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Abstract: We discuss recent results on two-point functions of chiral primary operators in N = 4
SU(N) supersymmetric Yang-Mills theory. Our results give further support to the belief that such

correlators are not renormalized to all orders in g and to all orders in N .

T he aim of this talk is to present recent re-

sults [1] on the explicit computation of two-

point functions of chiral operators TrΦ3 in N = 4
SU(N) supersymmetric Yang-Mills theory to the

order g4 in perturbation theory, using N = 1 su-
perspace techniques. We find that perturbative

corrections to the correlators vanish for all N .

While at order g2 the cancellation [2] can be as-

cribed to the nonrenormalization theorem valid

for correlators of operators in the same multiplet

as the stress tensor, at order g4 this argument no

longer applies and the actual cancellation occurs

in a highly nontrivial way, as will be shown.

The plan of the talk is the following: after

a brief introduction to the subject of correlation

functions as tools to explore the AdS/CFT cor-

respondence, in section 2 we briefly illustrate the

N = 4 theory and give the relevant rules for cal-
culating in N = 1 superspace. In section 3 we
present the results of our calculations to order g4:

as a first test of our approach we check that the

perturbative corrections to the two-point func-

tion with k = 2 vanish, after that we consider

the two-point correlator with k = 3 and we de-

scribe all the order g4 contributions. We do not

give technical details, for which we refer to our

paper [1].

1. Introduction

Recently much evidence has been provided in

testing the conjectured equivalence of type IIB

superstring theory on anti-de-Sitter space (AdS5)

times a five–sphere to the N = 4 supersymmet-
ric SU(N) Yang-Mills conformal field theory liv-

ing on the boundary, in the large-N limit and at

large ’t Hooft coupling λ = g2N/4π (g2 being the

Yang-Mills coupling constant) [3]. According to

this correspondence correlation functions of op-

erators in the conformal field theory are mapped

to appropriate on-shell amplitudes of superstring

theory in the bulk AdS background.

N = 4 chiral primary operators

TrΦk ≡ Tr
(
Φ{i1(z)Φi2(z) · · ·Φik}(z)

)
, (1.1)

in the symmetric, traceless representation of the

R-symmetry group SU(4), play a special role in

exploring non-perturbative statements concern-

ing the above mentioned connection. These are

local operators of the lowest scaling dimension
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in a given irreducible representation of the su-

perconformal algebra SU(2, 2|4), and belong to
short multiplets which are chiral under a N = 1
subalgebra. In the large-N limit they correspond

to Kaluza Klein modes in the AdS supergravity

sector. In the special case of k = 2, two- and

three-point correlators are given by their free-

field theory values for any finite N . In this case

their form, fixed up to a constant by conformal

invariance, is protected by a nonrenormalization

theorem [4] valid for two- and three-point func-

tions of operators in the same multiplet as the

stress tensor and as the SU(4) flavor currents.

For any strong-weak coupling duality test it

is essential to have quantities that do not acquire

radiative corrections as one moves from weak to

strong coupling. If an exact computation in the

supergravity sector shows agreement with a tree

level result in the Yang-Mills sector, then there

is an indication of a nonrenormalization theorem

at work. This is the case for the three–point cor-

relators 〈TrΦk1TrΦk2TrΦk3〉 computed in ref. [5]
in the large-N limit of N = 4 SU(N) Yang-Mills:
the strong limit result λ = g2N/4π � 1 ob-

tained using type IIB supergravity was shown

to agree with the weak ’t Hooft coupling limit

λ = g2N/4π � 1 in terms of free fields. Accord-
ing to the AdS/CFT correspondence one con-

cludes that the correlators are independent of

λ to leading order in N . A stronger conjecture

made in ref. [5] claims that three-point functions

might be independent of g for any value of N . As

emphasized above, for the case k = 2 nonrenor-

malization properties have been proven to be en-

joyed by two- and three-point functions of chiral

operators. For general k there exists evidence of

nonrenormalization based on proofs that rely on

reasonable assumptions (analyticity in harmonic

superspace [6] and validity of a generalized Adler-

Bardeen theorem [7]).

Explicit perturbative calculations in theN =
4 SU(N) Yang-Mills conformal field theory are a

way to confirm the conjectures and add insights

into potential larger symmetries of the theory.

Important steps along this program have been

made in [2, 8, 9, 10]. In particular, it has been

shown that to order g2 radiative corrections do

not affect the two- and three-point functions of

chiral operators [2]. Two-point functions have

been computed for chiral operators with generic

k by showing that the order g2 contributions

are proportional to the one for the k = 2 case

which indeed satisfies the known nonrenormal-

ization theorem mentioned above. Concretely,

the cancellation to order g2 can be traced back

to the fact that at this order all the diagrams

contain interactions involving at most two mat-

ter lines. Clearly this is not true, for example, at

order g4, where diagrams with gluon exchanges

among three matter lines appear. Therefore, it

is interesting to investigate whether the cancella-

tion shown in [2] for the k > 2 case is an accident

of order g2.

In our paper [1] we have addressed the non-

trivial test left open at order g4, by computing

the two-point function for the operator TrΦk in

the case k = 3. The analysis for generic k is

now under investigation [11]. However, as al-

ready mentioned, at order g4 the k = 3 case is

a crucial test, being diagrams with interactions

involving three matter lines present. We have

found that corrections indeed vanish for all val-

ues ofN , then supporting the stronger conjecture

of ref. [5].

2. The main features of our calcula-

tion

The physical particle content of N = 4 super-
symmetric Yang-Mills theory is given by one spin-

1 vector, four spin-1/2 Majorana spinors and six

spin-0 particles in the 6 of the R-symmetry group

SU(4) ∼ SO(6). All particles are massless and
transform under the adjoint representation of the

SU(N) gauge group.

Perturbative calculations are quite difficult

to handle using a component field formulation

of the theory. (Note that in ref. [2] a compo-

nent approach was used, but the order g2 result

for the two- and three-point correlators was ob-

tained using a general argumentation based on

colour combinatorics. Only a schematic knowl-

edge of the structure of the component action was

required.) In general, in order to resum Feynman

diagrams at higher-loop orders it is greatly ad-

vantageous to work in superspace.

In N = 1 superspace the action can be writ-
ten in terms of one vector superfield V (real)
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and three chiral superfields Φi containing the six

scalars organized into the 3×3̄ of SU(3) ⊂ SU(4)
(we follow the notations in [12])

S[J, J̄ ] =

∫
d8z Tr

(
e−gV Φ̄iegVΦi

)

+
1

2g2

∫
d6z TrWαWα

+
ig

3!
Tr

∫
d6z εijkΦ

i[Φj ,Φk]

+
ig

3!
Tr

∫
d6z̄ εijkΦ̄

i[Φ̄j , Φ̄k]

+

∫
d6z JO +

∫
d6z̄ J̄Ō , (2.1)

where Wα = iD̄
2(e−gVDαegV ), and V = V aT a,

Φi = Φ
a
i T
a, T a being N × N matrices in the

fundamental representation of SU(N). We have

added to the classical action source terms for the

chiral primary operators generically denoted by

O since our goal is the computation of their cor-
relators.

Although in (2.1) the N = 4 supersymmetry
invariance is realized only non linearly, the main

advantage offered by a N = 1 formulation of the
theory resides in the fact that a straightforward

off-shell quantum formulation is available. Thus

if the aim is to perform higher-loop perturbative

calculations this is the most suited approach to

follow. Feynman rules are by now standard (we

refer to appendix B of [1] for a complete list).

We will now focus on the two-point super-

correlator for the operator O = Tr(Φ{iΦjΦk}).
As in ref. [2], we consider the SU(3) highest weight

Φ1 field and compute 〈Tr(Φ1)3Tr(Φ̄1)3〉. This is
not a restrictive choice since all the other primary

chiral correlators can be obtained from this one

by SU(3) transformations. What we gain is that

we have no flavour combinatorics and we are left

to deal with the colour combinatorics only.

We work in euclidean space, with the gener-

ating functional defined as

W [J, J̄ ] =

∫
DΦ DΦ̄DV eS[J,J̄] . (2.2)

Thus the two-point function is given by

〈Tr(Φ1)3(z1)Tr(Φ̄1)3(z2)〉 = δ2W

δJ(z1)δJ̄(z2)

∣∣∣∣
J,J̄=0

(2.3)

where z ≡ (x, θ, θ̄). We use perturbation theory
to evaluate the contributions to W [J, J̄ ] which

are quadratic in the sources, i.e. of the form∫
d4x1 d

4x2 d
4θ J(x1, θ, θ̄)

F (g2, N)

(x1 − x2)6 J̄(x2, θ, θ̄) ,
(2.4)

where the x-dependence of the result is fixed by

the conformal invariance of the theory, and the

function F (g2, N) is what we want to determine

up to order g4. We will find a result valid for any

N .

In order to perform the calculation we have

found it convenient to work in momentum space,

using dimensional regularization and minimal sub-

traction scheme. In n dimensions, with n =

4 − 2ε, the Fourier transform of the power fac-
tor (x1 − x2)−6 in (2.4) is given by

1

(x2)3
=
π−2+ε

64

Γ(−1− ε)
Γ(3)

∫
dnp

e−ipx

(p2)−1−ε
.

(2.5)

The presence of the singular factor Γ(−1 − ε) ∼
1/ε signals, in momentum space and in dimen-

sional regularization, the UV divergence of the

correlation function in (2.4) associated to the

short-distance behaviour for x1 ∼ x2. It fol-
lows that performing perturbative calculations

in momentum space it is sufficient to look for

all the contributions to (2.4) that behave like

1/ε, therefore disregarding finite contributions.

In fact, once the divergent terms are determined

at a given order in g, using (2.5) one can recon-

struct an x-space structure as in (2.4) with a non-

vanishing contribution to F (g2, N). Finite con-

tributions in momentum space would correspond

in x-space to terms proportional to ε which give

rise only to contact terms [13].

The one stated above is the basic rule of our

strategy that we can summarize as follows:

• consider all the two-point diagrams from
W [J, J̄ ] with J and J̄ on the external legs,

• evaluate all the factors coming from com-
binatorics of the diagram and compute the

colour structure,

• perform the superspace D-algebra follow-
ing standard techniques,

• reduce the result to a multi-loop momen-
tum integral,
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• compute its 1/ε divergent contribution.
This last step, i.e. the calculation of the divergent

part of the various integrals we have achieved

using the method of uniqueness [14] and various

rules and identities [13, 15] that we have collected

in appendix B of [1]. Since the theory is at its

conformal point, it is not affected by IR diver-

gences. Therefore, even if we work in a massless

regularization scheme, we never worry about the

IR behavior of our integrals. Moreover, since the

theory is finite, the diagrams that we consider do

not possess UV divergent subdiagrams. Finally,

as a general remark we observe that gauge-fixing

the classical action requires the introduction of

corresponding Yang-Mills ghosts. However they

only couple to the vector multiplet and do not

enter our specific calculation.

In the next section we will apply the general

procedure just described to the analysis of the

two-point function
〈
Tr(Φ1)kTr(Φ̄1)k

〉
with k = 3

to order g4.

3. Correlation functions to order g4

Before coming to our main calculation, the k = 3

case, we will first sketch how our formalism works

in a simpler case, the order g4 calculation of the

two-point correlator with k = 2. As previously

discussed, in this case we already know that per-

turbative corrections should not be there: this

simpler calculation is then a non trivial test of

our techniques.

The two-point correlator we are interested

in is obtained from W [J, J̄ ] inserting in the ac-

tion (2.1) the chiral operators O = Tr(Φ1)2 and
Ō = Tr(Φ̄1)2. As outlined in the previous sec-
tion, the relevant contribution is obtained from

the generating functional isolating terms of the

form∫
d4x1 d

4x2 d
4θ J(x1, θ, θ̄)

E(g2, N)

(x1 − x2)4 J̄(x2, θ, θ̄) .
(3.1)

The general form of (3.1) is fixed by conformal

invariance, while the function E(g2, N) is the un-

known to be determined. Fourier transforming

from x-space to momentum space

1

(x2)2
=
π−2+ε

16

Γ(−ε)
Γ(2)

∫
dnp

e−ipx

(p2)−ε
(3.2)

D2

p

q

J J

D
2

Figure 1: Tree-level contribution to

〈Tr(Φ1)2Tr(Φ̄1)2〉.

makes it clear that non-trivial contributions to

the generating functional are given by the diver-

gent part of our Feynman diagrams.

To start with we consider the tree-level con-

tribution corresponding to the graph in figure 1.

The calculation in this case is very simple [1]: its

contribution to the two-point function is given

by

1

(4π)2
2(N2−1) 1

ε

∫
d4p d4θ J(−p, θ, θ̄)J̄(p, θ, θ̄) .

(3.3)

The order g2 contribution, once evaluated in

superspace gives immediately a zero result: the

diagrams one would need to consider are shown

in figure 2. Diagram 2a does not contribute since

the one-loop correction to the chiral propagator

vanishes due to a complete cancellation between

vector and chiral loops [16]. Diagram 2b, after

completion of the D-algebra leads to a finite mo-

mentum integral.

Now we consider the order g4 contributions:

they are shown in figure 3.

In figure 3a we have the insertion of a two-

loop propagator correction, while in figure 3b a

one-loop vertex correction appears [16]. Note

that a diagram with a vector propagator cor-

rected at order g2 is absent since at one-loop or-

der there is a complete cancellation among chiral,

vector and ghost contributions [16].

The graph in figure 3a is easy to compute:

with an overall factor

16

(4π)6
g4N2(N2 − 1)

×
∫
d4p d4θ J(−p, θ, θ̄)J̄(p, θ, θ̄) (3.4)

one obtains the following divergent contribution

figure 3a→ ζ(3)1
ε
. (3.5)
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D
2

D
2

D
2

J

D
2

D
2

J JJ
D

2
D

2

D
2

D
2

D
2

(a) (b)

Figure 2: g2-order contribution to 〈Tr(Φ1)2Tr(Φ̄1)2〉.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3: g4-order contribution to 〈Tr(Φ1)2Tr(Φ̄1)2〉.

For figure 3b, with the same overall factor as

in (3.4), one obtains

figure 3b→ − 2ζ(3)1
ε
. (3.6)

A rather straightforward computation of the

D-algebra for the diagrams in figures 3c, 3d and

3e allows to conclude that the corresponding mo-

mentum integrals are actually all finite and, as

previously observed, not relevant for our pur-

pose.

Finally, for the graphs in figure 3f and in

figure 3g, factoring out the same overall quantity

we have

figure 3f → 1

2
ζ(3)
1

ε
, (3.7)

and

figure 3g → 1

2
ζ(3)
1

ε
. (3.8)

It is a trivial matter to sum up the contri-

butions listed in (3.5), (3.6), (3.7) and (3.8) and

obtain a vanishing result, as expected from the

nonrenormalization theorem.

We note that the diagrams in figures 3f and

3g lead to planar contributions, i.e. with exactly

the same N dependence from colour combina-

torics as the other diagrams (the N dependence

is the one shown in the common overall factor

(3.4)): indeed to this order nonplanar diagrams

are absent. In the k = 3 case we will be con-

fronted with a more complicated situation.

Let us now come to the computation of the

two-point function for the chiral operator O =
Tr(Φ1)3. To this end we go back to (2.4) and

compute the perturbative contributions to the

function F (g2, N). As previously emphasized,

making use of (2.5) we write Feynman diagrams

in momentum space and isolate the 1/ε poles.

In figure 4 we have drawn the tree-level con-

tribution. With an overall factor

3

(4π)4
(N2 − 1)(N2 − 4)

N

×
∫
d4p d4θ J(−p, θ, θ̄)J̄(p, θ, θ̄) (3.9)

we obtain

figure 4→ − 1
4ε
p2 . (3.10)

D
2

D
2

p

q

J J
k

D
2

D
2

Figure 4: Tree-level contribution to

〈Tr(Φ1)3Tr(Φ̄1)3〉.
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The result in x-space is readily recovered using

formula (2.5).

The superspace diagrams that enter the or-

der g2 computation are shown in figure 5. They

are nothing but the ones that appear in figure 2

with one line added from the chiral external ver-

tices. One proves that their contributions vanish

with exactly the same reasoning outlined previ-

ously. As found in ref. [2] to order g2 the vanish-

ing of the correlator is due to the fact that it is

proportional to the correlator of O = Tr(Φ1)2 for
which the nonrenormalization theorem is valid.

However, this is no longer true at order g4 to

which we turn now.

The diagrams contributing to g4-order are

collected in figure 6. The ones in figure 6a–6g are

the same as in figure 3 with one extra line added

from the chiral external vertices. From the re-

sult obtained in the previous case at order g4, we

would be tempted to believe that these diagrams

still sum up to zero. However this would be a

wrong conclusion. In fact, what makes things

different is that in 6f and 6g the addition of the

extra line changes completely the topology of the

diagrams which become really nonplanar. As a

consequence, their colour combinatorics changes

and their N -dependence is distinct from the re-

maining planar diagrams 6a– 6e. More specifi-

cally, in this case it turns out that the nonplanar

diagrams 6f and 6g lead to a vanishing colour

combinatorics factor.

The evaluation of the colour coefficient for

the other nonplanar diagram in figure 6h reveals

again a vanishing contribution. The fact that the

nonplanar diagrams do not contribute indicates

that the final answer is going to be valid for all

values of N , independently of any large-N limit.

In light of this result it becomes challenging to

prove the cancellation of nonplanar diagrams to

all orders in the Yang-Mills coupling. Moreover

it is natural to ask if this mechanism of cancella-

tion is still valid for two-point correlation func-

tions of the form 〈Tr(Φ1)kTr(Φ̄1)k〉, with k > 3.
However, a simple direct analysis shows that this

is not true [11].

Going back to figure 6, one easily convinces

oneself that for the graphs in figures 6c, 6d and 6e

the same analysis as in the previous section ap-

plies. In this case the addition of the chiral line

simply adds a D2D̄2 factor which accounts for

the D-algebra of one added loop; performing the

D-algebra in the diagrams one is left with finite

integrals.

We note that at this order diagrams contain-

ing the scalar superpotential vertex

εijkTr(Φ
i[Φj ,Φk]) (3.11)

do not contribute.

We are left with the contributions from fig-

ures 6a, 6b, 6i and 6j. We will find that a highly

nontrivial cancellation occurs.

For every diagram we need compute the spe-

cific combinatorics, the various factors from ver-

tices and propagators and the colour structure.

Then we have to perform the D-algebra in the

loops and finally evaluate the momentum inte-

grals. We factorize for each contribution the same

quantity

9

(4π)8
g4 N(N2 − 4)(N2 − 1)

×
∫
d4p d4θ J(−p, θ, θ̄)J̄(p, θ, θ̄) . (3.12)

The diagram in figure 6a which contains the two-

loop propagator correction, gives

figure 6a→ −3
2
ζ(3)
1

ε
p2 . (3.13)

The diagram in figure 6b contains the one-loop

vertex correction. In this case the resulting con-

tribution is given by

figure 6b → 3ζ(3)1
ε
p2 . (3.14)

In the same way for the graph in figure 6i one

has

figure 6i→ −5ζ(5)1
ε
p2 . (3.15)

Finally we concentrate on the diagram in Fig. 6j.

The evaluation of the corresponding momentum

integral is highly nontrivial and we refer to our

paper [1] for all the technical details. The result

is given by

figure 6j →
[
5ζ(5)− 3

2
ζ(3)

]
1

ε
p2 . (3.16)

At this point it is simple to add the four contri-

butions in (3.13), (3.14), (3.15) and (3.16) and
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(a) (b)

Figure 5: g2-order contribution to 〈Tr(Φ1)3Tr(Φ̄1)3〉.

.

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j)

Figure 6: g4-order contribution to 〈Tr(Φ1)3Tr(Φ̄1)3〉.

check the complete cancellation of the 1/ε terms.

It is interesting to note that, while the diagrams

6a, 6b only contribute with a divergent term pro-

portional to ζ(3) and the diagram 6i gives only a

ζ(5)-term, from the diagram 6j both terms arise

with the correct coefficients to cancel completely

the divergence.

4. Conclusions

We have discussed the calculation of the two-

point correlation function for the chiral primary

operator TrΦ31 in N = 4 SU(N) SYM theory up
to g4-order. We have found a complete cancel-

lation of quantum corrections for any finite N .

Our result represents the first O(g4) direct check
of the nonrenormalization theorem conjectured

on the basis of the AdS/CFT correspondence [5].

It supports also the stronger claim [5] that there

might be no quantum corrections at all, for any

finite N .

We have performed the calculation in N =
1 superspace using dimensional regularization.

The loop-integrals have been evaluated in mo-

mentum space with the method of uniqueness [14,

15]. In momentum space nontrivial, potential

contributions appear as local divergent terms that

are easily isolated and evaluated. Finite contri-

butions would correspond to contact terms and

can be neglected.

Our procedure is applicable to the pertur-

bative analysis of more complicated cases. Two-

point functions for TrΦk, k > 3, three-point func-

tions and extremal correlators for chiral primary

operators are now under investigation [11].
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