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Abstract: The extraction of Wilson loops of confining gauge systems from their SUGRA (string)

duals is reviewed. I start with describing the basic classical setup. A theorem that determines the

classical values of the loops associated with a generalized background is derived. In particular sufficient

conditions for confining behavior are stated . I then introduce quadratic quantum fluctuations around

the classical configurations. I discuss in details the following models of confining behavior: (i) Strings in

flat space-time, (ii) AdS5 black hole and its correspondence with pure YM theory in three dimensions.

In particular an attractive Luscher term is shown to be the outcome of the quantum fluctuations. (iii)

Type 0 string model (iv) The Polchinski Strassler N = 1∗ model. In the latter case we show that
SUGRA alone is not enough to get the correct nature of the loops, and only by incorporating the

worldvolume phenomena of the five branes a coherent qualitative picture can be derived.

Keywords: Wilson loop, Confinement, Gauge/SUGRA duality.

A brief reminder on Wilson loops

• In SU(N) gauge theories one defines the
following set of gauge invarinat operators

W (C) = 1
N
TrPe

∮
C
Aµẋ

µ(τ)dτ

where C is some contour.

• In this talk I restrict myself to C which is
an infinite strip as is shown in figure 1.

• The quark anti-quark potential E(L) can
be extracted from the infinite strip Wilson

loop as follows

〈W (C)〉 = A(L)e−TE(L).

• The natural (bosonic) stringy candidate for
the Wilson loop (which obeys the loop equa-

tion) is

〈W (C)〉 ∼ e−SrenNG
∗This talk is based on works done in collaboration with

A. Armoni, A. Brandhuber, E. Fuchs, N. Itzhaki, Y. Ki-

nar, A. Loevy, E. Schreiber, N. Weiss and S. Yankielowicz

.

where SrenNG is the renormalized NG action[1,

2, 3], which is the world sheet area of the

string. The renormalization has a simple

physical intepretation of subtracting the quark

masses.

x

t

L

T

Figure 1: The basic setup of the Wilson loop

Stringy Wilson loop- general setup

We now introduce the basic setup which will serve

us in analysing Wilson loops of various string

backgrounds[4]. Consider a 10d space-time met-

mailto:cobi@ccsg.tau.ac.il
http://jhep.sissa.it/stdsearch?keywords=Wilson_loop+Confinement+Gauge/SUGRA_duality
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ric

ds2 = −G00(s)dt2 +Gx||x||(s)dx2||
+ Gss(s)ds

2 +GxTxT (s)dx
2
T

(1)

where x||- p space coordinates on a Dp brane

s and xT are the transverse coordinates

The corresponding Nambu-Goto action is

SNG =

∫
dσdτ

√
det[∂αxµ∂βxνGµν ].

Upon using τ = t and σ = x, where x is the space

coordinate of the loop which is one of the x||, the
action for a static configuration reduces to

SNG = T ·
∫
dx
√
f2(s(x)) + g2(s(x))(∂xs)2

where

f2(s(x)) ≡ G00(s(x))Gxx(s(x))

g2(s(x)) ≡ G00(s(x))Gss(s(x))

and T is the time interval.

The equation of motion (geodesic line)

ds

dx
= ±f(s)

g(s)
·
√
f2(s)− f2(s0)

f(s0)

A static string configuration connecting quarks

which are separated by a distance

L =

∫
dx = 2

∫ ∞
s0

g(s)

f(s)

f(s0)√
f2(s)− f2(s0)

ds

To have a finite separation distance the slope ds
dx

has to diverge on the boundary.

The NG action and corresponding energyE =
SNG
T
are divergent. The action is renormalized

by[1]

(i) regularizing the integral
∫∞ → ∫ smax

(ii) subtracting the quark masses

mq =

∫ smax

0

g(s)ds

So that the renormalized quark anti-quark

potential is

E = f(s0) · L

+ 2

∫ ∞
s0

g(s)

f(s)
(
√
f2(s)− f2(s0)− f(s))ds

− 2
∫ s0

0

g(s)ds

The behavior of the potential is determined

by the following theorem [4].

Theorem 1 Let SNG be the NG action defined

above, with functions f(s), g(s) such that:

1. f(s) is analytic for 0 < s < ∞. At s = 0,
( we take here that the minimum of f is at

s = 0 ) its expansion is:

f(s) = f(0) + aks
k +O(sk+1)

with k > 0 , ak > 0.

2. g(s) is smooth for 0 < s < ∞. At s = 0,
its expansion is:

g(s) = bjs
j +O(sj+1)

with j > −1 , bj > 0.
3. f(s), g(s) ≥ 0 for 0 ≤ s <∞.
4. f ′(s) > 0 for 0 < s <∞.
5.
∫∞

g(s)/f2(s)ds <∞.
Then for (large enough) L there will be an even

geodesic line asymptoting from both sides to s =

∞, and x = ±L/2. The associated potential is
1. if f(0) > 0, then

(a) if k = 2(j + 1),

E = f(0) · L− 2κ+O((logL)βe−αL)
(b) if k > 2(j + 1),

E = f(0) · L− 2κ− d · L− k+2(j+1)k−2(j+1) +O(Lγ).

where γ = −k+2(j+1)
k−2(j+1) − 1

k/2−j and β and
κ, α d and Cn,m are positive constants de-

termined by the string configuration.

In particular, there is

2
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linear confinement

2. if f(0) = 0, then if k > j + 1,

E = −d′ · L− j+1
k−j−1 +O(Lγ

′
)

where γ′ = − j+1
k−j−1 − 2k−j−1

(2k−j)(k−j−1) and d
′

is a coefficient determined by the classical

configuration.

In particular,

there is no confinement

As a corollary of this theorem[4] we find

that if one of the following two conditions

is obeyed :

(i) f has a minimum at smin and f(smin) >

0,

(ii) g diverges at sdiv and f(sdiv) > 0 then

the corresponding Wilson loop confines.

s=∞

smin

sdiv

s=0

f(smin)>0 f(sdiv)>0

Figure 2: Sufficient conditions for confinement.

Quantum fluctuations

Introduce quantum fluctuations around the

classical configuration

xµ(σ, τ) = xµcl(σ, τ) + ξ
µ(σ, τ)

The quantum corrections to the Wilson line

to quadratic order is [5]

〈W 〉 = e−TEcl(L)
∫ ∏

a

dξa exp

(
−
∫
d2σ

∑
a

ξaOaξa
)

where ξa are the fluctuations left after gauge fix-

ing. The corresponding correction to the free en-

ergy is

FB = − logZ(2) = −
∑
a

1

2
log detOa

general form of the bosonic determinant

In the σ = u gauge ( after a change of vari-

ables) the free energy is given by

FB = −1
2
log detOx − (p− 1)

2
log detOxII

− (8− p)
2

log detOxT
(2)

where

Ôx =
[
∂x

(
(1 − f2(u0)

f2(ucl)
)∂x

)
+
Gxx(ucl)

Gtt(ucl)
(
f2(ucl)

f2(u0)
− 1)∂2t

]

ÔxII =
[
∂x

(
Gyiyi(ucl)

Gxx(ucl)
∂x

)
+
Gyiyi(ucl)

Gtt(ucl)

f2(ucl)

f2(u0)
∂2t

]
ÔxT = ...

(3)

where Ô = 2
f(u0)

O and the boundary conditions
are ξ̂(−L/2, t) = ξ̂(L/2, t) = 0. The fermionic

fluctuations will be discussed for each model sep-

arately.

model 1

Wilson loop from string in flat space-time

• Consider the bosonic string in flat space-
time with the boundary conditions

x(σ = 0) = 0 x(σ = π) = L

The static NG action takes the form

SNG = Tst

∫
dx
√
1 + (∂xu)2

where Tst =
1
2πα′ .

The classical static configurations are flat,

u′ = 0

The quark anti-quark potential that follows

from the NG action is

V (L) = TstL

Thus, the classical stringy “Wilson loop”

implies a linear confining potential.

Bosonic fluctuations in flat space-time

3
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Let us turn now on quantum fluctuations[5].

The action in this case takes this simple

form

S(2) =
1

2

∫
dσdτ

D−2∑
i=1

[
(∂σξi)

2
+ (∂τξi)

2
]

The corresponding eigenvalues are

λn,m = (
nπ

L
)2 + (

mπ

T
)2

and the free energy is given by

− 2

D − 2FB = log
∏
nm

λn,m = T
π

2L

∑
n

n+O(L)

Regulating this result using Riemann ζ func-

tion we find that the quantum correction to

the linear quark anti-quark potential is

∆V (L) = − 1
T
FB = −(D − 2) π24 · 1L

which is the so-called Lüscher term[6].

The fermionic fluctuations in flat

space-time

• We use here the Green Schwarz action since
in cases which will discuss later the NSR

action is not known.

.

• The fermioic part of the κ gauged fixed GS-
action is

SflatF = 2i

∫
dσdτψ̄Γi∂iψ

where ψ is a Weyl-Majorana spinor, Γi are

the SO(1,9) gamma matrices, i, j = 1, 2

and we explicitly considered a flat classi-

cal string.

Thus the fermionic operator is

ÔF = DF = Γ
i∂i

and squaring it we get

(ÔF )2 = ∆ = ∂2x − ∂2t
The total free energy is

F = 8×
(
−1
2
log det∆ + log detDF

)
= 0

since for D=10, we have 8 transverse co-

ordinates and 8 components of the unfixed

Weyl-Majorana spinor.

• Thus, in flat space-time the classical stringy
Wilosn loop is not corrected by quadratic

quantum fluctuations.

Can the Wilson line be evaluated

exactly?

Let us consider the bosonic string with the

boundary conditions given above[7].

• The energy of any string state is given by

E2 = P 2+4(L0− a) = (LTst)2+4(L0− a)

Thus for the lowest tachyonic state (L0 =

0) it is given by

E2 = P 2+mtach
2 = (LTst)

2−Tstπ(D − 2)
12

If we assign the potential with this energy

we have

V (L) = TstL
√
1− π(D−2)

12
1

TstL2

which can be expanded

∼ TstL− π (D − 2)
24

1

L
+ ...

Thus this expansion yields the leading con-

fining behavior as well as the Luscher quadratic

fluctuation term.

• Moreover for a bosonic string in Flat space-
time O.Alvarez[8] showed that in the large

D limit

D →∞ π

24TstL2
→ 0 Dπ

24TstL2
→ finite

using the variables σαβ = ∂αx
µ∂βxµ the

exact effective action is

SexactNG = TstL

√
1− π(D − 2)

12

1

TstL2

• for L <
√

π(D−2)
12

1
Tst
this approach fails.

The Ads balck hole and pure YM theory in 3d

• Can we detect the confining nature of pure
YM theory

4
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• In Field theory YM3 can be reached from
N = 4 SYM by:
(i) Compactifying the Euclidean time di-

rection ( introducing temperature)

(ii) Imposing anitperiodic boundary condi-

tions.

• Recall that due to such boundary condi-
tions

supersymmetry is broken ,

and in the case of the N = 4 SYM the
fermions and scalars become massive[9]

mfermions ∼ T mscalars ∼ g2YM4T

• In the limit of T → ∞ the Euclidean 4d
theory turns into a 3d theory, and since

the fermions and scalars decouple it is pure

YM3 with the coupling

g2YM3
= g2YM4

T .

• In the SUGRA picture the introduction of
temperature translates into the use of near

extremal AdS5 × S5 solution
• The metric of near extremal D3 branes in
the large N limit is

ds2

α′
=
U2

R2
[−f(U)dt2 + dx2i ]

+R2f(U)−1
dU2

U2
+R2dΩ25

f(U) = 1− U4T /U4

R2 =
√
4πgN, U4T =

27

3
π4g2µ ,

where µ is the energy density.

• The idea is thus to consider the Wilson loop
along two space directions for the case of

the near extremal D3 brane solution[10].

• We take Y → ∞ which will be the 3d Eu-
clidean time direction and the other direc-

tion, L, to be finite.

• For such a setup we have

f2 = (
U

R
)4 g2 =

1

(1 − (UT
U
)4)

since g2 diverges at U = UT we must have

confinement.

• Indeed, let us insert the metric of above to
the NG action

S =
Y

2π

∫
dx

√
U4

R4
+
(∂xU)2

1− U4T /U4
(4)

• The distance between the quark and the
anti-quark is

L = 2
R2

U0

∫ ∞
1

dy√
(y4 − 1)(y4 − λ) , (5)

where λ = U4T /U
4
0 < 1 and U0 is the mini-

mal value of U .

• The energy is

E =
U0

π

∫ ∞
1

dy

(
y4√

(y4 − 1)(y4 − λ) − 1
)
(6)

+
UT − U0

π
,

(7)

• Notice that in the limit U0 → UT (λ → 1)
we get L → ∞. In this limit the main
contribution to the integrals of L and E

comes from the region near y = 1.

• Therefore, we get for large L

E = TQCDL

TQCD =
π
2R
2T 2,

• Notice that the string tension diverges in
the SUGRA limit since

R =
√
g2YMN →∞ T →∞

• If there are no phase transitions in going
from the SUGRA limit R =→∞ to the full
stringy description of YM3 then indeed the

latter predicts confinement

The determinant for “confining scenarios”

• Let us consider now the quantum fluctua-
tions in this SUGRA setup which is dual to

5
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the pure YM theory in 3d ( AdS black hole

in the T →∞ limit)[5]. Now we have

f(u) = u2/R2

g(u) = (1− (uT
u
)4)−1/2

(8)

• In the large L limit the classical string is
very flat with u ∼ u0. In fact as L grows

u0 → uT . In this limit

Ôy −→ u2T
2

[
∂2x + ∂

2
t

]
Ôθ −→ R2

2

[
∂2x + ∂

2
t

]
Ôz −→ 2u2T e−2uTL

[
∂2x + ∂

2
t

]
Ôn −→

[
4u2T
2R4

+
1

2
∂2x +

1

2
∂2t

]
(9)

• We see that the operators for transverse
fluctuations, Ôy, Ôz , turn out to be sim-
ply the Laplacian in flat spacetime, mul-

tiplied by overall factors, which are irrel-

evant. Therefore, the transverse fluctua-

tions yield the standard Lüscher term pro-

portional to 1/L.

• The longitudinal normal fluctuations give
rise to an operator Ôn corresponding to a
scalar field with mass 2uT/R

2 = α. Such a

field contributes a Yukawa like term

≈ −
√
αe−αL√
L

to the potential.

• Thus, altogether there are 7 Luscher type
modes and one massive mode.

• Now we have to turn on the fermionic fluc-
tuations. Had the fermionic modes been

those of flat space-time then the total co-

efficient in front of the Luscher term would

have been +8−7 = +1, namely, a repulsive
Culomb like potential[11, 12]. This contra-

dicts gauge dynamics[13].

• There is a GS formulation for the AdS5 ×
S5 background[14, ?], but the analog for

the Ads black hole has not been written

down. Nevertheless, we argue that the cou-

pling of the fermion to the RR field is the

same as for the extremal AdS5 × S5 back-
ground. (Since the dilaton, the RR field

and det(Gµν are unchanged)

• For that case we found that in the large L
limit the square of the fermionic operator

is

Ô2ψ =
u2T
2

[
∂2x + ∂

2
t + (

UT

R2
)2
]

• If the assumption about the coupling to the
RR is correct, the quark anti-quark poten-

tial is corrected by an attractive Luscher

term

−7 π
24

1

L

model 3.

Wilson loops in type 0 string theory

• What is type 0 string
Type 0 string is supersymmetric on the world

sheet but not in space-time due to a non-

chiral GSO projection. The type 0A and

type 0B differ from the type IIA and type

IIB (i) No space-time fermions, (ii) Dou-

bling of the RR fields, (iii) Tachyons.

• A type 0 model can be made consistent
only provided (i) The Tachyon m2tach can

be shifted to m2tach >
c
R2 (ii) No dilaton (

and possible other massless fields) tadpoles

(iii) The low energy effective theory is re-

liable if gst << 1 R << 1 where R is
the scalar curvature in the string frame.

• The Wilson loops were discussed both in
the critical string and in Polyakov’s non-

critical string model.

• The equations of motion of the low energy
effective theory guarantee that [21]

∂2sf(s) ≥ 0

• The interpretation of an IR and UV do-
mains may be in terms of the structure of

the Wilson line is as is shown in figure 4.

6
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L L

u u

UV IR

4d 4d

Figure 3: The IR and UV regimes

so that the large u regime corresponds to

the gauge theory UV regime and the small

u regime to the IR.

• In the IR the generic solution has
∂sf(s) = 0 with f(smin) 6= 0

So that generically the solution in the IR

admits a linear confinement behavior.

• This can also be verified from arguments
based on the 5d bulk theory and in partic-

ular also from the screening nature of the

’t Hooft loop[22].

• In the UV a fixed point in the form of
AdS5×S5 was observed. Moreover around
the fixed point f ∼ logL so that it was ar-

gued that[19]

∆V1 ∼ 1

logL0
L

1

L

It was further found that the higher order

correction produces a WIlson line[20]

∆V2 ∼ 1

(logL0
L
− clog logL0

L
)

1

L

which resembles the 2 loop correction in the

gauge theory picture. Note however that

in the UV generically the curvature in the

string frame is not negligible and thus the

assertions have to be made with a grain of

salt.

model 4.

Loops in the Polchinski Strassler N = 1∗ theory

We start with a brief review of the theory[23]

The field theory picture

• Perturb the N = 4 SU(N) SYM theory by
adding a mass term to the superpotential.

W +∆W = 2
√
2

g2YM
tr ([φ1, φ2]φ3) +

m
g2YM

∑3
i=1 φ

2
i

where φi are the 3 complex scalars of the

N = 4 .
• The classical vacua are given by N dimen-
sional reducible reps. of SU(2) since the

equation of motion is

[φi, φj ] =
−m√
2
εijkφk

• The quantum vacua correspond to order N
subgroups of

ZN × ZN
• The perturbation also turns on a mass term
to 3 out of the 4 Weyl fermions

mαβλαλβ + h.c

The SUGRA picture

• The perturbing fermionic mass term, 1̄0 of
SU(4) corresponds to turning on a mag-

netic 3 form obeying

∗6T = iT

• Explicitly, denoting the 6 transverse coor-
dinates by 3 complex coordinates zi i =

1, 2, 3, the 3 form T is

T3 = m[dz1∧dz̄2∧dz̄3+dz̄1∧dz2∧dd̄z3+dz̄1∧dz̄2∧ddz3]

• Further breaking toN = 0∗ can be achieved
by adding a term m′dz1 ∧ dz2 ∧ dz3 to T .
• The coupling of the D3 branes to the mag-
netic 3 form produces via the Myers Po-

larization mechanism[24] five branes that

wrap S2.

• The metric of the N = 1∗ models takes the
form

ds2 = Z−1/2x ηµνdx
µdxν

+ Z1/2y (dy
2 + y2dΩ2y + dw

2) + Z
1/2
Ω w2dΩ2w

(10)

denoting by Z0 =
R4

ρ2+ρ
2
−

ρ± =
√
[y2 + (w ± r0)2]

7
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• The D5 solution has

Zx = Zy = Z0 ZΩ = Z0[
ρ2−

ρ2− + ρ2c
]2

where ρc =
2gr0α

′
R2

and r0 = πα
′mN

• The NS5 solution has

Zx = ZΩ = Z0
ρ2−

ρ2− + ρ2c
Zy = Z0

ρ2− + ρ2c
ρ2−

where ρc =
2r0α

′
R2
and r0 = gπα

′mN

Wilson loops

• To check whether the Wilson loops are of
area law behavior we return to our criterion

stated in terms of

f2 = Z−1x g2 =
Z
1/2
y

Z
1/2
x

.

so that f2 and g2 take for the D5 and the

NS5 cases the followinmg values respec-

tively,
ρ2+ρ

2
−

R4
,
ρ2+(ρ

2
−+ρ

2
c)

R4
, 1,

ρ2c+ρ
2
−

ρ2−

• Wilson loop of the D5 case
f2 has a minimum with fmin = 0, and

g2 = 1 does not diverge thus there is no

confinement. In fact an explicit calculation

shows that there is Screening behavior.

• Wilson loop of the NS5 case
g2 diverges at y = 0, w = r0 where f(y =

0, w = r0) > 0 there is confinement

• Can we get in a similar manner the
Wilson loop associated with the rest

of the possible vacua?

• Consider for example the case of p D5 branes
that corresponds to an SU(p) ∈ SU(N)

gauge theory[25].

• Naively we expect the strings (F1) to end
on the D5 branes and hence to have screen-

ing.

• This is also the outcome of the use of the
general theorem applies to the metric of the

p D5 branes ( f(umin) = 0

• However, from the field theory we know
that quarks of the SU(p) must confine.

• How do we resolve this contradiction?

• Recall that the world volume theory of the
p D5 branes is a SU(p) gauge theory.

• A fundamental string ending on theD5 branes
is a “quark” of the wv SU(p) theory and

thus can “end” only provided

(i) if it is connected to an anti- quark string

(ii) if p quarks combine to form a Baryon

• In this way of incorporating the wv theory
we get that indeed (1, 0) quarks confine and

(p, 0) are screened.

• For the case of unbroken SU(p) field the-
ory also tells us that a magnetic monopoles

with charge q = N
p has to be screened. The

naive use of the theorem tells us that any

D1 string confines.

• Again we have to use the full SUGRA back-
ground. Indeed in the SUGRA picture there

are D3 branes filling the S2 sphere on which

the 5–branes are wrapped which behave as

baryon vertices.

• Those baryon vertices arise through the Hanany–
Witten effect, when baryon vertex of the

unperturbed N = 4 theory, which is a 5–
brane wrapping an S5, contracts and moves

through the sphere.

• Now each D5 brane has a dissolved D3 charge
of q the junction of a D3 ball with a wrapped

D5 must support strings with totalD1 charge

of q but D1s with different charge cannot

end and thus are confined.

• One can account for the various loops as-
sociated with the other vacua.

Summary and open questions

• Indeed in all the stringy setups that sup-
posed to be associated with confining dy-

namics we detect an area law Wilson loop.

8
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• Each of the models suffers from certain prob-
lems and it seems that we have not found

yet the optimal stringy laboratory to ex-

amine confinement.

• There are indications that there is an at-
tractive Luscher term. To be contrasted

with lattice simulations and phenomenol-

ogy.

• The N = 1∗ case emphasized the fact that
( not only the metric) but the full back-

ground affects the stringy loops.
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