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Abstract: String theory compactified on a three-torus possesses an SL(5,Z) U-duality group. We

investigate the realisation of this symmetry on the Born-Infeld theory on a three-brane, and discuss a

U-duality covariant formulation of the BPS sector of the theory where the rank of the gauge group is

treated on an equal footing with the fluxes.

1. Introduction

The simplest compactifications of string theories

are those on tori. These preserve maximal su-

persymmetry, and furthermore they enjoy a large

discrete symmetry, called U-duality. This U-duality

group can be viewed as being generated by two

distinct sets of symmetries (see e.g. [1] and ref-

erences therein).

The first is T-duality, a perturbative symme-

try of string theory, i.e. it holds order by order in

the string loop expansion. T-duality states that

strings on circles of radius R are in fact equiva-

lent to strings on circles with inverse radii. In the

identification, the roles of string momentum and

winding states are interchanged. The T-duality

group of string theory on a d-dimensional torus

is SO(d, d,Z).

The second contribution to the U-duality group

follows from the observation that type IIA strings

on a d-torus may alternatively be regarded as M-

theory on a torus of one dimension higher. This

point of view makes obvious a geometric sym-

metry group SL(d+1,Z) of the torus. From the

string theory perspective, this is a non-perturbative

symmetry: for instance, it interchanges non-perturbative

D0-branes with stringy momentum modes.

When these two groups are combined, they

generate the U-duality groups, whose continuous

versions have been known to exist for a long time

as the hidden symmetries of supergravity theo-

ries. For various torus dimensions d, they are

listed in table 1. In the following we will con-

d U-duality group

1 SL(2,Z)

2 SL(2,Z)× SL(3,Z)
3 SL(5,Z)

4 SO(5, 5,Z)

5 E6(6)(Z)

6 E7(7)(Z)

7 E8(8)(Z)

Table 1: U-duality groups for string theory com-

pactified on various tori

centrate on the case d = 3, where the U-duality

group is SL(5,Z).

The states in the theory transform in multi-

plets of the U-duality group. In particular this

is the case for the 1/2 BPS states. In type IIB

strings on a three-torus these states are D3-branes,

three different D1-branes (one for each cycle of

the torus), three fundamental string winding modes

and three momenta around the torus. These ten

objects transform as an antisymmetric tensor un-

der SL(5). The 1/4 BPS states, in which we

will be mainly interested, are realised as combi-

nations of such 1/2 BPS objects.

The symmetry under U-duality transforma-

tions also implies that the degeneracies of states

related by such a transformation should coincide.

In the case of 1/4 BPS states this degeneracy



Quantum aspects of gauge theories, supersymmetry and unification Gysbert Zwart

can be calculated in perturbative string theory

by considering a state with only momentum and

winding quantum numbers. The degeneracy of

a state with momentum vector pi and winding

numbers wi is given by D(p · w), with D(n) de-
fined by the chiral string partition function:

∑
D(n)qn = 256

∏(1 + qn
1− qn

)8
. (1.1)

Since any other 1/4 BPS state can be mapped to

such a state, all 1/4 BPS degeneracies should be

given by a similar expression.

The purpose of this work (reported in [2, 3])

is to investigate the implications of the U-duality

symmetry of the string theory on the Born-Infeld

gauge theory living on a three-brane wrapping

a torus. As we will see, the BPS states of the

strings have an interpretation in terms of fluxes

in the gauge theory on the three-brane. We will

study the BPS sector of this Born-Infeld the-

ory and, via BPS quantisation (following [4]) de-

termine the associated degeneracies of the BPS

states in this gauge theory. These will turn out

to be in accord with the string results.

2. The Born-Infeld gauge theory on

the three-brane

We will focus the discussion on the seven-dimen-

sional case, corresponding to string theory com-

pactified on a three-torus, with U-duality group

SL(5,Z). On the type IIB string theory side,

BPS states are built from ten distinct objects:

three-branes wrapping the three-torus, fundamen-

tal and D-strings winding around three different

one-cycles, and momentum modes in the three

internal directions. The associated quantum num-

bers transform in the ten-dimensional represen-

tation of SL(5).

In the gauge theory on a three-brane wrap-

ping the torus, all these ten quantum numbers

have an interpretation as fluxes. The relations

are given in table 2. The number of D3-branes is

of course related to the rankN of the U(N) gauge

theory. The magnetic fluxes, the zero modes

of the magnetic field Bi =
1
2εijkFij , correspond

to D-strings, whereas the S-dual electric fluxes

take the role of fundamental strings. Finally the

string theory gauge theory

D3-brane rank N

D1-branes magnetic fluxes Bi
fundamental strings electric fluxes Ei

momenta gauge momenta Pi

Table 2: Translation of string theory quantum num-

bers into gauge fluxes

momenta (i.e. the components of the integrated

Poynting vector E ∧ B) simply translate to the
string theory momenta around the torus.

To bring out the U-duality properties, it is

convenient to organise these gauge theory quan-

tities in an antisymmetric five by five tensorMij ,

as follows:

M =




0 P3 −P2 E1 B1
−P3 0 P1 E2 B2
P2 −P1 0 E3 B3
−E1 −E2 −E3 0 N

−B1 −B2 −B3 −N 0



. (2.1)

The SL(5) acts on this matrix by conjugation.

One can easily recognise the two subgroup SL(3)

and SL(2). The former is the geometric symme-

try on the torus and acts as such on the three vec-

tors. It sits in the top lefthand block of the SL(5)

matrices. The two by two lower righthand block

realises the SL(2) which is the electromagnetic

duality. It mixes electric and magnetic compo-

nents. Both subgroups leave the rank N un-

touched. We will discuss those transformations

affecting the rank in the following.

The particular gauge theory on the D3-brane

that we want to consider is the Born-Infeld gauge

theory. The abelian version of its action is given

by

SBI =
1

gs

∫ √
det(Gµν + Fµν). (2.2)

The inverse string coupling in front of the action

is typical of D-branes. We omit possible non-

trivial B-field background contributions. The

generalisation to higher rank is thought to be

given by a symmetrised trace over the gauge group;

this issue is not fully resolved yet however, for

a discussion see e.g. [5]. We will compute the

Hamiltonian and BPS masses for the abelian case

and assume the generalised result for arbitrary

N .

2
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In order to calculate the Hamiltonian we need

to introduce the electric field

Ei =
δL
δAi
.

It now turns out that the square of the Hamilto-

nian density H can be expressed in a simple way

in terms of the matrix Mij defined in equation

(2.1), as

H2 =
1

g2s
(N2 +B2) + EiGijE

j + Pi(G
−1)ijPj

= −1
2
Tr M2. (2.3)

In the first line, we see the contribution from the

D3 and D1-branes, with the characteristic cou-

pling constant dependence, and then the terms

corresponding to winding and momentum. The

second line demonstrates that the Hamiltonian

takes a very simple form in terms of the SL(5)

tensor M . (We can absorb the coupling, as well

as any non-trivial background fields, in a five-

dimensional metric).

This form suggests an SL(5) covariant de-

scription of the theory. However, the matrix M

does not have arbitrary components, there ex-

ist relations between them. Remarkably we can

write these relations again in an SL(5) covariant

form, as the constraint

Ki =
1

8
εijklmMjkMlm = 0. (2.4)

In components the five-vector Ki is given by

K = (NPi − (E ∧B)i,−P · B,P · E).

The first three components are precisely the def-

inition of the Poynting vector, while the last two

components are automatically zero whenever the

first three are.

We are therefore led to consider an arbitrary

matrix M , provided it satisfies the five-vector

constraint K = 1/2(M ∧M) = 0. At this point
a major problem is of course that, to make the

connection to gauge theory, while E, B and P

may be position dependent, the rank N should

of course be a constant. We will turn to this in

a moment.

Finally, we are interested in the BPS states of

the theory. Again the BPS masses can be written

in a nice form using the matrix Mij . The BPS

mass is a function of the ten charges, which are

given by the zero modes ofM . We write these as

mij =
∫
Mij . In terms of this matrix of fluxes,

the BPS mass formula takes the form

M2BPS = −
1

2
Tr m2 + 2|k|. (2.5)

Here k is the zero mode equivalent of K, i.e. k =

1/2(m∧m). Note that while the space dependent
K is automatically zero, k is not. In fact k = 0

only for 1/2 BPS states, while 1/4 BPS states

have non-zero vector k. The BPS equations can

be expressed in a covariant fashion in terms of

M and its zero-modes m as well.

We will go on to quantise the space of BPS

states, in order to try to determine the quantum

degeneracies of the BPS states. We will first re-

view the method of BPS quantisation introduced

in [4] for the U(N) Yang-Mills theory; then we

will apply this to the Born-Infeld case.

3. BPS quantisation of Yang-Mills

theory

In [4] Hacquebord and Verlinde discussed the

question of SL(5) invariance of the BPS spec-

trum in the context of Yang-Mills theory on a

torus. In the Yang-Mills theory we have the fields

Aµ, the vector potential, and six (adjoint) scalar

fields XI . The BPS equations depend on the

fluxes of the configuration. In the simple case

where only the momentum in the one-direction,

p1, and the rank n are non-zero, we may gauge-

fix A0 and A1 to zero and then obtain the BPS

equations

(∂0 − ∂1)A2,3 = 0, (∂0 − ∂1)XI = 0, (3.1)

[Ai, Aj ] = [Ai, X
I ] = [XI , XJ ] = 0. (3.2)

These equations were recognised in [4] as the left-

moving sector of a matrix string theory. Due to

the vanishing of the commutators, one can take

all n by n matrices to be diagonal. At first sight

this seems to imply that we have simply n dis-

tinct left-moving theories on a string. However,

in the periodicity conditions in the coordinate x1
one may include a permutation of the eigenval-

ues,

Ai(x1 + 2π) = SAi(x1)S
−1,

3
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and similarly for the XI , so that effectively one

describes the “long strings” introduced in [6] as

the twisted sectors of a conformal field theory on

a symmetric product, with a total length n.

Hacquebord and Verlinde concentrated on the

case where one has just one string of length n.

In this case, quantisation of the theory restricted

to the BPS configurations yields left-moving os-

cillators with a fractional moding, in multiples

of 1/n. Then, to obtain a total momentum p1
one should consider states with oscillator num-

ber np1, so that the degeneracy of such states is

indeed given by D(np1), the result from string

theory.

For more general quantum numbers the de-

generacies were argued to be the same in [4]. The

total BPS degeneracies for the Yang-Mills U(N)

gauge theory therefore respect the U-duality group

SL(5,Z), at least in the single long string sector.

The essential point in this result is that in

the subsector of the theory respecting the BPS

conditions, the configurations reduce to strings.

The length of these strings equals the rank of

the gauge theory. We will now try to apply the

same arguments to the Born-Infeld gauge the-

ory. In the abelian case where the theory is well

understood, we will again see the reduction to

a string theory. For the non-abelian version, we

will assume that similarly the equations reduce to

those of a matrix string theory, so that effectively

we can also here use the abelian BPS equations.

We know that in the limit of large N , where the

theory is adequately described by the Yang-Mills

theory, this should be the case, but for general

N this remains an assumption essential for our

result.

4. BPS quantisation of the Born-Infeld

theory

For the supersymmetric Born-Infeld case we will

now reexamine the situation. As explained above

we will use the BPS equations found from the

abelian Born-Infeld theory, and assume these to

be valid for the non-abelian case, with the only

alteration that the length of the domain on which

the fields live is multiplied by the rank n.

Just as in the Yang-Mills case let us start

from the easy case, where only the quantum num-

bers associated to the rank, n, and the momen-

tum in the one-direction, p1, are non-zero. In

this case the BPS equations are

E2 = B3, E3 = −B2, E1 = B1 = P2 = P3 = 0.
(4.1)

If we insert the expressions for Ei andBi in terms

of the gauge field Ai we again find the same equa-

tion as in the case of the Yang-Mills theory,

(∂0 − ∂1)Ai = 0,

and we are suppressing the six extra scalars XI .

From the fact that the equations are precisely the

same we can of course conclude that here we have

the same degeneracy as the one found in the pre-

vious situation. However, in order to be able to

generalise to arbitrary fluxes, it is convenient to

go through the calculation in a little more detail.

In order to quantise the theory in a lightcone

gauge, we identify the electric field field with left-

moving string coordinates,

Ei ∼ ∂Xi,

enjoying the appropriate commutation relations

[∂X(σ), ∂X(σ′)] = i∂δ(σ − σ′).

From this relation to a string theory one can com-

pute the degeneracy. However, let us step back

and try to make the analogy to the string theory

before the fixing to lightcone gauge. In order to

do this we propose to identify the lightcone coor-

dinates ∂X± with the rank, N , and the momen-
tum, P1. For the moment we therefore assume N

to be a real, fluctuating field, whose zero mode

is the rank n. This implies imposing a commu-

tation relation between the two quantities,

[N,P1] = i∂δ. (4.2)

In this notation, if we write down the constraint

Ki = 0 (equation (2.4)), its only non-trivial com-

ponent K1 takes the form

K1 = ∂X+∂X− − 1
2
∂X i∂X i = 0 (4.3)

which we recognise as precisely the Virasoro con-

straint! Using the gauge symmetry generated by

this constraint we may now fix N = ∂X+ to be

4
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a constant, n. This then determines P 1 = ∂X−

in terms of the other fields as

nP1 = (E ∧B)1.

In conclusion, by introducing an underlying

pre-theory, in which the rank is allowed to be a

fluctuating field, we manage to make contact to a

string theory before the fixing of lightcone gauge.

In this theory the constraintK = 0 is interpreted

as the Virasoro constraint. The original gauge

theory is then identified with the lightcone gauge-

fixed version of this theory, where the rank is

identified with the lightcone momentum.

So far we have only introduced some addi-

tional structure, which by fixing a gauge we again

removed. The usefulness of this additional struc-

ture becomes clear when we consider the general-

isation to arbitrary fluxes. To solve the problem

for general fluxes, let us insert the expression in

terms of the ∂X ’s from the previous discussion

in the matrix Mij :

M =




0 0 0 0 0

0 0 ∂X− ∂X2 −∂X3
0 −∂X− 0 ∂X3 ∂X2

0 −∂X2 −∂X3 0 ∂X+

0 ∂X3 −∂X2 −∂X+ 0



.

(4.4)

Now, if Mij satisfies the Born-Infeld BPS equa-

tions, then, since these equations are covariant,

an SL(5) transformed M ′ij is a solution as well.
If we therefore conjugate the matrix M above

with an appropriate SL(5,Z) matrix, we obtain

a new solution with arbitrary new zero-modes of

the fields (fluxes). The entries of this new M ′

are all linear combinations of the ∂X , so the new

electric and magnetic fields, as well as momenta

and rank, are all functions of all the ∂X ’s. In

particular, since the new rank N ′ is not anymore
simply ∂X+, it is no longer a constant. However,

from the previous discussion we see that we may

remedy this simply by making a gauge transfor-

mation generated by the constraint Ki, to fix

the gauge so that again N ′ is a constant. Effec-
tively, by performing a U-duality transformation

we have gone out of the lightcone gauge, and one

has to apply a compensating gauge transforma-

tion to reach a new configuration with constant

rank. Since this is only a gauge transformation,

it does not of course affect the degeneracy, so

that this is indeed automatically U-invariant.

5. Conclusions

We have seen that Born-Infeld theory in 3 + 1

dimensions can be naturally written in terms of

U-covariant objects: the antisymmetric matrix

Mij , together with the five-vector of constraints

Ki = 0. The spectrum of BPS masses, as well

as the BPS equations take a covariant form in

terms of these quantities.

To study the degeneracies of the BPS states,

we generalised the BPS quantisation applied to

Yang-Mills theory in [4]. In the BPS sector, we

saw that the theory reduced to a string theory,

giving rise to the stringy degeneraciesD(n). Fur-

thermore, we proposed a theory underlying the

actual gauge theory in the BPS sector, in which

the rank is treated on an equal footing as the

other fields. In this formulation the constraint

K was identified with the generator of conformal

transformations. Fixing this theory to lightcone

gauge yields the actual gauge theory with con-

stant rank N .
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