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Abstract: We propose an effective field theory approach to estimate the size of the electroweak

corrections to the e+e− → γZ and e+e− → ZZ cross sections at LEP2. Our predictions are shown to

agree within 1% with one-loop Standard Model calculations.

1. Introduction

The knowledge of radiative corrections up to def-

inite order for different processes is necessary to

perform accurate tests of the Standard Model

(SM), allowing to probe the quantum structure

of the theory and to search for possible effects

of new physics. In most cases, however, the re-

quired theoretical analysis reaches an extremely

complicated level. In this work [1] we show how

the effective field theory (EFT) [2, 3, 4] can help

in the estimate of the electroweak (EW) correc-

tions at LEP2 energies, using the precise mea-

surements of LEP1 and SLD.

The standard approach to EW radiative cor-

rections in the SM requires firstly the evaluation

of those corrections for LEP1/SLD observables,

in order to extract the relevant SM parameters

from the available experimental data. It is seen

that the extracted values depend strongly on the

top–quark mass, mt, and (to a lesser extent) on

the Higgs mass, mH . Then one can calculate,

in terms of these parameters, the radiative cor-

rections to LEP2 observables. As expected, the

results also show a strong dependence on mt and

mH . However, the latter is cancelled almost com-

pletely by the mt and mH dependences of the in-

put parameters extracted from LEP1/SLD. This

is not surprising, since for both LEP1 and LEP2
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J. Bernabéu and A. Santamaria, University of Valencia,

Spain.

energies top quarks and Higgs bosons are always

virtual. It is then conceivable that a description

in terms of an effective theory without explicit

top quarks or Higgs bosons is good enough for

both LEP1 and LEP2. All top quark and Higgs–

boson mass dependences will be absorbed in the

effective Lagrangian parameters, which can be

determined at LEP1/SLD and then used to make

predictions for LEP2 that will be trivially inde-

pendent on mt and mH . We will show that this

program can be carried out basically at tree level,

achieving precisions for LEP2 predictions at the

% level, which should be enough for most pur-

poses.

We will focus on the neutral gauge boson

production at LEP2, e+e− → γZ and e+e− →
ZZ. For these processes, the corrections can be

split in two, δQED and δEW, where the former

refers to the “pure” QED —or photonic— con-

tributions, while the latter stands for the remain-

ing, non–QED EW piece. We will concentrate

here on estimating δEW, which in the SM involves

huge formulae even at one loop [5, 6], showing

that within the framework of our EFT the anal-

ysis can be carried out with good accuracy in a

very simple way.

This note is organized as follows: in Sec-

tion 2 we discuss how to obtain an effective La-

grangian in the large mt limit. Then, in Sec-

tion 3, this Lagrangian is used to calculate the

dominant radiative corrections for e+e− → ZZ
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and e+e− → γZ. In Section 4 we assume that

our effective Lagrangian is valid for both LEP1

and LEP2 energies, and use experimental LEP1

and SLD results to fit the Lagrangian parame-

ters. In Section 5 we use the effective theory to

give predictions for e+e− → ZZ and e+e− → γZ

cross sections at LEP2. Finally in Section 6 we

present our conclusions.

2. Effective EW Lagrangian for LEP

energies

An effective Lagrangian for µ ≤ mt can be ob-

tained from the Standard theory by integrating

the top quark at µ = mt. This can be done

at the level of one loop, computing all diagrams

containing at least one top quark [3]. The pro-

cedure implies a redefinition of the gauge boson

fields, which leads to a redefinition of the corre-

sponding couplings. As a consequence, the ini-

tially unique coupling constant g splits into g+
and g3 below the top–quark mass scale, whereas

the Higgs vacuum expectation value v splits into

v+(µ) ≡ v + δv+(µ) and v3(µ) ≡ v + δv3(µ).
To get the effective Lagrangian at LEP scales

µ ' mZ it is necessary to perform the matching

of the effective theory to the full theory at the

scale µ = mt, and then to scale down using the

renormalization group equations for each of the

parameters g+(µ), δv+(µ), etc. In addition, one

has to diagonalize the neutral gauge boson sec-

tor, including a further wave function renormal-

ization of the Z field to absorb a crossed term

which originates in the mixing between the W3
and B wave functions. One ends up with the

effective Lagrangian [1, 4]

Leff =W+
µ ∂
2W−µ +m2WW

+
µ W

−µ +
1

2
Aµ∂

2Aµ

+
1

2
Zµ∂

2Zµ +
1

2
m2ZZµZ

µ + ib̄∂/b

+ ψ̄ iD/
[eW (mZ)

sZ
W+,

eZ(mZ)

sZcZ
Z, e(mZ)A

]
ψ

− eZ(mZ)

2sZcZ
b̄γµ
(
gbV − gbAγ5

)
bZµ

+
1

3
e(mZ)b̄γµbA

µ , (2.1)

where cZ (sZ) stands for the cosine (sine) of an

effective weak mixing angle θW at the scale mZ .

Owing to the rescaling needed by the Z field

and the splitting of the Higgs vacuum expecta-

tion value, the Lagrangian (2.1) has been writ-

ten in terms of effective couplings eZ(mZ) and

eW (mZ), which at the one loop level turn out

to be shifted from the electromagnetic coupling

e(mZ). It is also natural to define

α(mZ ) ≡ e2(mZ)

4π
≡ α

1−∆α , (2.2)

αZ,W (mZ) ≡
e2Z,W (mZ)

4π
≡ α(mZ) (1+δαZ,W ) , (2.3)

where α ' 1/137 is the fine structure constant
and ∆α is the QED shift produced by the run-

ning from its on–shell value to µ = mZ . In the

large mt limit, the additional shifts δαZ,W can

be calculated to be [1]

δαZ ' α

12πs2Zc
2
Z

log

(
mt

mZ

)
,

δαW ' α

12πs2Z
log

(
mt

mZ

)
. (2.4)

On the other hand, the physical W and Z

masses can be trivially related to the parame-

ters e2W,Z(mZ), v+,3(mZ) and s
2
Z . Thus, one can

obtain the sine of the Sirlin weak mixing angle,

sW = (1 −m2W /m2Z)1/2, in terms of the sine of
the effective mixing angle at the scale mZ . If we

write this relation as

s2Z = s
2
W + δs

2
W , (2.5)

we get [1]

δs2W =
α

π

[
3

16s2Z

m2t
m2Z
+
(3 − 2s2Z)
12s2Z

log

(
mt

mZ

)]
.

(2.6)

It is worth noticing that the coupling of the bot-

tom quark to the Z boson gets special contri-

butions due to the vertex one–loop diagrams in-

volving a virtual top quark. These contributions

can be taken into account by parameterizing the

effective couplings gbV and g
b
A in terms of a pa-

rameter εb(mZ) (for details see [4]).

3. e+e− → γZ and e+e− → ZZ in the
large mt limit

Now we can use the Lagrangian (2.1) at tree

level, together with the results in the previous
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section, to estimate the dominant electroweak

corrections to e+e− → ZZ and e+e− → γZ at

LEP2 in the large mt limit. Our calculations are

performed in the MS scheme, choosing a renor-

malization scale µ = mZ . In general, if this is

the only scale involved in the processes, the one–

loop corrections are expected to be suppressed

by a factor α/π ∼ 1/500.
By computing the diagrams in Fig. 1 we eas-

ily obtain the cross section for e+e− → ZZ. It

is the usual tree–level result obtained in the SM,

but expressed in terms of the effective couplings

αZ(mZ) and s
2
Z :

(
dσZZ

dΩ

)
eff

=
α2Z(mZ)

32s4Zc
4
Z

β

s
(g4V + 6g

2
V g
2
A + g

4
A)

×
[
s2+6m4Z

ut
− m4Z(s− 2m2Z)2

(ut)2
− 2
]
, (3.1)

where s, t, u are the usual Mandelstam variables,

while gV = −1/2 + 2s2Z, gA = −1/2 and β =
(1− 4m2Z/s)1/2.
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Figure 1: Tree–level contributions to e+e− → ZZ.

The accuracy of this effective cross section

can be tested by comparing with explicit one–

loop calculations in the SM, which can be found

if Ref. [6]. There, the Born cross section is de-

fined in terms of the fine structure constant α

and the Sirlin weak mixing angle sW , that is,

our expression (3.1), but changing αZ(mZ)→ α

and sZ → sW . In our framework, the leading

electroweak corrections in the large mt limit can

be easily obtained using relations (2.3) and (2.5):

δEW(ZZ) = 2∆α+ 2 δαZ +
s4Zc

4
Z

(g4V + 6g
2
V g
2
A + g

4
A)

× d

ds2Z

[
(g4V + 6g

2
V g
2
A + g

4
A)

s4Zc
4
Z

]
δs2W , (3.2)

with δαZ and δs
2
W given by (2.4) and (2.6) re-

spectively. We have checked explicitly the result-

ing expression against the one obtained in [6] by

taking there the large mt limit, and found com-

plete agreement.

The situation is similar in the case of γZ

production. As in the previous case, we begin

by writing the SM lowest–order differential cross

section for the process, which is obtained from

the diagrams in Fig. 1 after replacing one of the

Z bosons by a photon. Here we find(
dσγZ

dΩ

)
eff

=
ααZ(mZ)

4s2Zc
2
Z

(g2V + g
2
A)

× (s−m
2
Z)

s2

(
s2 +m4Z
2ut

− 1
)
. (3.3)

However, there is now a crucial point when the

photon is real, that is with q2 = 0. In that

case, choosing a renormalization scale µ = mZ ,

one finds that the photon self–energy diagrams

of Fig. 2 contain large logarithms, which effec-

tively produce the “running back” of the elec-

tromagnetic coupling constant from α(mZ) to

α(me) ' α. Thus, the use of our effective La-

grangian at the scale µ = mZ has to be supple-

mented with the rule that a real photon couples

with its on–shell coupling.

The electroweak corrections are now given by

δEW(γZ) =∆α+ δαZ +
s2Zc

2
Z

(g2V + g
2
A)

× d

ds2Z

[
(g2V + g

2
A)

s2Zc
2
Z

]
δs2W . (3.4)

Once again, we have confirmed this result by

comparing with analytical calculations in the SM

(in this case we have considered one–loop results

for the crossed reaction e−γ → e−Z [7]).

e�

e+ 


Z e�

e+ 


Z

Figure 2: Photon self–energy diagrams contributing

to e+e− → γZ.

4. Global fit for LEP1/SLD observ-

ables

The analytical results of the previous section,

obtained in the large mt limit, still do not ac-

count for important corrections such as Higgs–

mass and finite top–mass effects. As an alter-

native procedure, we can use our effective La-

grangian at tree level with arbitrary couplings,
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and fit those couplings with LEP1/SLD observ-

ables. In this way, the effective couplings will

contain not only the leading top–quark and Higgs

mass dependences but also other universal non–

leading corrections.

We have chosen for our fit a set of twelve

LEP1 and SLD observables [1]. From the La-

grangian (2.1), it is immediate to see that, at the

lowest order, the corresponding analytical expre-

sions in the EFT scheme are basically the same

as in the SM, just taking eZ(mZ)/(sZcZ) and sZ
as the weak Zf̄f coupling constant and the sine

of the Weinberg angle respectively. Only special

care has to be taken in the case of the Zb̄b cou-

pling, which requires the additional inclusion of

the above mentioned parameter εb(mZ). The pa-

rameters to be fitted are five: mZ , αZ(mZ), s
2
Z ,

εb(mZ) and αs(mZ).

The result of our fit ismZ = 91.1867±0.0020,
αZ(mZ) = 0.007788± 0.000012, s2Z = 0.23103±
0.00021, αs(mZ) = 0.1215±0.0052 and εb(mZ) =
−0.0053 ± 0.0023, with χ2/ndf = 2.6/7. It can
be seen that all our predictions deviate less than

1.5σ from the measured values (the full table of

results can be found in Ref. [1]). This is reflected

in the very low value for χ2, and shows that for

LEP1 and SLD data the EFT approach works

remarkably well.

5. Predictions for e+e− → ZZ and

e+e− → γZ at LEP2
Once the effective couplings at the scale of mZ
have been determined, we can proceed to evalu-

ate the magnitude of the electroweak corrections

for processes to be measured at LEP2. Notice

that the running of the parameters from µ = mZ
to the relevant LEP2 scale of 190 GeV should be

small, and in principle can be neglected. In ad-

dition, for the processes we are considering here,

namely e+e− → ZZ and e+e− → γZ, the gauge

bosons are on–shell, therefore the relevant scale

is fixed by their masses.

Let us take the EFT tree–level expressions

(3.1) and (3.3) for e+e− → ZZ and e+e− → γZ

respectively, with αZ , mZ and s
2
Z taken from the

fit, and compute the size of the deviations from

the Born cross sections expressed in the on–shell

scheme. For the process e+e− → ZZ we obtain

δ
EW(ZZ)
eff ' 5.4± 0.4 % . (5.1)

This value can be contrasted with the result of

full one–loop calculations in the SM. We con-

sider the analytical expressions in Ref. [6], using

the on–shell value for s2W , together with mt =

168 ± 8 GeV (arising from Z–pole analysis [8])

and mH ≈ mZ . This gives

δ
EW(ZZ)
SM−1 loop ' 5.3± 1.0 % , (5.2)

where the error is mainly due to the uncertainty

in mt. As can be seen, the agreement between

the values in (5.1) and (5.2) is remarkably good.

In addition, it can be seen [6] that the size of the

corrections is almost independent of the scatter-

ing angle θ. This is also consistent with our ap-

proach, since the shifts of α and s2W from the on–

shell to the effective values lead only to a global

correction.

It is important to remark that the value in

(5.1) has been found in a quite straightforward

way, whereas that in (5.2) can be obtained only

after a lengthy analytical calculation of the full

one–loop corrections for the process in the SM.

In addition, the one–loop result, though in prin-

ciple more precise, depends on various uncertain

quantities, such as the top and Higgs masses and

the running of the electromagnetic coupling.

A similar procedure can be carried out for

the case of e+e− → γZ , taking into account

that the value of the electromagnetic coupling

to be used in (3.3) is the on–shell fine structure

constant α. We get

δ
EW(γZ)
eff ' 3.7± 0.2 % , (5.3)

which can be compared with known calculations

[7] for the crossed reaction e−γ → e−Z (which
shows exactly the same dependence on the pa-

rameters αZ and sZ). For a center–of–mass en-

ergy of 100 GeV and a top mas of 168 GeV we

find

δ
EW(e−γ→e−Z)
SM−1 loop ' 3.1± 0.4% . (5.4)

That means, our result (5.3) lies within the ex-

pected level of accuracy. Once again, it can be

seen that δEW is rather independent of the scat-

tering angle.
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Finally, notice that up to now we have com-

pared the size of the EW corrections with refer-

ence to Born cross sections. In order to get a bet-

ter estimate of the accuracy of our approach, we

can instead compare directly the values for the

cross sections arising from both the EFT and SM

one–loop analyses. In this way the comparison is

much less sensitive to the top–quark mass, which

does not appear explicitly in σeff . We compute

the ratio

∆ ≡ σeff − σSM−1 loop
σSM−1 loop

, (5.5)

obtaining

∆(ZZ) = 0.0012± 0.0038 , (5.6)

∆(γZ) = 0.0065± 0.0017 . (5.7)

It is seen that in both cases the agreement be-

tween EFT and one–loop SM values is better

than 1%.

6. Conclusions

In this note we show how the effective field theory

can be used to estimate the size of electroweak

corrections for double gauge boson production at

LEP2 energies.

We consider here an effective EW Lagrangian

which arises when the top quark is integrated

out, and use this Lagrangian at tree level to ob-

tain analytical formulae, in the large mt limit,

for the differential cross sections for e+e− → ZZ

and e+e− → γZ at LEP2. The results agree

completely with full one–loop EW calculations.

Then, to go beyond the large mt limit, we use an

effective Lagrangian similar to that arising from

the EFT, but leaving the couplings as free param-

eters, and we fit these parameters from present

LEP1 and SLD data. The results of this fit (five

parameters, twelve LEP1/SLD observables) are

amazingly good: in all cases the difference be-

tween fitted and experimental values is less than

1.5σ. Finally, with the effective couplings taken

from the fit, we compute the differential cross

sections for e+e− → ZZ and e+e− → γZ at

LEP2 energies, using the effective Lagrangian at

tree level. The results are compared with the val-

ues obtained using full one–loop calculations in

the SM, and for both processes the agreement is

found to be better than 1 %. Our hope is now

that the effective Lagrangian approach could be

extended to estimate the size of the EW correc-

tions for other important LEP2 processes, which

in some cases are rather hard to evaluate using

standard calculations.
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