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Abstract: We discuss recent results on three gravitons in M -atrix theory at finite N . With a

specific choice of the background we obtain the complete result up to two loops. The contributions

from three-body forces agree with the ones presented in recent papers. We evaluate the two–body

exchanges as well. We show that the result we have obtained from M -atrix theory precisely matches

the result from one-particle reducible tree diagrams in eleven-dimensional supergravity .

M -theory seems to be a consistent quan-

tum theory which includes eleven dimen-

sional supergravity as a low-energy approxima-

tion. Since the introduction of the matrix model

of M -theory [1] much progress has been made

on the subject. According to the original conjec-

ture, the degrees of freedom of M -theory in the

infinite momentum frame are contained in the

dynamics of N D0-branes in the N → ∞ limit.
Subsequently it was argued that M -theory with

one of the lightlike coordinate compactified is in

fact equivalent to the super Yang-Mills matrix

model for finite N [2], [3].

A crucial test of the conjecture consists in the

comparison of graviton scattering in supergravity

with corresponding results from M(atrix) theory

in the low energy limit. So far compelling tests of

this proposal have been the comparison of two-

body [4, 5] and three-body [6] scattering. In the

latter case there have been also some partial re-

sults [7, 8, 9, 10] and opposite claims [11, 12, 13].

We focus on the M -atrix theory at finite N and

explore further its correspondence with eleven

dimensional supergravity. In particular we con-

sider N = 3 and compute graphs up to two-loops

in (0 + 1)-dimensional Yang-Mills [14]. We find

that they perfectly reproduce the three gravi-

ton scattering in supergravity, both in the di-

rect three-body channel and in the two-body re-

coil exchange. The former, which corresponds to

one-particle irreducible diagrams in supergravity,

has been computed in the first paper of ref. [6]

and we confirm that result. We complete the

two–loop effective action calculation and evalu-

ate two–body exchanges as well. We have found

a systematic way to separate the light and heavy

matrix model degrees of freedom which allows to

obtain the full answer. We show that these con-

tributions exactly match what expected from the

two-loop scattering of two D0-branes in M -atrix

theory [5].

In the two body process there are only two ex-

pansion parameters: the relative velocity v and

the inverse of the relative spatial separation r. In

the low energy limit, from a supergravity compu-

tation or directly from M(atrix)theory [4, 5], one

obtains the following effective Lagrangian

L =
v2

2R
+

15

16R3M9
v4

r7
+

225

64R5M18
v6

r14
+O

(
v8

r21

)

(1)
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1. Three graviton scattering in

M(atrix) theory

In the following we will describe the full two loops

effective potential calculation for the case of a

three body scattering as computed in Matrix the-

ory.

Our starting point isM -atrix theory at finite

N and we are interested in calculating the two-

loop effective action and to compare it to that

coming from eleven dimensional supergravity.

We will consider super Yang Mills theory re-

duced to (0 + 1) dimensions with gauge group

U(3). We will use a formalism that easily allows

to distinguish between the contributions from a

direct three-body channel and the ones corre-

sponding to a two-body recoil exchange.

The idea developed by [6] is that true three-

body contributions are those which depend on

all the three relative velocities of the gravitons;

all the rest should sum up to give a two-body

scattering. The calculation we present shows in

detail how this happens.

In the next section we give the explicit form

of the gauged fixed action. The various fields are

decomposed in terms of components on a U(3)

basis of hermitian matrices. The classical back-

ground is fixed with the three D-particles hav-

ing relative velocities parallel to each others, or-

thogonal to the corresponding relative displace-

ments. The result is analyzed keeping separate

the two types of contributions mentioned above,

i.e. terms which depend on two distinct rela-

tive velocities (three-body interaction) and terms

in which only one relative velocity appears (re-

coil). Part of the calculations have been per-

formed with the help of Mathematica.

2. The action

The matrix model is simply obtained by reduc-

ing (9 + 1)-dimensional U(N) super Yang-Mills

[16] to (0+ 1) dimensions. This theory describes

a system of N D0-branes [17] in terms of nine

bosonic fields Xi and of sixteen fermionic super-

partners θ, which are spinors under SO(9). The

Euclidean action is given by

S = Tr

∫
dτ
{
(DτXi)

2 − g
2
[Xk, Xj ][Xk, Xj]

+θTDτθ −√gθTγk[Xk, θ]
}

(2.1)

where we have denoted by g the Yang-Mills cou-

pling constant and by γi nine real, symmetric

gamma matrices satisfying {γi, γj} = 2δij . The
covariant derivative is defined by

Dτ = ∂τ − i√g[A, ] (2.2)

The fields Xi, θ and A are N × N hermitian
matrices of U(N), with i, j, k = 1, 2, . . . , 9.

Being interested in quantum, perturbative

calculations it is convenient to use the background

field method, which allows to maintain explicit

the gauge invariance of the result. To this end

one expands the action (2.1) around a classical

background field configuration Bi, setting Xi →
Xi +Bi.

After gauge fixing and background splitting

one finds the complete action:

S = Tr

∫
dτ
{
(∂τXi)

2 − [Bk, Xj]2

− 2√g[Bk, Xj ][Xk, Xj ]− g
2
[Xk, Xj][Xk, Xj ]

+ ∂τA
2 − [A,Bk]2 − 4i∂τBk[A,Xk]−

2i
√
g∂τXk[A,Xk] + 2

√
g[A,Bk][Xk, A]

− g[A,Xk]2 + θT ∂τθ − i√gθT [A, θ]
−√gθTγk[Xk, θ]− θT γk[Bk, θ]
− 2G̃∂2τG− 2i

√
g∂τ G̃[A,G]

+2G̃ [Bk, [Bk, G]−√g[G,Xk]]
}

(2.3)

Here Xi, A and θ are the quantum fluctuations,

G and G̃ are the ghosts, while Bk is the external

background.

We want to extract results to be compared to

the scattering of three gravitons in supergravity,

thus the minimal choice for the Yang-Mills gauge

group that allows to describe the interaction of

three D0-branes, is U(3). In fact the free motion

of center of mass can be factored out; we thus

deal only with a SU(3) gauge group.

2.1 Cartan Lie algebra for SU(3)

In order to clearly distinguish between light and

heavy Matrix model degrees of freedom it is con-

venient to use the Cartan basis for the Lie algebra

of SU(3). With such a basis every matrix field is

2
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decomposed into components as

Xk ≡ XakHa +XαkEα +X∗αk E−α
A ≡ AaHa +AαEα +A∗αE−α
θ ≡ θaHa + θαEα + θ∗αE−α
G ≡ GaHa +GαEα +G∗αE−α
G̃ ≡ G̃aHa + G̃∗αEα + G̃αE−α (2.4)

where H are the generator of Cartan subalge-

bra, E are the Cartan step operators and α =

±α1,±α2,±α3.

2.1.1 Background choice

Now we make a specific choice of the background

configuration, i.e. straight line trajectories for

the three particles. This amounts to have Bk in

diagonal form with

Bαk = ṽ
α
k τ + b̃

α
k α = 1, 2, 3 (2.5)

As mentioned above the free motion of the center

of mass can be factored out and ignored imposing

3∑
α=1

ṽαk = 0

3∑
α=1

b̃αk = 0 (2.6)

We simplify further our calculations considering

the case of parallel velocities for all three parti-

cles, e.g. along the x1 axis, and relative displace-

ments transverse [7]

ṽα1 6= 0 , ṽαk = 0 for k > 1
9∑
k=1

ṽαk b̃
α
k = 0 for α = 1, 2, 3

Setting ṽα1 = ṽα the backgroundmatrices become

B1 =


 ṽ1τ 0 0

0 ṽ2τ 0

0 0 ṽ3τ


 , Bk =


 b̃

1
k 0 0

0 b̃2k 0

0 0 b̃3k




for k > 1 .

We define relative velocities

v1 = ṽ2 − ṽ3 and cyclic

and relative impact parameters

b1k = b̃
2
k − b̃3k and cyclic

In terms of these quantities, setting

Rαk =
∑
a=1,2

αaTr (H
aBk) (2.7)

one obtains

Rαk =

{
vατ if k = 1

bαk if k > 1

Now we can go back to the action in (2.3) and

perform the trace operation explicitly, using the

notation

(bα)2 ≡
∑
k

bαk b
α
k

(Rα)2 ≡
∑
k

RαkR
α
k ≡ v2ατ2 + (bα)2

For example the terms involving the X fields
are found to be:

SX =

∫
dτ
{
Xak (−∂2τ )Xak + 2X∗αk (−∂2τ + (Rα)2)Xαk

−2√g [εαβγRγk(XαkXβj Xγj
+X∗αk X

∗β
j X

∗γ
j )− 2RαkXαj X∗αj Xakαa

+RαkX
α
j X

∗α
k X

a
j αa +R

α
kX

α
kX

∗α
j X

a
j αa
]

−g [−2Xαj X∗αj (Xakαa)2 − 2XakβaXβj XαkXγj εαβγ
+2XakβaX

b
jβbX

β
j X

∗β
k − 2XakβaX∗βj X∗αk X∗γj εαβγ

−XαkX∗ηk Xβj X∗ρj εαβγεηργ +XαkX∗αj XβkX∗βj (α · β)
−XαkX∗αj Xβj X∗βk (α · β)

]}
¿From the quadratic part of the action one can

easily read the mass matrix and obtain the fol-

lowing particle content in the spectrum:

• 8 complex bosons with mass (Rα)2 where
α = 1, 2, 3;

• 1 complex boson with mass (Rα)2 ± 2vα
where α = 1, 2, 3;

• 20 real, massless bosons;
• 2 complex ghost fields with mass (Rα)2 where
α = 1, 2, 3;

• 2 real, massless ghosts;
• 1 complex spinor with mass γiRαi where
α = 1, 2, 3;

• 2 Majorana, massless spinors.
According to the conjecture strings stretch-

ing between D0-branes are associated to massive

degrees of freedom.

Correspondingly one obtains the propagators

of the various fields [4].

3



Quantum Aspects of Gauge Theories, Supersymmetry and Unification, Paris, 1999
A. Refollia , N. Terzib and D. Zanonb

∆

α

0

Figure 1: Correspondence between M(atrix) d.o.f.

and D-particle interactions

For example bosonic propagators are given

by

< Xai (τ)X
b
j (τ

′) > =
1

2
δabδij∆0(τ, τ

′)

< X∗αi (τ)X
β
j (τ

′) > =
1

2
δαβδij

∫ ∞
0

ds∆α(τ, τ ′, s)

i, j 6= 1
We have defined

∆0(τ, τ
′) = θ(τ − τ ′)(τ ′ − τ) (2.8)

and

∆α(τ, τ ′, s) = e−(b
α)2s

√
vα

2πSinh(2svα)
·

e−vαT
2Tanh(svα)−vαt2Coth(svα)

where we have introduced new time variables

T =
1

2
(τ + τ ′) t =

1

2
(τ − τ ′)

In the fermionic sector the propagators are given

by

< θaT (τ)θb(τ ′) > =
1

2
δab∂τ∆0(τ, τ

′)

< θ∗αT (τ)θβ(τ ′) > =
1

2
δαβ∆αF(τ, τ

′)

We have defined

∆0(τ, τ
′) = θ(τ − τ ′)(τ ′ − τ)

∆αF(τ, τ
′) ≡
∫ ∞
0

ds

(
−II vαt

Sinh(vαs)
+ γ1

vαT

Cosh(vαs)

+b/
α
Cosh(vαs) + b/

α
γ1Sinh(vαs)

)
∆α(τ, τ ′, s)

Once the propagators are known the one-

loop contribution to the effective action is easily

computed [4]

Γ(1) = −15
16

3∑
α=1

∫
dT

(vα)
4

[(bα)2 + T 2(vα)2]
7
2

(2.9)

In the next section we will present the two-

loop calculation.

3. The two-loop effective action

The two-loop contributions are evaluated con-

sidering two types of diagrams, the ones involv-

ing one four-point vertex, the figure-eight graphs,

and the ones with two three-point vertices, the

sunset-type graphs, respectively. In the present

notation they correspond to (Fig 2).

γ

α βα

β

Figure 2: Typical diagrams: the Greek indices cor-

respond to massive degrees of freedom

Given this setup, one can distinguish between

the graphs that lead to genuine three-body ex-

changes (one–particle irreducible diagrams for the

three–graviton scattering in supergravity) and two-

body recoil effects (one-particle reducible graphs

in supergravity) in a very simple manner. We

need collect terms that depend on two indepen-

dent relative velocities on one side, and terms

that depend only on one relative velocity on the

other side.

Thus from the figure-eight diagrams one has

a three-body exchange whenever the two prop-

agators come in with different masses, while a

recoil term is produced when the two masses are

equal. The connection between these graphs and

supergravity diagrams is shown in (Fig 3). For

example in the first diagram, since the graph de-

pends on a single Eα, we have a string (graviton)

stretching between only two D-particles. As we

have seen this corresponds to a string (fluctua-

tion).

The presence of a massless propagator would

lead to a vanishing contribution for this tadpole

kind of diagrams.

¿From the sunset-type graphs we have direct

three-body contributions when the three propa-

gators have three distinct masses (three differ-

ent relative velocities out of which two are in-

dependent). Two-body forces are present when

two masses are equal, being the third one equal

4
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α

α β

α

Figure 3: Correspondence between M(atrix) graphs

and supergravity tree diagrams

to zero as required by momentum conservation.

Having decomposed the fields as in (2.4) makes it

easy to identify the massless particles which are

given simply by the diagonal degrees of freedom.

Now we present the results obtained using

this procedure [14]. First let us consider all the

contributions to the three-body forces1 Then we

will concentrate on the two-loop contributions

that depend only on one relative velocity vα.

Their complete evaluation is conceptually sim-

ple and algebraically manageable within our ap-

proach. In [14] we have isolated the leading or-

der term and proved its consistency with the re-

sult from two-graviton scattering obtained in [5].

This shows without any further ambiguity that

we are dealing with recoil effects.

3.1 Three-body contributions

As emphasized above one needs to compute all

the two-loop terms which depend on two distinct

relative velocities2, and this implies that only

propagators associated to off-diagonal degrees of

freedom (see (2.4)) will enter this part of the cal-

culation.

In [14] we have presented the details of the

calculation, here we summarize the result. The

final answer can be rearranged as a sum of two

contributions

Γ = ΓV + ΓY (3.1)

Explicit calculations lead to

ΓV = −
∑
β 6=γ

∫
dTds2ds3128Sinh

3(
s2vβ

2
) Sinh3(

s3vγ

2
)

1We will follow as much as possible the approach in

ref. [6] so that a direct comparison can be made in a

straightforward manner. Complete agreement with their

findings is shown in the next subsection.
2In sunrise diagrams there is a third relative velocity

which is fixed due to momentum conservation

×
(
2Cosh(

s2vβ

2
)Cosh(

s3vγ

2
)−

Sinh(
s2vβ
2
)Sinh(

s3vγ

2
)
)
∆β(s2)∆

γ(s3)|t=0

and expanding at the leading order

ΓY = −
∑
α6=β 6=γ

∫
dTdtds1ds2ds3

1

18
(s1vα − s2vβ)2

(s1vα − s3vγ)2(s2vβ − s3vγ)2
(s1v

2
α + s2v

2
β + s3v

2
γ)∆

α(s1)∆
β(s2)∆

γ(s3)

(3.1) exactly reproduces the corresponding term

obtained in ref. [6].

Now we turn to the calculation of the recoil

effects.

3.2 Two-body recoil contributions

We are considering here all the diagrams not com-

puted in the previous section, i.e. figure-eight

graphs with the two propagators carrying the

same mass, and sunset-type graphs with two prop-

agators of equal masses and the third one mass-

less.

α αα

α

∆0

Figure 4: All the remaining graphs

Looking at the spectrum of the various par-
ticles it is clear that these contributions depend
on a single relative velocity vα and are thus can-
didates to represent supergravity two-body recoil
effects. In [14] we have determined them exactly
and shown that the above interpretation is in-
deed correct. We find

Γrecoil =

−
∑
α


∫ ds1ds2

(
(bα)2V1 + V2

)
e−(b

α)2(s1+s2)

2πvα
√
s1s2
√
s1 + s2




where (up to order v6α) we find

V1 =
(
75600 + 22680 s21v

2
α + 2520 s1s2v

2
α

+22680 s22v
2
α + 630 s

4
1v
4
α − 2100 s31s2v4α

+10290 s21s
2
2v
4
α − 2100 s1s32v4α + 630 s42v4α

+139 s61v
6
α + 761 s

5
1s2v

6
α + 1794 s

4
1s
2
2v
6
α

−947 s31s32v6α + 1794 s21s42v6α + 761 s1s52v6α
+ 139 s62v

6
α

) s1s2

840 (s1 + s2)
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V2 =
(−75600 s21 + 302400 s1s2 − 75600 s22

−17640 s41v2α − 27720 s31s2v2α − 277200 s21s22v2α
−27720 s1s32v2α − 17640 s42v2α − 6510 s61v4α
+2940 s51s2v

4
α + 68040 s

4
1s
2
2v
4
α

+211680 s31s
3
2v
4
α + 68040 s

2
1s
4
2v
4
α

+2940 s1s
5
2v
4
α − 6510 s62v4α − 97 s81v6α

+2065 s71s2v
6
α − 7695 s61s22v6α − 51738 s51s32v6α

−103508 s41s42v6α − 51738 s31s52v6α − 7695 s21s62v6α
+2065 s1s

7
2v
6
α − 97 s82v6α

) 1

3360 (s1 + s2)2

Finally the integrations on s1 and s2 can be

performed and summing the two contributions

one obtains

Γrecoil = −
∑
α

51975

65536
π
v5α
(bα)13

(3.2)

If we write (3.2) in the form

Γrecoil = −
∑
α

∫
dT
225

64

v6α
((bα)2 + v2αT

2)7

(3.3)

then this expression can be directly compared

with the result in (1) where the two graviton

scattering was analyzed: we find that numbers

perfectly match. The expression in (3.3) with

ΓV and ΓY determines the full two–loop contri-

bution to the three D–particle effective action.

4. Conclusions

In this talk we have presented some checks of the

finite N M(atrix) theory conjecture [2]. These

checks consist in comparing the M(atrix) theory

quantum low energy effective action in a scat-

tering process between gravitons with analogous

amplitudes from eleven dimensional supergravity

compactified on a lightlike circle.

In particular we considered a three particle pro-

cess for which it has been determined the full

two-loop calculation in M -atrix theory.

Following [14] we have restricted our attention

to the case of three D-particles whose relative

velocities are parallel and orthogonal to the cor-

responding impact parameters. This restriction

has been forced on us by the necessity of keeping

calculations mageable. First we have found that

this calculation confirms what obtained in [6],

showing that the predictions from one-particle

irreducible tree diagrams in supergravity are in

agreement with two-loop contributions from M -

atrix theory.

In addition we have considered those two-loop

contributions which depend only on one relative

velocity between the gravitons. We have shown

how these terms give a total sum which is con-

sistent with results from a two-loop calculation

of two D-particle scattering [5]. This calcula-

tion gives additional support to the idea that

eleven-dimensional supergravity compactified in

a null direction is in direct correspondence with

M -atrix theory at finite N .
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