-

fore one can get more easily from scalar ampli-

tudes the whole information about the corners

of the moduli space reproducing the known field

theoretical results: these regions are exactly the

ones giving the correct field theory diagrams also

in the case of gluon amplitudes.

Scalar amplitudes are the ones involving tachyons

of the bosonic string theory. So one can consider

a slightly different zero-slope limit of the bosonic

string in which only the lowest tachyonic state,
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with a mass satisfying m2 = −1/α′ is kept. In
the case of tree and one-loop diagrams, this pro-

cedure is equivalent to take the zero-slope limit

of an old pre-string dual model with an arbitrary

value of the intercept of the Regge trajectory. It

was recognized the inconsistency of this model,

but the field theory limit of tree and one-loop di-

agrams of this pre-string dual model was shown

to lead to the Feynman diagrams of Φ3 theory

[15].

In Ref. [11], it has been explicitly shown

that by performing the zero-slope limit as above

explained, one correctly reproduces the Feynman

diagrams of Φ3 theory, up to two-loop order.

The aim of this talk is to illustrate how the

conceptual scheme pursued in Ref. [11] can be

extended to two-loop amplitudes containing quar-

tic scalar interactions. This means that, starting

from string amplitudes involving tachyons, we

perform on them the field theory limit in which

their mass is fixed and correctly identify the cor-

ners associated to the different field theory dia-

grams of Φ4 theory. Such a program is carried

out by pursuing the so-called sewing and cutting

procedure.

This work is based on the results contained

in Ref. [16]. We would like to cite here the arti-

cle [17] where scalar diagrams are obtained from

string amplitudes through an alternative proce-

dure based on the Schottky group properties [18].

The plan of the work is the following.

Firstly we illustrate the sewing and cutting

procedure applying it to the four tachyon tree

amplitude. We define a proper field theory limit

where quartic scalar interactions are reproduced.

Then we check the validity of this procedure by

deriving from the two- and four-tachyon ampli-

tudes at one-loop, respectively, the tadpole and

the candy diagram of Φ4 theory. Finally we ap-

ply it to the double-candy diagram.

1. Tree scalar diagrams from strings

The starting point is the planar tree scattering

amplitude of four on-shell bosonic open string

tachyons with momenta p1, . . . , p4 each satisfying

the mass-shell condition p2 = −m2 = 1
α′ :

A
(0)
4 (p1, p2, p3, p4) = Tr [λ

a1λa2λa3λa4 ]C0N 4t

×
∫ 1
0

dz(1− z)2α′p2·p3z2α′p3·p4 (1.1)

where the Koba-Nielsen variables relative to the

tachyons labelled by 1, 2, 4 have been respectively

fixed at +∞, 1 and 0.
According to the corner of moduli space where

the low-energy limit of the amplitude (1.1) is per-

formed, one can recover, for instance, Φ3- or Φ4-

scalar diagrams.

In order to understand which regions in mod-

uli space lead to the different field theory dia-

grams, one can use the so-called sewing and cut-

ting procedure. This consists in starting from a

string diagram and in cutting it in three-point

vertices; next we fix the legs of each three-point

vertex at +∞, 1 and 0. Then we reconnect the di-
agram by inserting between two three-point ver-

tices a suitable propagator acting as a well spec-

ified projective transformation. This is chosen

in such a way that its fixed points are just the

Koba-Nielsen variables of the two legs that have

to be sewn. The geometric role of the propagator

is to identify the local coordinate systems defined

around the punctures to be sewn.

The amplitude in Eq. (1.1) can be expressed

also in terms of the Green functions G(0)(zi, zj),
defined on the world-sheet in the following way:

G(0)(zi, zj) = log (zi − zj) (1.2)

A necessary intermediate step for deriving

tree scalar Φ4-diagrams is to generate tree dia-

grams of Φ3-theory. With reference to the four-

tachyon tree string diagram, one can see that it

can be obtained by sewing two three-point ver-

tices as shown in Fig. (1). We sew the leg cor-

responding to the point 0 in the vertex at the

left hand in Fig. (1a) to the leg corresponding

to the point +∞ in the one at the right hand
through a propagator corresponding to the pro-

jective transformation

S(z) = Az (1.3)

which has 0 and +∞ as fixed points and the pa-
rameter A, with 0 ≤ A ≤ 1, as multiplier. Per-
forming the sewing means, in this procedure, to

transform only the punctures of the three-point

vertex at the right hand in Fig. (1a) through

(1.3), hence the puncture z3 = 1 transforms into

2
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Figure 1: Sewing of two three vertices

S(1) = A while the other two punctures remain

unchanged.

In general, after the sewing has been per-

formed, the Koba-Nielsen variables become func-

tions of the parameter A appearing in the pro-

jective transformation (1.3). It is possible to give

a simple geometric interpretation to this param-

eter, if a correspondence is established between

the projective transformation in Eq. (1.3) and

the string propagator, written in terms of the op-

erator e−τ(L0−1). The latter indeed propagates
an open string through imaginary time τ and cre-

ates a strip of length τ . In fact the change of

variable z = e−τ allows the string propagator to
be written as

1

L0 − 1 =
∫ 1
0

dzzL0−2

=

∫ ∞
0

dτ exp

(
−τα′

[
p2 +

1

α′
(N − 1)

])
(1.4)

and to establish the following relation between τ

and A:

τ = −logA. (1.5)

The multiplier A results to be therefore re-

lated to the length of the strip connecting two

three-vertices.

On the other hand, since we want to repro-

duce tree Φ3-theory diagrams we have to consider

a low-energy limit of string amplitudes in which

only tachyons propagate as intermediate states.

This is achieved observing from (1.4) that the

only surviving contribution in the limit α′ → 0
with τα′ kept fixed is the one coming from the
level N = 0, i.e. from tachyons with fixed mass

given by m2 = − 1
α′ . It is obvious that this also

corresponds to the limit τ →∞ and hence, from
(1.5), to A → 0. From these considerations it
seems natural to introduce the variable x = τα′

in terms of which the string propagator (1.4),

reproduces, in the above mentioned limit, the

scalar propagator

1

p2 +m2
=

∫ ∞
0

dxe−x(p
2+m2)

with x being interpreted as the Schwinger proper

time.

From a geometrical point of view, one can

imagine that the the strip connecting the two

three-vertices, in this field theory limit, becomes

“very long and thin”, so that only the lightest

states propagate.

By rewriting the amplitude (1.1) in terms of

the Schwinger parameter x or, equivalently, in

terms of the multiplier A we finally get [16]:

A
(0)
4 =

1

8
Tr [λa1λa2λa3λa4 ]

g2φ3

[(p1 + p2)2 +m2]
(1.6)

where it has been used the well-known relation

between gs and gφ3 [11]:

gφ3 = 16gs(2α
′
)
d−6
4 . (1.7)

We are going now to consider a suitable limit

of the string four-tachyon amplitude which can

reproduce the diagram corresponding to the tree

four-point vertex of Φ4-theory. With reference

again to the Fig. (1), this diagram has to corre-

spond to a limit in which the length of the tube

connecting the two three-vertices composing the

string diagram goes to zero in the limit α′ → 0,
i.e.

τ =
x

α′
= −logA→ 0

3
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This corresponds to the limit A → 1, and hence
z → 1 or, equivalently, z3 → z2.
In this limit the Green function G(0)(z2, z3)

is divergent. We regularize it by introducing a

cut-off ε on the world-sheet so that

lim
z2→z3

log [(z2 − z3) + ε] = logε
and

lim
α′→0

α′logε = 0

We consider therefore the amplitude A
(0)
4 in Eq.

(1.1) in the field theory limit defined by:

A = z = 1− ε,

α′ → 0 and x = −α′logε→ 0. (1.8)

in which it reduces to

24Tr [λa1λa2λa3λa4 ] g2s(2α
′)
d−4
2 . (1.9)

The complete amplitude is obtained by perform-

ing the sum over non cyclic permutations, finally

getting a result coincident with the color ordered

vertex generated by the following scalar field the-

ory:

L = Tr
[
∂µφ∂µφ+m

2φ2 − gφ4
4!
φ4
]

(1.10)

obtaining the matching condition

gφ4 = 4gs(2α
′)d/2−2. (1.11)

2. One-loop Φ4-diagrams from strings

2.1 Tadople diagram

In this subsection we
1

p

p
2

Figure 2: Tadpole

show how the tadpole di-

agram in Φ4-theory can be

derived from string the-

ory. The starting point

will be, this time, the color

ordered two-tachyon pla-

nar amplitude at one-loop:

A2(p1, p2) = NTr [λ
a1λa2 ]C1

[
2gs(2α

′)
d−2
4

]2

×
∫ 1
0

dk

k2

[
− 1
2π
logk

]− d2 ∞∏
n=1

(1− kn)2−d

×
∫ 1
k

dz

z

[
expG(1)(1, z)√

z

]2α′p1·p2
. (2.1)

We would like now to stress that if we want

to reproduce diagrams of scalar field theories we

have to ensure that only tachyon states propa-

gate in the loops of string amplitudes. In fact

this condition is fulfilled if small values of the

multiplier k are considered: indeed this parame-

ter plays exactly the same role as the multiplier

A in the tree level amplitudes. Therefore an ex-

pansion in powers of k is performed keeping the

most divergent terms. In so doing we get

A
(1)
2 (p1, p2) =

N

2

1

(4π)d/2
1

(2α′)d/2
[
2gs(2α

′)
d−2
4

]2

×
∫ 1
0

dk

k2

[
−1
2
log k

]−d2 ∫ 1
k

dz

z
e2α

′G(1)(1,z) (2.2)

where the Green function, in the limit we are

considering, is

G(1)(z1, z2) = log(z1−z2)−1
2
log z1z2+

log2 z1/z2
2 log k
(2.3)

Our aim is to identify the right limit to get

the tadpole diagram in Fig. (2).

Starting from two three-vertices, we sew the

leg 0 with the leg +∞ according to the Fig. (3).
Such a sewing is performed by considering

again the projective transformation S(z) = Az,

which has +∞ and 0 as fixed points and which
transforms z2 = 1 in the second vertex in Fig.

(3a) in the multiplier A getting the configuration

shown in Fig. (3b).

The next step consists in performing a limit

in which z2 → z1, i.e. in which A → 1 with

α′log(1−A)→ 0, as said before. In this limit we
should get the tadpole diagram. Indeed we have:

A
(1)
2 (p1, p2) =

2N

(4π)d/2
1

2α′
g2s

∫ 1
0

dk

k2

[
−1
2
log k

]−d/2

(2.4)

By defining:

x = −α′ log k
with 0 ≤ x ≤ +∞, we can rewrite (2.4) as fol-
lows:

A
(1)
2 (p1, p2) =

N

(4π)d/2
λφ4

∫ ∞
0

dxe−xm
2

x−d/2

(2.5)

By using the matching condition established

at the tree level (1.11) we get from string theory

the tadpole diagram of Φ4- theory.

4
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Figure 3: Sewing for the tadpole diagram

2.2 Candy diagram
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Figure 4: Candy diagram

Let us now derive the candy diagram from

the four-tachyon one-loop amplitude:

A
(1)
4 (p1, p2, p3, p4) =

N

(4π)d/2
Tr [λa1λa2λa3λa4 ]

× 1

(2α′)d/2

[
2gs(2α

′
)
d−2
4

]4 ∫ 1
0

dk

k2

[
−1
2
logk

]− d2

×
∫ 1
k

dz4

z4

∫ 1
z4

dz3

z3

∫ 1
z3

dz2

z2

4∏
i<j=1

[
exp (G(zi, zj))√

zizj

]2α′pi·pj
(2.6)

The diagram relative to this amplitude can

be obtained by means of the sewing procedure

illustrated in Fig. (5).

The four-particle vertices of the candy di-

agram can be generated by the corner of the

moduli space where the Koba-Nielsen variables

z1 → z2 and z3 → z4. This is performed by

considering the limit in which the multipliers Bi
(i = 1, 2)→ 1. We stress here that, in this limit,
the Green functions G(z1, z2) and G(z3, z4) re-
sult to be divergent and we regularize them by

introducing a cut-off ε on the world-sheet so that

Bi = 1 − ε. In this limit the length of the strips
connecting the three-vertices become very short

and in this way the four-particle vertices of the

diagram in consideration are generated. Further-

more, in order to select in the loop only the light-

est states, we also take the limit in which the

multiplier A → 0, and, after having performed
both the limits, we send the cut-off to zero in all

the regular expressions.

From these geometrical considerations that

shed light on the different roles played by the

multipliers A-like and B-like, we select the fol-

lowing corner of the moduli space reproducing

the candy diagram of Φ4-theory:

A→ 0 Bi = 1− ε→ 1 (2.7)

Let us now evaluate the amplitude (2.2) in

the corner (2.7).

The first step consists in rewriting, in this

region of the moduli space, the measure and the

integration region in the amplitude (2.2).

The ordering of the Koba-Nielsen variables

determines the integration regions of the mul-

tipliers A and Bi in terms of which the whole

amplitude is expressed, after the sewing. More

precisely, in the limits (2.7), one gets:

∫ 1
0

d k

k2

∫ 1
k

d z2

z2

∫ z2
k

d z3

z3

∫ z3
k

d z4

z4

'
∫ 1
0

d k

k2

∫ 1
k

dA

A
+ O (k) (2.8)

For this diagram, the proper times associ-

ated to the single propagators in the loop, are

identified with the Schwinger parameters

t1 = −α′ log k/A t2 = −α′ logA (2.9)

where k has to be understood as the proper time

of the whole loop.

5
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Figure 5: Sewing for the candy diagram
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Figure 6: Double-candy

The Green functions defined in (2.3), in this

limit, drastically simplify.

In particular the Green function 2α′G(z1, z3),
when written in terms of the Schwinger parame-

ters, becomes

2α′G(z1, z3) = t2 − t2
2

t1 + t2
. (2.10)

By expressing the full amplitude in terms of

t1 and t2 one gets:

A4 =
N

(4π)d/2
1

2
da1a2lda3a4l

[
26g4s(2α

′)d−4
]

×
∫ ∞
0

dt1

∫ ∞
0

dt2(t1 + t2)
−d/2e−m

2(t1+t2)

×e−(p1+p2)
2

[
t2− t2

2

t1+t2

]
(2.11)

Once again we have the right result in field

theory by using the matching condition (1.11).

3. A two-loop diagram: double-candy

In this section we show how to get the double-

candy diagram of Φ4 theory, Fig. (6), start-

ing from the two-loop four-tachyon amplitude in

bosonic string theory:

A
(2)
4 (p1p2p3p4) = N

2Tr [λa1λa2λa3λa4 ]C2N
4
0

×
∫
[dm]42

∏
i<j


expG(2)(zi, zj)√

V
′
i (0)V

′
j (0)



2α
′
pi·pj

(3.1)

where the expressions for V
′
i (0) are given by:

(V
′
i (0))

−1 =
∣∣∣∣ 1

zi − ρa −
1

zi − ρb

∣∣∣∣ (3.2)

with ρa and ρb depending on the position of zi
and being the two fixed points on the left and on

the right hand of zi.

We expand the previous amplitude for small

values of the multipliers kµ keeping the most di-

vergent contribution that is the one correspond-

ing to the tachyon state and again the Green

functions reduce to the following form [11]:

G(2)(zi, zj) = log(zi − zj)

+
log2 T log k2 + log

2 U log k1 − 2 logT logU logS
2(log k1 log k2 − log2 S)

(3.3)

with

S =
(η1 − η2)(ξ1 − ξ2)
(ξ1 − η2)(η1 − ξ2)

T =
(zj − η1)(zi − ξ1)
(zj − ξ1)(zi − η1)

U =
(zj − η2)(zi − ξ2)
(zi − η2)(zj − ξ2) (3.4)

The measure, once used the projective in-

variance to fix z4 = 1, ξ2 = +∞ and η2 = 0,
becomes:

[dm]
4
2 =

3∏
i=1

dzi

V
′
i (0)

2∏
µ=1

dkµ

k2µ

dξ1dη1

(ξ1 − η1)2

6
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× [det (−iτµν)]−d/2 (3.5)

where τµν is the period matrix in the limit of

small multipliers [16].

Let us now identify the corner of the mod-

uli space that, in the field theory limit, repro-

duces the two-loop candy diagram, according to

our procedure. In Fig. (8) it is shown the final

configuration that we reach applying the sewing

procedure with the following projective transfor-

mations:

Si = Bi z Ŝ1 = A1 z Ŝ2 = A2 z (3.6)

with i = 1, 2, 3.

Once the sewing procedure is completed, the

Koba-Nielsen variables and the moduli of the

surface, are expressed in terms of the multiplier

of the transformations according the correspon-

dence shown in Fig. (8).

If we want to obtain the four-particle ver-

tices peculiar of the two-loop candy diagram, we

have to take in consideration the corner of the

Koba-Nielsen variables characterized by z1 → z2,
z3 → z4 and by the modulo ξ1 → 1. This configu-
ration is achieved considering the limits in which

Bi → 1 and introducing the suitable regulariza-
tors, when necessary.

Furthermore, considering also the limit Ai →
0, we select scalar particles in the other internal

legs.

The corner of moduli space reproducing the

Φ4 scalar diagram illustrated in Fig.(6) is

Ai → 0 Bi = 1− ε . (3.7)

Let us now evaluate the amplitude (3.1) in

this corner.

The Green functions (3.3) are then evaluated

in the limit (3.7) where they take a simple form

and the same is done for the local coordinates

V
′
i (0) and for the measure.

As regards the integration region, we observe

that the sewing procedure determines an order-

ing of the Koba-Nielsen variables and of the fixed

points as shown in Fig. (8).

In the field theory limit (3.7) we integrate

the multipliers B-like between 0 and 1 and the

multipliers A-like, between 0 and δ being δ, a

positive infinitesimal quantity.

The Schwinger parameters in this case are

related to the Ai’s by the following relations [11]:

ti+2 = −α‘ logAi, t1 = −α′ log k1
A2
, t2 = −α′ log k2

A1
(3.8)

with i = 1, 2.

Rewriting the Green functions and the mea-

sure in terms of the Schwinger parameters we

get:

A
(2)
4 (p1 · · · p4) =

N2

(4π)2
da1 a2 l da3 a4 l

×
[
24g2s(2α

′
)
d−4
2

]3
25

∫ ∞
0

4∏
i=1

dtie
−m2(t1+t2+t3+t4)

×(t1 + t4)−d/2(t2 + t3)−d/2

×e−(p1+p2)2
[
t1 t4
t1 + t4

+
t2 t3
t2+t3

]
(3.9)

where a sum over inequivalent permutations of

the external particles has been done analogously

as in the one-loop candy-diagram case.

Now using the matching condition (1.11), we

get the same result, including the overall factor,

as the one obtained in field theory.

In conclusion, we have used the sewing and

cutting procedure in order to show how Φ4-theory

diagrams can be reproduced from string ampli-

tudes, up to two loop-order. The whole informa-

tion so obtained can be in principle extendible

to Yang-Mills diagrams involving quartic inter-

actions.
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