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Abstract: We provide an explicit proof that the Noether trasformations for the standard second

order Lagrangian system with constraints, are equivalent to the Noether transformations that can be

obtained from an associated enhanced space (to be defined below). We implement a change of variables

between the n-tangent bundle with coordinates q, q̇, q̈, ... and an enhanced space with coordinates

q, p, λ, `, λ̇, ˙̀... where ` ≡ ṗ − {p,HD} and λ are the Lagrange multipliers. In this space the Noether
identities are self contained and this information can be used to construct the corresponding Noether

symmetries. We rewrite the Dirac algorithm in this enhanced space. As a consequence we proof that

the Noether symmetries of the form δL(q, q̇, q̈...) are the most general Noether transformations that

can be constructed for a gauge system, up to constraints, that vanish on shell. This result gives an

answer to the question as to what extent and in what sense a general continuos Noether trasformation

is canonically generated.

1. Introduction

¿From now on there are two different ways to

construct Noether symmetries for gauge systems

in the market [1, 3]. One of them [3, 4], based on

Dirac algorithm, requires a canonical generator

of the form Gc(q, p, λ, λ̇...t), to generate through

the Poisson bracket, a symmetry transformation

in an enlarged space (defined by the coordinates

(q, p, λ, λ̇...)) where λ is the set of Lagrange mul-

tipliers associated with the primary first class

constraints. The symplectic structure is the same

as the original phase space (q, p) structure. The

original derivation [3] of the necessary and suffi-

cient conditions under a function Gc in the en-

larged space to be a generator of a Noether sym-

metry, was based on the extended Dirac [2] for-

malism, but this tour de force is in fact not needed.

The condition can be obtained also in the stan-

dard Dirac formalism without the need to per-

form a gauge fixing for the Lagrange multipliers

of the secondary, terciary... etc. first class con-

straints [1]. These Noether symmetries “live” in

the enlarged space and the original symmetries of

the standard second order Lagrangian formalism

with Lagrangian L(q, q̇) can be recovered by us-

ing the fact that p and λ are auxiliary variables.

The elimination of these auxiliary variables pro-

duces a Lagrangian generator which “lives” in

the n-tanget bundle GL(q, q̇, q̈...t) that is related

to the Noether symmetry

δLqi(q, q̇, q̈...; t), (1.1)

by

δLL =
dL

dt
F,

for some infinitesimal function F (q, q̇, q̈..., t), where

dL

dt
≡ ∂
∂t
+ q̇i

∂

∂qi
+ q̈i

∂

∂q̇i
+ ....

is the evolution operator of shell and

[L]iδ
Lqi +

dLGL

dt
= 0,

[L]i ≡ αi −Wij q̈j , αi ≡ − ∂L

∂q̇i∂qj
q̇j +

∂L

∂qi
.
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Here Wij =
∂L
∂q̇i∂q̇j is the Hessian matrix associ-

ated to L, and [L]i are the Euler-Lagrange equa-

tions of motion. The associated conserved quan-

tity is

GL =
∂L

∂q̇i
δLqi − F.

An important advantage of this method is that

the symmetry can be found by purely algebraic

means.

We can also construct Noether symmetries

in TQ × R by tackling the problem from the
very definition of a Noether symmetry ([1] an

references there in). This second approach does

not require the symmetry to be canonically gen-

erated. The form of the symmetry depends on

the base of constraints used to find it. In some

cases the resulting symmetry is not projectable

to phase space. If we require projectability, the

first method is the most powerful one. When

the symmetry is projectable it is also canonically

generated through the Poisson bracket with gen-

erator G(q, p). The two methods are equivalent

when the generator has the form Gc(q, p, λ). The

original Lagrangian symmetries can be obtained

by the elimination of the auxiliary variables p

and λ as in the previous case. The resulting gen-

erator is a function in TQ × R, GL(q, q̇, t). For
details we refer the reader to [1].

Here we will construct an enhanced space [5]

with coordinates (q, p, λ, λ̇.., `, ˙̀...) where λ are

the Lagrange multipliers and ` ≡ ṗ + {p,HD}.
HereHD is the Dirac Hamiltonian. We construct

this space in a recursive way throughout a change

of variables from the n-tangent bundle (extend-

ing the usual Legendre Map) and show that it is

possible to define a “Dirac algorithm” in this new

enhanced space. Then we will construct the gen-

eral conditions for a functionGE in this enhanced

space to be a canonical generator of a Noether

symmetry and describe how we can recover the

Noether symmetry for the original second order

Lagrangian system from the Noether symmetry

defined in the enhanced space. This allow us

to proof that the most general Noether trans-

formations that can be constructed for a given

Lagrangian system with gauge invariance are of

the form δLq(q, q̇, q̈, ...t) and answer the question

about to what extend and in what sense a given

Noether symmetry is canonically generated. The

Noether identities are self contained in the en-

hanced space. As a consequence the construction

of Noether symmetries is straightforward.

2. The enhanced space

To construct the enhanced space in a recurrent

way we start from the standard Legendre Map

[5]

TQ←→M0 ×RM , (locally)

qi, q̇i ←→ qi, pi, λµ, φ(0)µ = 0
where φ

(0)
µ are the primary constraints and λµ

its associated Lagrange multipliers. The explicit

transformation can be constructed by noticing

that the canonical momenta p and the Lagrange

multipliers λµ are auxiliary variables. Indeed,

from left to right

q̇i =
∂Hc

∂pi
+ λµ

∂φµ

∂pi
≡ ∂HD
∂pi
, φ(0)µ (q, p) = 0,

where HD = Hc + λ
µφ
(0)
µ is the Dirac Hamilto-

nian. From these equations we can obtain p and

λ as functions of (q, q̇)

p̂i =
∂L

∂q̇i
, λµ = vµ(q, q̇).

which are the explicit trasformations from right

to left. These are in fact the transformation rules

that we apply to recover the original Lagrangian

function L(q, q̇) from the Hamiltonian one de-

fined by the Legendre Map. This procedure can

be generalized to the next order

qi, q̇i, q̈i ←→ qi, pi, λµ, `i, λ̇µ,
φ(0)µ (q, p) = 0, φ

(1)
µ (q, p, λ, `) = 0,

where

φ(1)µ (q, p, λ, ṗ) = {φ(0)µ , HD}+ `i
∂φ
(0)
µ

∂pi
,

with the definition

`i ≡ ṗi + ∂HD
∂qi
.

Note that `i = −[L]i in the old variables, where
[L]i denotes the Euler-Lagrange equations of mo-

tion. The explicit transformatios are, from left to

right

q̈i = {∂HD
∂pi
, HD}+ `j ∂HD

∂pi∂pj
+ λ̇µ

∂HD

∂pi∂λµ
,
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and from right to left

`i = −[L]i = ˙̂pi − ∂L
∂qi
, λ̇µ = q̇i

∂vµ

∂qi
+ q̈i
∂vµ

∂q̇i
.

We can construct in a recursive way all the en-

hanced phase space and interchange variables from

the n-tangent bundle and this new enhanced space

just constructed. In the same way as φ
(0)
µ = 0 re-

strains the number of independent momenta, the

new variables p, `, ˙̀... are not all independent but

they are restricted by φ
(0)
µ , φ

(1)
µ , φ

(2)
µ .... For that

reason we will call the functions φ
(n)
µ restrictions

and not constraints because they are not in the

form of standard Dirac constraints. Note that

the restrictions are identically zero when they are

evaluated in the old coordinates (as the primary

constraints in the standard Dirac analysis).

In general these restrictions are generated by

φ(n+1)µ =
dEφ

(n)
µ

dt

where
dE

dt
= D + ` ∂

∂p
, (2.1)

is the evolution operator of shell in the new en-

hanced space, and

D = D
Dt
+ {−, HD}, (2.2)

D

Dt
:=
∂

∂t
+ λ̇
∂

∂λ
+ λ̈
∂

∂λ̇
+ ....+ ˙̀

∂

∂`
+ ῭
∂

∂ ˙̀
+ ...,

(2.3)

It is worth noticing that if we set `, ˙̀, ῭ to

zero we obtain the relations

Dnφ(0)µ (q, p, λ, λ̇...) = 0. (2.4)

These are not the standard Dirac constraints, but

coincide with the Lagrangian constraints when

p = p̂(q, q̇) and λ = v(q, q̇) are used. In fact for

n = 0 we have the identity φ(0)(q, p̂) = 0, and for

n = 1

Dφ(0)µ (q, p̂, vµ) = [L]i
∂φµ

∂pi
= αi

∂φµ

∂pi

∣
∣
∣
p=p̂
.

3. Relation to Dirac constraint anal-

ysis

The Lagrangian constraints Dnφ(0)µ = 0 are not

in the form of Dirac constraints. Dirac algorithm

is quite more refined, at least, for two reasons: a)

The Dirac constraints are of the form φ(q, p) = 0

and b) the determination of some Lagrange mul-

tipliers λ in terms of q, p variables (for the associ-

ated second class constraints) and the construc-

tion of the Dirac Bracket are basic steps in the

Dirac algorithm.

The Dirac algorithm starts from primary con-

straints φµ and the cleaver trick is to split these

constraints into first class φµ0 and second class

φµ1 . Then

Dφµ0 = {φµ0 , Hc}+ λν{φµ0 , φν} = {φµ0 , Hc},

and

Dφµ1 = {φµ1 , Hc}+λν{φµ1 , φν} = 0→ λµ1(q, p),

so the operator D is now modified (adapted) to

D′ = D
′

Dt + {−, H
′
D},

where

H ′D = H
′
c + λ

µ0φµ0 and H ′c = Hc + λ
µ1φµ1 ,

λµ0 are the remaining undetermined Lagrange

multipliers. In this way we recover the Dirac al-

gorithm from the previous one in the enhanced

space.

4. Noetherian symmetries in the en-

hanced space

Here we will find the general conditions under a

function GE in the enhanced space to be a canon-

ical generator of a Noether symmetry for a first

order Lagrangian

Lc(q, p, λ; q̇, ṗ, λ̇) := piq̇
i −Hc(q, p)− λµφµ(q, p),

where φµ are the primary constraints. The new

configuration space for Lc is the old phase space

enlarged with the Lagrange multipliers λµ as new

independent variables. The dynamics given by

Lc is nothing but the constrained Dirac Hamilto-

nian dynamics for a system with canonical Hamil-

tonian Hc and a number of primary constraints

φµ.

We will now look for Noether transforma-

tions for Lc that may depend on the Lagrange

3



Third Latin American Symposium on High Energy Physics J. Antonio Garćıa

multipliers, the ` variables and their time deriva-

tives to any finite order and that are canonically

generated under the definitions

δEqi = {qi, GE}, δEpi = {pi, GE}, (4.1)

and with δEλµ to be determined below. We have

for δELc,

δELc =
dM

dt
+
DGE

Dt
+ {GE , HD} − (δEλµ)φµ,

where M = (pi δ
Eqi − GE) and with the defini-

tion
d

dt
=
D

Dt
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

where D/Dt is the operator defined in (2.3). If

we require

DGE

Dt
+ {GE , HD} = pc, (4.2)

where pc stands for a combination of first class

constraints, then δELc =
dM
dt
, that is, a Noether

transformation for the enhanced space. Equation

(4.2) is important: it is the equation characteriz-

ing the generators of Noether transformations in

the enhanced space that are canonically gener-

ated. It applies both to rigid and gauge Noether

symmetries. It generalizes in a compact way the

theoretical setting of the results given in [3] (see

also [4]) to find an algorithm to produce gauge

generators for theories with only first class con-

straints. We have arrived at the following result:

The necessary and sufficient condition for a func-

tion GE(q, p, λ, λ̇, `, λ̈, ˙̀...; t) to generate through

(4.1) a Noether symmetry in the enhanced space

is that GE must fulfill equation (4.2).

Notice that this result has been obtained with

no assumptions concerning the first and second

class structure of the primary constraints. Note

also that in (4.2) only the primary constraints

are relevant.

It is easy to see that the condition (4.2) is

quite strong. Its only possible solutions are canon-

ical generators Gc. So we conclude that the only

Noether symmetries that are canonically gener-

ated are the symmetries that can be obtained in

the enlarged formalism, up to trivial symmetries.

Nevetheless there are a lot of Noether transfor-

mations in the enhanced space that are not canon-

ically generated. The condition for a symmetry

δEqi to be a Noether symmetry in the enhanced

space is

−`iδEqi + d
EGE

dt
= pc. (4.3)

We can find solutions to this condition that are

not canonically generated. For example GE =
1
2`
2C(q, p, t) + GE0 where C(q, p, t) an arbitrary

function and GE0 a solution to

dEGE0
dt

= pc. (4.4)

This conserved quantity GE is associated with

the Noether symmetry

δEqi = ˙̀iC +
1

2
`i({C,HD}+ ∂C

∂t
) +
1

2
`i
∂C

∂pj
`j

for any system with Dirac HamiltonianHD. This

symmetry is not canonically generated by the

given GE . GE is not a solution of (4.2).

The condition (4.4) can be solved for a func-

tion GE0 proportional to the restrictions φ
(n). Us-

ing this solution we can back to the formalism of

the enlarged space [3] by writting our results on

shell, that is by making ` = 0. In that case GE

coincides with Gc the canonical generator in the

enlarged formalism. The canonical generator Gc

is, by construction, a solution of the basic condi-

tion (4.2) and generates canonical Noether sym-

metries δcqi up to trivial transformations. This

is so because the condition (4.4) reduce to the

condition (4.2) for a function Gc to generate a

canonical Noether transformation when ` = 0.

¿From the enlarged formalism the original La-

grangian formalism can be recovered by noticing

that the variables p and λ are auxiliary variables.

Then we can recover a Noether symmetry for the

original Lagrangian L(q, q̇) given by

δLq(q, q̇, q̈, ...; t) = δcq(q, p̂, vµ, v̇µ...; t),

GL(q, q̇, q̈...; t) = Gc(q, p̂, vµ, v̇µ...; t).

We can also retrive these symmetries from the ex-

tended symmetries and the extended generator in

the enhanced space by performing the change of

variables, just described, to the n-tanget bundle.

In general, the procedure of the projection

to the surface ` = 0 and the elimination of the

auxiliary variables does not commute with the

change of variables.
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It is interesting to notice that the restric-

tions φ(n) = 0 contain all the information about

the gauge symmetries of the system because the

Dirac first class constraints can be written in

terms of a linear combination of the equations

of motion (the second class constraints allows to

determine some Lagrange multipliers in the en-

hanced space). This allow us to construct the

Noether identities and recover the gauge Noether

symmetries of the system. We conclude that

in general Noether symmetries in the enhanced

space are not canonically generated.

5. Example

In this section we will consider a simple and trans-

parent example defined by the Lagrangian,

L =
1

2
[(q̇4 − q3)2 − (e−q1 q̇3)2] + q̇3q̇2e−q1 .

with p2 6= 0. The associate Dirac Hamiltonian is

HD =
1

2
(p22 + p

2
4) + e

q1p2p3 + q3p4 + λp1,

where λ is the Lagrange multiplier associated

with the primary constraint p1 = 0. In the en-

hanced space the restrictions are

φ(0) = p1, φ
(1) = −eq1p2p3 + `1,

φ(2) = eq1p2p4−λeq1p2p3−eq1`2p3−eq1p2`3+ ˙̀1,
that are identically zero in the n-tanget bundle.

We can prove this assertion by using our change

of variables. It is also easy to recover the Dirac

constraints from these expressions by enforcing

` = 0 and discard all the terms proportional to

λ. This can be done in this case because all the

Dirac constraints are first class. Now, the sec-

ondary Dirac constraints eq1p2p3 and e
q1p2p4 can

be written in terms of the equations of motion

eq1p2p3 = `1,

eq1p2p4 = λ`1 + e
q1`2p3 + e

q1p2`3 − ˙̀1.

The evolution in the enhanced space of this last

equation gives the Noether identity

῭
1 − λ̇`1 − 2λ ˙̀1 + λ2`1 − eq1 ˙̀2p3 − 2eq1`2`3−

eq1p2 ˙̀3 + 2e
q1`2p4 + e

q1p2`4 = 0,

where we have used our change of variables ṗ2 =

`2, ṗ3 = `3 − p4 and ṗ4 = `4. ¿From here we can
read a Noether symmetry for the system

δEq1 = ε̈+ λ
2ε+ λ̇ε+ 2ε̇λ,

δEq2 = e
q1p3(λε+ ε̇) + εe

q1(p4 − `3),
δEq3 = (λε+ ε̇)e

q1p2 + e
q1`2ε,

δEq4 = e
q1p2ε, (5.1)

where ε is an arbitrary parameter. Now, a solu-

tion to the condition (4.4) forGE0 in the enhanced

space is

GE0 = µ0φ
(0) + µ1φ

(1) + µ2φ
(2),

where µ0 = λ
2ε + λ̇ε + 2λε̇ + ε̈, µ1 = 2λε + ε̇

and µ2 = ε. This function is a trivial solution

of the Noether condition (4.3). Nevertheless it

coincides with the canonical generator by enforc-

ing ` = 0 and generates through the Poisson

bracket the correct Noether symmetries up to

trivial transformations. The Lagrange Noether

symmetries and the associated generator can be

recovered by the elimination of p and λ as auxil-

iary variables.
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