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Abstract: We investigate Domain–Wall (DW)/Quantum Field Theory (QFT) correspondences in

various dimensions. Our general analysis does not only cover the well–studied cases in ten and eleven

dimensions but also enables us to discuss DW/QFT correspondences in lower dimensions. New exam-

ples include ‘d–branes’ in six dimensions preserving 8 supersymmetries.
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1. Introduction

Anti–de Sitter (AdS) supergravity has attracted

much attention due to the conjectured correspon-

dence to a conformal field theory (CFT) on the

boundary of the AdS spacetime [1, 2, 3] . Rec-

ognizing that this correspondence has its roots

in the special properties of D–branes, this cor-

respondence was soon extended to include (most

of) the non–conformal ten–dimensional Dp–branes

[4, 5] (for a review, see [6]). This led to the more

general conjecture that there exists a correspon-

dence between Domain–Wall (DW) supergravity

and (Yang–Mills) quantum field theory (QFT).

This can also be understood by noting that AdS

spacetimes are special examples of the more gen-

eral DW spacetimes [7]. In this talk we will ex-

tend the discussion of [4, 5] to general two–block

p–branes in various dimensions.

In Section 2 we will derive the near–horizon

geometry of a generic two–block p–brane and in

Section 3 we discuss the low energy field theory

limit and restrict ourselves to (intersections of)

D–branes. We will end that Section by focusing

on a six–dimensional example and in Section 4

conclude with a summary and discussion.

∗Based on work done in collaboration with Klaus
Behrndt, Eric Bergshoeff and Rein Halbersma.

2. P–brane near–horizon geometries

Our starting point is the D-dimensional action

S(D, a, p) =

∫
dDx

√−g
2κ2D

[
−R− 4

D−2 (∂φ)
2

− g2ks
2(d+ 1)!

(
eφ

gs

)a
F 2d+1

]
, (2.1)

which contains three independent parameters: the

target spacetime dimension D, the dilaton cou-

pling parameter a and a parameter p specifying

the rank D − p− 2 of the field strength F . The
parameter k is given by

k(D, a, p) =
a

2
+ 2
p+ 1

D − 2 . (2.2)

We have furthermore introduced two useful de-

pendent parameters d and d̃ which are defined

by{
d = p+ 1 wv dimension ,

d̃ = D − p− 3 dual wv dimension . (2.3)

We next consider the following class of diago-

nal “two-block” p–brane solutions (using the Ein-

stein frame)1:

ds2 = H−
4d̃

(D−2)∆ dx2d +H
4d

(D−2)∆ dx2
d̃+2
,

eφ = gsH
(D−2)a
4∆ , (2.4)

1For later convenience, we give the solution in terms

of the magnetic potential of rank D− p− 3. The p-brane
solution is electrically charged with respect to the p+ 1–

form potential.
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g(2−k)s F̃m1···md̃+1 = ±
√
4

∆
εm1···md̃+1m∂mH ,

where

g(2−k)s F̃ =

(
eφ

gs

)a
gks
∗F . (2.5)

We use a constant, i.e. metric independent, Levi-

Civita tensor. Furthermore, gs = e
φ(H=1) and ∆

is defined by [8, 9]

∆ = 1
8 (D − 2)a2 +

2dd̃

D − 2 , (2.6)

which is invariant under reductions and oxida-

tions (in the Einstein frame). The function H is

harmonic over the d̃ + 2 transverse coordinates

and, assuming that

d̃ 6= −2, 0 , (2.7)

(i.e. no constant or logarithmic harmonic) this

harmonic function is given by

H = 1 +
(r0
r

)d̃
. (2.8)

Here r0 is an integration constant with the di-

mensions of length. It is related to the mass and

charge of the p–brane a follows. The mass τp per

unit p–volume is given by the ADM–formula:

τp =
1

2κ2D

∫
∂MD−p−1

dD−p−2Σm
(
∂nhmn − ∂mhbb

)
=
2(D − p− 3)
∆κ2D

rD−p−30 ΩD−p−2 . (2.9)

On the other hand, the charge µp per unit p-

volume is given, in terms of the same integration

constant r0, by the Gauss-law formula

µp =
1

2κ2D

∫
(dD−p−2Σ)m1···md̃+1g(2−k)s F̃m1···mD−p−2

= ±
√
∆

4
τp . (2.10)

Hence, the p–brane solution satisfies the BPS

bound

τp =

√
4

∆
|µp| . (2.11)

To derive an expression for r0 in terms of the

string parameters gs and `s, which fixes the scal-

ing of H , one must add a source term to the su-

pergravity bulk action. Using the no–force con-

dition2 and the fact that in the string frame the
2Alternatively, one can use a scaling argument, see

Appendix B of [10].

electric (p + 1)–form potential Cp+1 is propor-

tional to g−ks , which follows from the action (2.1),
we find that

τp ∼ 1

`p+1s gks
. (2.12)

Comparing with (2.9) and using κD ∼ lD−2s g2s we

deduce that, for a single brane,(
r0

`s

)d̃
∼ g2−ks . (2.13)

The two-block solutions (2.4) include (super-

symmetric) domain-wall spacetimes. They corre-

spond to the case d̃ = −1, ε = −1 and r0 = 1/m.
The solutions also include the known branes in

ten and eleven dimensions (M2, M5, Dp, F1, NS5

etc.) as well as branes in lower dimensions. If

the branes under consideration preserve any su-

persymmetries we can set [8, 9]

∆ =
4

n
, (2.14)

where generically 32/2n is the number of unbro-

ken supersymmetries.

We now consider the limit for which the con-

stant part in the harmonic function is negligible.

We make a co-ordinate transformation and go to

the dual frame(r0
r

)
= e−λ/r0 g∗ = e(

a

d̃
)φgE . (2.15)

After these manipulations we can write the near–

horizon metric as

ds2∗ = e
−2(1− 2d̃∆ )λ/r0dx2d + dλ

2 + r20dΩ
2
d̃+1
,

φ = −λ(D − 2)ad̃
4∆r0

, (2.16)

which generically (when 1− 2d̃∆ 6= 0) describes an
AdSd+1⊗Sd̃+1 geometry and a linear (in λ) dila-
ton background. Another useful and standard

parametrisation, when 1 − 2d̃
∆ 6= 0, can be ob-

tained by introducing a radial parameter u with

dimensions of mass

u =
rβ

rβ+10

, β =
2d̃

∆
− 1 (2.17)

and the metric after a rescaling of xd → β−2 xd,
can be written as

ds2∗ = r
2
0

[
β−2

{
u2dx2d +

(
du

u

)2}
+ dΩ2

d̃+1

]
.

(2.18)
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Reducing over the d̃+ 1 angular variables of

the sphere we end up with a gauged supergrav-

ity in d+1 dimensions supporting a domain–wall

solution. The precise relation between the pa-

rameters of the domain–wall supergravity action

and its solution in terms of those of the p–brane

action (2.1) and its solution (2.16) can be found

in [10].

Summarizing, in this Section we showed that

in the dual frame, defined by (2.15), all p–branes

solutions (2.4) have a near–horizon background

DWd+1 ⊗ Sd̃+1. The domain–wall metric has all
the isometries of an AdS space. These isometries

are broken in the full background because of the

presence of a non–trivial dilaton.

3. The field theory limit

In this section we will set up the framework for

the DW/QFT duality similar to the analysis of

[5] but for arbitrary dimensions. As we showed

in the previous section, the near–horizon geom-

etry of a general p–brane in the dual frame is

equivalent to that of a non–dilatonic p–brane. It

is therefore natural to assume that the duality

might be extended. The presence of the dila-

ton turns the AdS background into a DW back-

ground and the conformal field theory into a non–

conformal QFT, hence the name DW/QFT dual-

ity. In the following we will restrict ourselves to

(intersecting) D–branes reduced over all relative

transverse directions3, giving a particular dila-

tonic p–brane solution in lower dimensions. This

restriction to D–branes (or equivalently k = 1),

as one might expect, is necessary to obtain non–

singular dilaton expressions after taking the limit

[10].

For the field theory to be non–trivial we need

that at least one coupling constant is fixed in the

low energy limit ls → 0. Based on dimensional
analysis and the scaling of the effective tension

with gs (2.12) we can deduce that the p–brane

worldvolume field theory has a (’t Hooft) cou-

pling constant g2f which can be written as follows:

g2f = cpNg
k
s l
x
s . (3.1)

3This also means that these intersecting D–brane con-

figurations are delocalized.

Here N denotes the number of stacked branes

and the scaling of the coupling constant with gs
is as the inverse tension τp

−1. The undetermined
numerical factor cp and the parameter x depend

on the specific field theory under consideration.

For a rank q tensor field theory in p + 1 dimen-

sions, x is in fact equal to p− 2q− 1. Depending
on whether x is positive or negative, the factor

in (3.1) involving N and gs should either become

large or small in the low energy limit in order to

keep g2f fixed. In order for the theory to decou-

ple from the bulk supergravity we will assume

that gs � 1 (so κD → 0 in the low energy limit)
and therefore we take N →∞ when gsN has to
become large to fix gf .

As explained in [11] there are two natural en-

ergy scales we can keep fixed in the low energy

limit, depending on how we probe the collection

of D–branes. They concluded that probing a col-

lection of D–branes with supergravity fields is the

natural thing to do in the context of holography,

instead of probing the system with another D–

brane. In [5] it was observed that in the dual

frame, where the metric describes an AdS space-

time, the radial parameter u (2.17) in the metric

(2.18) naturally corresponds to the energy scale

of a supergravity field probe. Clearly this ob-

servation can now be extended to all two–block

p–branes and we will use the energy scale u as

the fixed holographic energy scale.

We demand the two different energy scales

to be related by some fixed quantity (in the low

energy field theory limit). After all, using one

or the other probe should not make a (singular)

difference. As is explained in [10] this gives the

following constraint on x

x = ∆− d̃ . (3.2)

This tells us which coupling constant in the field

theory we should keep fixed. When ∆ = 4 and

d̃ = 7−p we find that x = 3−p, which is the scal-
ing of a Yang–Mills coupling constant appropri-

ate for D–branes in D = 10 [4, 5]. When ∆ = 2

and D = 6 we find x = 1−p, which is the appro-
priate scaling of a scalar field coupling constant

(and the conformal p = 1 case related to the D1–

D5 intersection was already discussed in [1]).

Rewriting the supergravity background so-

lution in terms of the fixed field theory quanti-

3
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ties and taking the low energy limit gives us the

near–horizon metric (2.18) (all ls dependence dis-

appears) and the non–trivial dilaton becomes

eφ =
1

N

[
(g2f )

1/xuβ

(
d
1/d̃
p

c
1/x
p

)]−(D−2)a
8 ( β+1β )

.

(3.3)

So the complete background solution is well be-

haved everywhere except for the special points

u = 0,∞ where the dilaton either vanishes or
blows up. The conjecture is that there is a cor-

respondence between string theory on this DW

background and the p–brane theory in the low

energy field theory limit. We note that (as in

D = 10) string quantum effects are 1/N effects

and a supergravity approximation can be used

when the string coupling and the (string) space-

time curvature are both small. However, the con-

formal invariance which in the AdS/CFT dual-

ity facilitates computations in the strongly cou-

pled field theory is now broken so that any di-

rect check of a DW/QFT duality is ruled out.

Let us end this section by discussing the six–

dimensional d0–brane example. For details about

other new examples (like the D8–brane inD = 10

and the d4–brane in D = 64) we refer to [10].

In D = 6 we keep the scalar coupling con-

stant fixed. This also means that the Yang–Mills

coupling constant diverges. Assuming we are on

the Higgs branch, giving the gauge fields masses

proportional to the diverging Yang–Mills cou-

pling constant, the massive gauge fields will de-

couple and we are left with Higgs branch physics

only (also assuming that the Higgs branch de-

couples from the Coulomb branch as claimed in

[12, 13]).

Let us investigate where we can trust the per-

turbative field theory and the supergravity ap-

proximation. Clearly the perturbative field the-

ory has become a quantum mechanics model and

the dimensionless effective coupling constant gov-

erning the perturbative expansion in this case is

defined as

g2eff = g
2
f u . (3.4)

4These cases are special because they require N →
∞ to decouple gravity and the correspondence seems to
indicate that perturbative QFT and DW supergravity are

valid in the same energy regime, which at first sight seems

contradictory.

Small curvature can be translated into the fol-

lowing constraint

τD =
(
dpNe

φ
)2/3 � 1 . (3.5)

This is the effective tension of closed strings in

the dual frame and a particle (supergravity) ap-

proximation is valid when this tension is large.

We denote the crossover from a supergravity ap-

proximation to a string theory by the point uN
and the crossover from a perturbative quantum

mechanics model to a strongly coupled quantum

mechanics model by ug.

In the case of the d0–brane the supergravity

approximation can be used in the following IR

energy regime

uN = g
2
f N

−4
3 � u� ug = g2f , (3.6)

which can only be satisfied for large N . In the

UV we can use perturbative field theory

u� ug , (3.7)

which in this case reduces to a quantum me-

chanics model. We therefore find the typical

DW/QFT behavior that the supergravity regime

and the perturbative field theory regime do not

overlap, avoiding inconsistencies. In the far IR,

when

u� uN , (3.8)

the string coupling becomes large and we could

try to use an S–dual description. The different

regimes are plotted in Figure 1.

g  >>1s

u ugN

SUGRA

R >>1

S-dual PQFT

IR UV

Figure 1: Different regimes in the energy plot for

d0–branes with N � 1.

The d0–brane is related to the D4–brane by

considering a IIA compactification on aK3 man-

ifold. It is conjectured (and by now well estab-

lished) that Type IIA superstring theory on a

K3 manifold is S–dual to Heterotic superstring

theory on a T 4 [14]. On the Heterotic side the

S–dual soliton solution would be a fundamental

state (k = 0) and has a curvature singularity

at u = 0, so a supergravity approximation will

4
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not make sense. The situation resembles the D1–

brane case in D = 10 Type IIB theory. There the

curvature singularity in the S–dual F1–brane so-

lution was resolved by the strong coupling confor-

mal fixed point of the (1+ 1)–dimensional gauge

theory. It is suggestive to propose the occurrence

of a similar phenomenon in this case. It would

therefore be interesting to determine the strongly

coupled IR limit of the corresponding quantum

mechanics model.

Let us remark however that in the context of

the DW/QFT correspondence the quantum me-

chanical cases are not well understood [6, 15, 16].

This has to do with the fact that quantum me-

chanics does not have ”internal” worldline dy-

namics and only when we take the 0–branes apart

do we expect to obtain a dynamical model. How-

ever, when we take the 0–branes apart it is not

clear what the corresponding dual supergravity

background should be.

4. Conclusions and discussion

At the end of this talk let us make the following

remarks. We did not present a detailed investi-

gation of the p–brane worldvolume field theories.

Our discussion was focussed on the p–brane ge-

ometries in the field theory limit and the search

for well–defined supergravity regions. We showed

that the near–horizon geometry of the D = 6

d0–brane indeed has regions where a supergrav-

ity approximation seems valid and the analysis

is strikingly similar to that of the D = 10 Dp–

branes with p < 3.

We did make some general remarks on the

nature of the field theory, which is governed by

scalar dynamics, presumably in the Higgs branch

of the p+1–dimensional gauge theory, consisting

of supersymmetry vector multiplets and hyper-

multiplets. This suggests a possible relation with

Matrix theory descriptions of the M5–brane [13]

where a similar limit is described. It would be

interesting to pursue this connection further.

We want to point out that other work was

done on localized Dp–brane intersections and the

field theory limit [17, 18, 19]. In these investi-

gations a limit is considered taking one into the

near–horizon geometry of the lower–dimensional

D–brane in the intersection and the dual field

theory should then also be the one living on the

lower–dimensional D–brane. Although the field

theory limit in that case fixes the Yang–Mills cou-

pling constant, there could be a connection with

the results presented here in the sense that both

investigations start off with the same intersecting

D–brane system.
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