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Abstract: We study a configuration in matrix theory carying longitudinal fivebrane charge, i.e. a

D0-D4 bound state. We calculate the one-loop effective potential between a D0-D4 bound state and a

D0–anti-D4 bound state. Next, we identify the tachyonic fluctuations in the D0-D4 and D0–anti-D4

system. We analyse classically the action for these tachyons and find solutions to the equations of

motion corresponding to tachyon condensation.

1. Introduction

Matrix theory [1] [2] [3] is the M-theory inter-

pretation of U(N) supersymmetric quantum me-

chanics which has passed many stringent tests.

The brane content of matrix theory was deter-

mined in [4]. Amongst other branes, the longitu-

dinal fivebrane was identified 1.

In [10] a first step towards the understanding

of Sen’s tachyon condensation mechanism [11]

in matrix theory was taken, by analyzing the

tachyon in the D0-D2 and D0–anti-D2 system.

We concentrate on the D0-D4 and D0–anti-D4

system. We identify the tachyonic fluctuations

in the D0-D4 and D0–anti-D4 background and

analyse the classical action for these fluctuations

in the spirit of [10]. We find solutions to the ac-

tion representing condensation to a vacuum filled

with D0-branes and gravitons.

The first section concentrates on a discussion

of the classical solution of matrix theory corre-

sponding to a D0-D4 bound state system. In

the second section we calculate the effective po-

tential between a D0-D4 and D0–anti-D4 brame.

The next section deals with an analysis of the

tachyonic fluctuations. Then we analyse possible

solutions to the action for the tachyonic fluctua-

tions. Finally, we add remarks on the results and

open problems.

1The transverse fivebrane remained a puzzle [5].

2. Preliminary discussion of the clas-

sical solution

The lagrangian of matrix theory is given by U(N)

supersymmetric quantum mechanics, namely the

dimensional reduction of tendimensional N = 1
U(N) super Yang-Mills theory to 0 + 1 dimen-

sions. It reads [1]:

L = T0
2
Tr
(
(D0XI)

2 +
1

2
[XI , XJ ]

2

+2θTD0θ − 2θTγI [θ,XI ]
)

(2.1)

where we take 2πα′ = 1 and T0 =
√
2π
g
. Fur-

thermore we have D0 = ∂t − i [A0, .] and I =
1, 2, . . . , 9. All fields are in the adjoint of U(N).

The fermions are Majorana-Weyl.

We study especially a background configura-

tion (XI = BI) corresponding to a D0-D4 bound

state, or longitudinal fivebrane, satisfying the fol-

lowing commutation rules [4]:

[B1, B2] = −ic σ3 ⊗ IN
2 ×N2

[B3, B4] = −ic σ3 ⊗ IN
2 ×N2 , (2.2)

and the other matrices and commutators zero.

Here σ3 is the third Pauli matrix and c is a con-

stant. We take the infinite background matrices

to be blockdiagonal such that this configuration

solves the equations of motion. it carries longitu-

dinal fivebrane charge in the 1, 2, 3, 4 directions:

q5 = − 1
8π2
εIJKLTr [BIBJBKBL] = N

c2

4π2
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3. Calculating the effective poten-

tial in matrix theory at one loop

In this section we calculate the interaction po-

tential between the D0-D4 and the D0–anti-D4

bound state.

Because each object is represented by a ’two-

by-two’ matrices, we need some conventions and

nomenclature, which we will take to be as fol-

lows. In this section, the first bound state will

have extent n0, the second N0. In each ’two-by-

two’ matrix, the submatrices will have half the

extent of the object, e.g. n02 . We will take the

following nomenclature for the different parts of

the coordinate matrices:

XI =



block 1 0 sect 13 sect 14

0 block 2 sect 23 sect 24

sect 13† sect 23† block 3 0

sect 14† sect 24† 0 block 4




The off-diagonal modes have been divided up

into four different sectors.

The technique to calculate the one-loop ef-

fective potential between two objects in matrix

theory is standard by now [6] [7]. To calculate

the potential, we determine the spectrum of the

off-diagonal fluctuations corresponding to strings

stretching from one object to the other. Their

mass matrix is easily determined by expanding

the action of matrix theory around the relevant

background. This is slightly more involved when

objects are represented by two-by-two matrices,

but the general formulae in for instance [9] [12]

can easily be adapted to our case, essentially be-

cause the background matrices are block diago-

nal. We do not give the details of the calculation,

but summarize the end result.

The D0–anti-D4 will be at a distance b of the

D0-D4 in some transverse direction (”8”) and it

will be moving with a velocity v relative to it in

another transverse direction (”9”). This is in-

corporated by choosing the background matrices

corresponding to these transverse coordinates to

be:

B8 =

(
0n0×n0 0

0 b IN0×N0

)

B9 =

(
0n0×n0 0

0 vt IN0×N0

)
(3.1)

Finally, to make the interaction energies fi-

nite, we wrap the fourbranes on a four-torus.

This hardly influences the calculation. It is more-

over convenient to take the four-torus to have

self-dual radii Ri =
√
α′. It is straightforward to

again add in the dependence on the compactifica-

tion radii in the final formulae. See for instance

[9].

The background matrices are:

[P1, Q1] = −ic1
[P2, Q2] = −ic1
[P3, Q3] = −ic3
[P4, Q4] = −ic3

B1 =



P1 0 0 0

0 P1 0 0

0 0 −P3 0

0 0 0 −P3




B2 =



Q1 0 0 0

0 −Q1 0 0

0 0 Q3 0

0 0 0 −Q3




B3 =



P2 0 0 0

0 P2 0 0

0 0 P4 0

0 0 0 P4




B4 =



Q2 0 0 0

0 −Q2 0 0

0 0 Q4 0

0 0 0 −Q4


 (3.2)

We find four sectors of extent n02 × N0
2 , all

with identical spectra, when we ignore the ori-

gin in terms of the different coordinates 2. The

relevant hamiltonian is:

H(13) = (P1 − P3)2 + (Q1 −Q3)2 + (P2 + P4)2
+(Q2 −Q4)2 + b2 + v2t2,

corresponding to a system of two harmonic oscil-

lators. We will always suppose that c1−c3 is pos-
itive, the other case being fully equivalent. The

mass operators are for each sector for the bosons

4 : H ± 2iv; 4 : H ± 2(c1+ c3); 4 : H ± 2(c1− c3);
2We can do so for calculating the effective potential,

but in section 4 we need the precise origin of the tachyonic

modes in terms of the coordinate matrices. We return

there to this point.
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4 : H and for the fermions 16 : H ± iv ± (c1 +
c3)± (c1 − c3). The potential is then :

V = 2N√
π

∫ ∞
0

ds e−b
2s

4s3/2 sinh (c1 − c3)s sinh (c1 + c3)s
×(2 + 2 cos 2vs+ 2 cosh2(c1 − c3)s
+2 cosh2(c1 + c3)s− 8 cos vs
cosh (c1 + c3)s cosh (c1 − c3)s)

≈ n4N4
b3
+
(n0N4 +N0n4)v

2

4b3
+
n0N0v

4

16b3

The interaction potential is non-trivial at zero

velocity and the background fully breaks super-

symmetry. The end result can be reproduced by

a supergravity calculation [8]. Clearly, the for-

mula for the potential breaks down at small dis-

tances b2 ≤ 2c3. Then there is a tachyon in the
spectrum of the bosons since the lowest energy

mode has mass: E = (c1 − c3) + (c1 + c3) + b2 −
2(c1 + c3) = b

2 − 2c3. We will treat the system
at short distances in section 4.

4. The action for the tachyonic fluc-

tuations

4.1 The action

From now on, we will consider the D0-D4 system

and the D0–anti-D4 system to lie on top of each

other, so we put the background matricesB8 and

B9 (3.1) to zero. We compute the mass matrix

for the fluctuations in the coordinate matricesX1
and X2, and find the tachyonic fluctuations

φ =
y
(13)
2 − iy(13)1√

2

φ′ =
y
(24)
2 + iy

(24)
1√

2

χ =
y
(14)
4 − iy(14)3√

2

χ′ =
y
(23)
4 + iy

(23)
3√

2
(4.1)

Next we turn to the analysis of the action

for the tachyonic fluctuations in the spirit of [10].

We expand the classical action around the D0-D4

and D0–anti-D4 background, only keeping track

of the tachyonic fluctuations and the gauge fields

of the unbroken gauge group U(1)4 under which

the tachyons are charged. For simplicity, we take

the number of D0-D4 bound states and D0-anti-

D4 bound states to be equal, i.e. c1 = c3 = c.

We will use a representation in terms of gauge

fields [13]. Under the preceding assumptions, the

coordinate matrices are given by:

X1 = c




−i∇(1)x1 0 i φ√
2c

0

0 −i∇(2)x1 0 −i φ′√
2c

−i φ∗√
2c

0 −i∇(3)y1 0

0 i φ
′∗
√
2c

0 −i∇(4)y1




And similarly for X2, X3 and X4. We defined

∇(m)xi = ∂xi + iA(m)xi + ia(m)xi where A is the back-
ground gauge field and a the gauge field fluctua-

tion. The background is invariant under U(1)4,

each U(1) has its own upper index. We choose

the background gauge fields such that the appro-

priate commutation relations between the back-

ground matrices are satisfied:

A(1)x2 = −A(2)x2 =
x1

c

A(1)x4 = −A(2)x4 =
x3

c

A(3)y2 = −A(4)y2 = −
y1

c

A(3)y4 = −A(4)y4 =
y3

c
, (4.2)

and the rest zero. Each tachyonic mode is charged

under two of the abelian gauge symmetries, with

opposite charges, as can easily be seen by look-

ing at the transformation properties of the full

coordinate matrix.

To represent the action in terms of an inte-

gral over the worldvolume of the branes, we use

the rules of [4], improved in [13] and elaborated

upon in [10]. The following definitions come in

handy in writing down the endresult. The non-

center-of-mass coordinates are:

ui =
xi + yi
2
. (4.3)

Covariant derivatives and field strengths are de-

fined as (Upper indices label the gauge symme-

tries, lower indices wi = (xi, yi) label coordi-

nates.) :

∇(±m)wi
= ∂wi ± iA(m)wi ± ia(m)wi

F (m)wiwj
= i
[
∇(m)wi ,∇(m)wj

]

3
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∇(m,±n)ui = ∇(m)xi +∇(±n)yi

F (m,±n)uiuj
= i
[
∇(m,±n)ui

,∇(m,±n)uj

]

= F (m)xixj
± F (n)yiyj (4.4)

By a small f we will denote the field strength

F without the background gauge fields contri-

bution. The relevant part of the action for the

fluctuations that we consider is then given by

S =
∫
d4uL, and the lagrangian by (up to an

overall factor) :

−L = (c
2

2
f (1,−3)u1u2

− c+ |φ|2)2

+(
c2

2
f (1,−4)u3u4

− c+ |χ|2)2

+(
c2

2
f (2,−4)u1u2

+ c− |φ′|2)2

+(
c2

2
f (2,−3)u3u4

+ c− |χ′|2)2

+
c2

2

(
|(∇(1,−3)u2

+ i∇(1,−3)u1
)φ|2

+2|∇(1,−3)u3
φ|2 + 2|∇(1,−3)u4

φ|2
+|(∇(1,−4)u4 + i∇(1,−4)u3 )χ|2
+2|∇(1,−4)u1

χ|2 + 2|∇(1,−4)u2
χ|2

+|(∇(2,−4)u2 − i∇(2,−4)u1 )φ′|2
+2|∇(2,−4)u3

φ′|2 + 2|∇(2,−4)u4
φ′|2

+|(∇(2,−3)u4 − i∇(2,−3)u3 )χ′|2

+2|∇(2,−3)u1
χ′|2 + 2|∇(2,−3)u2

χ′|2
)

+
c4

4

(
f (1,3)

2

u1u3 + f
(1,−3)2
u1u3 + f (2,4)

2

u1u3 + f
(2,−4)2
u1u3

+f (1,3)
2

u1u3
+ f (1,−3)

2

u2u3
+ f (2,4)

2

u2u3
+ f (2,−4)

2

u2u3

+f (1,3)
2

u1u4
+ f (1,−3)

2

u1u4
+ f (2,4)

2

u1u3
+ f (2,−4)

2

u1u4

+f (1,3)
2

u2u4
+ f (1,−3)

2

u2u4
+ f (2,4)

2

u2u4
+ f (2,−4)

2

u2u4

+f (1,3)
2

u1u2 + f
(2,4)2

u1u2 + f
(1,4)2

u3u4 + f
(2,3)2

u3u4

)

+|(φχ′∗ − χφ′∗)|2 + |(φχ∗ − χ′φ′∗)|2 (4.5)

where all fields only depend on the non-center-of-

mass coordinates. Note that it is the Lagrangian

you expect, with the usual kinetic terms for the

gauge fields, the appropriate covariant deriva-

tives hitting the tachyons and a Higgs potential

for the tachyons. There are some interactions

between the tachyons and the gauge fields [10],

and an interaction potential between the differ-

ent tachyons.

4.2 Boundary conditions

The non-zero background gauge fields appearing

in the covariant derivatives in the kinetic terms

for the tachyons are:

A(1,−3)u2 =
2u1
c

A(2,−4)u2 = −2u1
c

A(2,−3)u4
= −2u3

c

A(1,−4)u4
=
2u3
c

(4.6)

Taking the background gauge fields to live on a

four-torus with radii Rui , they satisfy ’t Hooft’s

twisted boundary conditions [14]. They read in

direction u1 :

Aui(Ru1 , u2, u3, u4) = −iΩu1∂uiΩ−1u1
+Ωu1Aui(0, u2, u3, u4)Ω−1u1

and analogous for the other directions, where Ωui
are the transition functions. The transition func-

tions can be choosen to be:

Ωu1 = exp [−iu2
Ru1
c



1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 1


]

Ωu2 = 1

Ωu3 = exp [−iu4
Ru3
c



1 0 0 0

0 −1 0 0
0 0 1 0

0 0 0 −1


]

Ωu4 = 1 (4.7)

These boundary conditions are due to the pres-

ence of the background field, i.e. due to the mag-

netic field made up of the D0-branes, represent-

ing the background objects. For the full back-

ground matrix this implies:

BI(Ru1 , u2, u3, u4) = Ωu1BI(0, u2, u3, u4)Ω
−1
u1

and analogously for the other directions.

The boundary conditions for the tachyons

that are trivial with respect to the background are:

φ(u1 = R1) = φ(u1 = 0)e
−2iu2R1/c

φ′(u1 = R1) = φ′(u1 = 0)e2iu2R1/c

χ(u3 = R3) = χ(u3 = 0)e
−2iu4R3/c

χ′(u3 = R3) = χ′(u3 = 0)e2iu4R3/c (4.8)

4
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and the other background boundary conditions

are trivial.

5. A solution to the equations of mo-

tion

First we look for a solution to the equations of

motion where the total Lagrangian (4.5) vanishes

and the background boundary conditions are sat-

isfied. We make the following ansatz:

φ = φ′∗(u1, u2)

χ = χ′∗(u3, u4). (5.1)

Then we find we can take:

a(1)u1,2 = −a(2)u1,2 = −a(3)u1,2 = a(4)u1,2
a(1)u3,4 = −a(2)u3,4 = a(3)u3,4 = −a(4)u3,4 . (5.2)

The remaining non-trivial equations are:

c2

2
f (1,−3)u1u2

− c+ |φ|2 = 0
(∇(1,−3)u2

+ i∇(1,−3)u1
)φ = 0 (5.3)

and similar equations for χ. Under the assump-

tion (5.1), we get two copies of the Bogomolny

equations. These have been studied in the con-

text of Chern-Simons theory in detail [15] [16]

and we only summarize some main features. We

can find magnetic soliton solutions to these equa-

tions with the background boundary conditions

(4.8). Since the spatial worldvolume of the D4-

brane is fourdimensional, and the tachyons have

non-trivial winding number around a circle at in-

finity, the magnetic solitons are twodimensional.

The boundary conditions are treated in detail in

[10]. Using the solutions, we calculate the D0-

brane charge from the worldvolume action of the

D4-branes:

N =
1

8π2

∫
d4u
(
F (1)F (1) + F (2)F (2)

−F (3)F (3) − F (4)F (4))
=
A4

c2π2
, (5.4)

which is the original D0-brane charge. The D0

charge is concentrated at the intersections of the

orthogonal twodimensional solitons. Moreover,

from (5.2) we find that the D2-brane charge can-

cels. This is consistent with the fact that we find

from the supersymmetry variations

δθ =
1

2

(
D0X

IγI +
1

2

[
XI , XJ

]
γIJ

)
ε+ ε′

that the tachyon condensation restores all dy-

namical supersymmetry. We conclude that the

end products after tachyon condensation are the

original D0-branes, and extra gravitons as argued

in [10].

6. Remarks and conclusion

In the previous section, we considered tachyon

condensation where the tachyons had trivial bound-

ary conditions relative to the background. We

can consider more general possibilities, where the

tachyons satisfy different boundary conditions.

In the case of a membrane–anti-membrane con-

figuration, this amounts to the following. By

choosing the topological sector of the tachyon

on the D2-brane anti-D2-brane to be non-trivial,

one can add or subtract D0-brane charge. After

condensation, this gives an arbitrary number of

D0-branes. Technically, this is a trivial extension

of [10]. In particular, the approximate solution

to the equations of motion in [10] remains prac-

tically unchanged. In the case of the D0-D4 and

D0-anti-D4, we have more possibilities. For in-

stance, by changing the topological sectors of the

four tachyons simultaneously, we can modify the

amount of D0-brane charge in the end product

in a fairly obvious manner (keeping the condi-

tion (5.1)). It is clear that for a more general

choice of topological sectors, the end product will

have D2-brane charge. It would be interesting to

study such condensation in detail.

In this paper we have studied the interac-

tions between a D0-D4 bound state and a D0-

anti-D4 bound state in matrix theory. First, we

calculated the interaction potential at large dis-

tances. Next, we looked at a coinciding D0-D4

and D0–anti-D4 bound state system and identi-

fied the tachyonic fluctuations. We derived the

classical action for these tachyonic fluctuations

and found solutions to the equations of motion

corresponding to tachyon condensation to D0-

branes.

5
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