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Abstract: In this contribution we exhibit a compactification of D = 11 supergravity on S1 × S8 to
two space-time dimensions. The resulting theory is a maximal gauged supergravity in two dimensions

with gauge group U(1) × SO(9) and some unusual features. In particular, the theory’s ground state
is not fully supersymmetric but only invariant under a “chiral” N = 16 supersymmetry.

1. Introduction

Numerous compactifications of D = 11 super-

gravity [1] are known and have been extensively

studied over the past years (see e.g. [2] for a com-

prehensive survey and many references). How-

ever, for the most part these describe the com-

pactification of D = 11 supergravity to dimen-

sions four and higher, whereas relatively few re-

sults exist for low dimensional compactifications.

In this contribution we study a solution corre-

sponding to a compactification on S1×S8 to two
space-time dimensions; for special values of the

parameters, this solution has already appeared

in the literature [3]. While that work is chiefly

concerned with domain wall solutions and their

interpretation in the context of D–branes, we are

here motivated by the question whether there ex-

ists a maximal gauged supergravity in two di-

mensions. It is clear that such a gauged super-

gravity would be quite different from maximal

gauged supergravity in four dimensions [4], al-

ready for the simple reason that in two dimen-

sions there are a priori no vector fields that could

be used to gauge the theory. Such vector fields

exist in supergravities for D ≥ 4, but are “dual-
ized away” into scalar fields in three dimensions

and below.

Our results provide further evidence for the

existence of a maximal gauged N = 16 theory in

two dimensions, albeit of an unusual type, with

gauge group U(1) × SO(9). One of its unusual
features is the fact that it does not appear to ad-

mit a ground state preserving the fullN = 16 su-

persymmetry of the ungauged theory (for the lat-

ter, see [5] and references therein). Rather, this

symmetry is broken down to a kind of “chiral”

(16, 0) supersymmetry. It remains to be worked

out if this symmetry breaking is an intrinsic fea-

ture of the D = 2 gauged supergravity or merely

a property of its ground states.

2. The metric and field equations

Let us first set up our notation and conventions.

As already indicated we will study a special com-

pactification of D = 11 supergravity to two di-

mensions on an internal manifold S1 × S8, with
the eleven coordinates xM split as follows:

xM → (xµ, x2, xm) (2.1)

Here, the coordinates x0 = t, x1 = r parametrize

the two-dimensional space-time and x2 is asso-

ciated with the circle S1; the remaining coordi-

nates {x3, . . . , x10} ≡ {y1, . . . , y8} describe the
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internal eight-sphere. We assume the metric to

have signature {−++ . . .+}.
We start from the following ansatz for the

vielbein EM
A:

Eµ
α = F (r)

0

eµ
α(x) (2.2)

Eµ
2 = G(r)Aµ(x)

E2
2 = G(r)

Em
a = H(r)

0

em
a(y)

with all other components set to zero. The zwei-

bein part in (2.2) is proportional to the zweibein

of AdS2
0

eµ
α =

(
r 0

0 r−1

)
(2.3)

The associated AdS2 has unit radius; different

values of the radius may be absorbed into the

pre-factor F . The spin connection and curvature

scalar are easily computed

0

ω001 = −1 , 0

ω101 = 0 ⇒
0

Rαβ = ηαβ . (2.4)

The lower block
0

em
a(y) of (2.2) contains the met-

ric on the sphere S8 with unit radius.

The full D = 11 metric thus becomes

ds2 = F 2
[−r2dt2 + dr2/r2]+H2dΩ28

+G2
[
dx2 +Aµdx

µ
]2

(2.5)

Apart from the S8 line element dΩ28 (again nor-

malized to unit radius for H = 1) the metric

ansatz depends only on the coordinate r. An

unusual feature is the “warp factor”multiplying

the internal part of the metric. For previous

compactified solutions of D = 11 supergravity

with warp factor [6, 7, 8], the latter depended

on the internal coordinates and multiplied the

space-time part of the metric.

To compute the spin connection and Rie-

mann tensor for the full metric we make use of

the general formulas

ωABC =
1
2 (ΩABC − ΩBCA +ΩCAB)

ΩABC = 2EA
MEB

N ∂[MEN ]C (2.6)

In this way we derive from (2.2) the following

nonvanishing components

ωαβγ = F−1
0

ωαβγ + 2F
−2ηα[β

0

∂γ]F

ωαβ2 =
1
2 GF

−2 0
Aαβ

ω2αβ = − 12 GF−2
0

Aαβ

ω22γ = F−1G−1
0

∂γG

ωabγ = δab F
−1H−1

0

∂γH

ωabc = H−1
0

ωabc (2.7)

where

0

∂α :=
0

eα
µ ∂µ

0

Aαβ :=
0

eα
µ 0eβ

νAµν (2.8)

denote the flat derivative and the Maxwell field

strength Aµν := ∂µAν − ∂νAµ. From the Rie-

mann tensor (with flat indices)

RAB
CD = 2ω[A

CE ωB]E
D + 2 ∂[A ωB]

CD

+2ω[AB]
E ωE

CD (2.9)

we obtain the nonvanishing components of the

Ricci tensor

Rαβ =
1
2ηαβ F

−2(
0

R+ 2
0

� lnF )

− 12 F−4G2
0

Aαγ
0

Aβ
γ

− F−2G−1 ( 0∂α
0

∂β +
0

ωαβγ
0

∂
γ)G

+ F 3G−1 (
0

∂αF
0

∂βG+
0

∂βF
0

∂αG)

− ηαβ F 3G−1
0

∂γF
0

∂
γG

− 8F−2H−1 ( 0∂α
0

∂β +
0

ωαβγ
0

∂
γ)H

+ 8F 3H−1 (
0

∂αF
0

∂βH +
0

∂βF
0

∂αH)

− 8ηαβ F 3H−1
0

∂γF
0

∂
γH

Rα2 =
1
2 F

−1G−2H−8
0

∂
γ(F−2G3H8

0

Aαγ)

R22 = −F−2G−1 (
0

∂γ
0

∂
γ +

0

ωα
α
γ

0

∂
γ)G

− 8F−2G−1H−1( 0∂γG
0

∂
γH)

+ 14F
−4G2

0

Aαγ
0

A
αγ

Rab = H−2
0

Rab

− 7 δab F−2H−2(
0

∂γH
0

∂
γH)

− δab F−2H−1 (
0

∂γ
0

∂
γ +

0

ωα
α
γ

0

∂
γ)H

− δab F−2G−1H−1
0

∂γG
0

∂
γH (2.10)

2
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Unlike the well known Freund Rubin solu-

tions [9], our ansatz has no source terms involv-

ing the three-form potential of D = 11 super-

gravity, and therefore the equations of motion

simply read

RAB = 0 (2.11)

The field equation for (AB) = (0α) and a par-

ticular combination of the other ones may be di-

rectly integrated and yield

0

Aαβ = C0 εαβ F
2G−3H−8 (2.12)

∂r(rGF ) = C1 r
−1FH−8 (2.13)

with integration constants C0 and C1. Here we

recognize that the Kaluza Klein vector Aµ plays

a role analogous to the three-form potential in

the standard Freund Rubin ansatz. There it is

the vacuum expectation value of the four-index

field strength which leads to preferential com-

pactification to four dimensions, whereas here it

is the vacuum expectation value of Aµν which

now leads to a two-dimensional vacuum.

The remaining field equations take the form

∂r(r
2H8∂rG) = − 12C20F 2G−3H−8(2.14)

∂r(r
2GH7∂rH) = 7F

2GH6 (2.15)

H∂r(F
−2∂rG) = −8G∂r(F−2∂rH)(2.16)

and will be further analyzed below.

3. Killing spinors

Before proceeding with the Einstein equations

we discuss the Killing spinor equations resulting

from our metric ansatz. The main advantage is,

of course, that the first order Killing spinor equa-

tions are easier to analyze than the second order

field equations, especially if one insists on max-

imal supersymmetry, just as for the AdS4 × S7
compactification of D = 11 supergravity [10]. It

remains to verify afterwards that the solution in

addition solves the Einstein equations. Since the

three-form potential is assumed to vanish, the

Killing spinor equations reduce to(
∂A +

1
4 ωABC Γ

BC
)
ε = 0 . (3.1)

Here we represent the 11d Γ-matrices as

Γα = γα ⊗ Γ9 Γa = 1⊗ Γa−2 (3.2)

for α = 0, 1, 2 and a = 3, ..., 10, where the γ ma-

trices on the r.h.s. are 2× 2 and 16× 16, respec-
tively (for simplicity of notation we do not in-

troduce new symbols for the SO(9) Γ-matrices).

For A = 0 (3.1) yields(
F−2 ∂r(rF ) γ2 + 12 C0G

−2H−8 γ0
)
ε = 0 (3.3)

with the elfbein (2.2) and connection coefficients

(2.6). The condition (3.3) shows already that

for nonvanishing C0 we need to impose a non-

trivial projection onto ε. Representing the 32-

component spinor of D = 11 supergravity as di-

rect product of a 2-component space-time spinor

and an internal 16-component spinor (transform-

ing as an SO(9) spinor as expected), we employ

the following ansatz:

ε(r, y) =

(
α(r)

−α(r)
)
⊗ η(y) . (3.4)

For flat space the two components of the first fac-

tor would be independent constants they here are

related. The solution thus necessarily preserves

only half of the maximal supersymmetries, but

rather than an N = 8 supergravity, it yields a

(16, 0) theory. However, this is not the usual chi-

rality (defined w.r.t. to γ2) but rather a “chiral-

ity” defined w.r.t. to γ1 as is obvious from (3.3).

Substituting this ansatz into (3.3) we arrive at

∂r(rF ) =
1
2 C0F

2G−2H−8 (3.5)

For A = 1, equation (3.1) yields(
rF−1∂r + 14 C0G

−2H−8 γ1
)
ε = 0

which determines the prefactor α to be

α(r) = const · (rF (r))1/2 (3.6)

For A = 2, equation (3.1) yields(
− 12 C0G−1H−8 γ2 + rF−1∂rGγ0

)
ε = 0

implying

rG−1∂rG = − 12 C0F 2G−2H−8 (3.7)

whereas for A = a we obtain(
0

Da +
1
2 rF

−1∂rH γ1 ΓaΓ
9
)
ε = 0

3
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whence

rF−1∂rH = m (3.8)(
0

Da +
m
2 ΓaΓ

9
)
η(y) = 0 (3.9)

The second equation shows that η(y) is a lin-

ear combination of Killing spinors on the sphere

S8; there are 16 independent such spinors whose

explicit form will be worked out below. The pa-

rameter m here is proportional to the inverse S8

radius and may be absorbed into H ; we will set

it to unity below.

In summary, the Killing spinor equations for

the functions F,G,H are given by

∂r(rFG) = 0 (3.10)

r∂rH = mF (3.11)

∂r(rF ) =
1
2 C0F

2G−2H−8 (3.12)

These equations may be shown to be compatible

with the Einstein field equations, i.e. every solu-

tion of (3.10)–(3.12) automatically solves (2.12)–

(2.16). In the following section, we derive the

most general solution of (3.10)–(3.12).

4. Killing spinor equations

Equation (3.10) may be integrated to

F = C2 r
−1G−1 (4.1)

This leaves two equations for G and H :

r2∂rH = mC2G
−1 (4.2)

r2∂rG = − 12 C0C2G−2H−8 (4.3)

In order not to make the formulas too cumber-

some, we will take m = 1 from now on and elim-

inate C2 by rescaling G→ C2G, C0 → C2C0.

Multiplying (4.2) and (4.3), we obtain (now

with m = 1)

16H−1∂rG = C0G
−1∂r(H−8) (4.4)

which may be integrated to

G2 = C0
7 H

−7 + C3 (4.5)

At this point we are left with only one differential

equation which is written out in (4.12) below.

4.1 Nontriviality of the solution

The most general solution of the Killing spinor

equations (4.2), (4.3), has the nonvanishing com-

ponents of the Riemann tensor

R0101 = R2121 = − 4C0
G2H9

(4.6)

R1201 =
4C0
G2H9

R0a0b = R0a2b = R2a2b =
C0 δab

2G2H9

with the functions G and H related as above. It

is now straightforward to verify that the associ-

ated Ricci tensor vanishes, and hence the met-

ric satisfies the Einstein field equations (2.11),

provided the equations derived above are also

obeyed.

In particular, (4.6) shows that every solution

with vanishing C0 (i.e. with vanishing vector field

Aµ) is flat space. In other words, every nontrivial

solution of this type has a non-vanishing vacuum

expectation value for Aµν , and it is charged with

respect to the 11d → 10d Kaluza-Klein vector
field.

For the higher dimensional situation one usu-

ally analyzes the content of Killing spinor equa-

tions in terms of their compatibility conditions

[10]. In our setting the compatibility conditions

are very simple, viz.1

RABCD Γ
CD ε = 0 (4.7)

For instance, the special case

(
R0101γ

01 +R0112γ
12
)
ε = 0 (4.8)

illustrates once more why our solution has a “chi-

ral” residual supersymmetry only: substituting

the relevant values of the Riemann tensor, we see

that this equation becomes a projection condi-

tion condition. This feature may be traced back

to the separate S1 factor, which is absent from

the higher dimensional Freund Rubin-type solu-

tions.

1As already mentioned this equation by itself does not

imply RAB = 0, but only RABξ
B = 0, where ξA is

the associated Killing vector which can be expressed as a

fermionic bilinear of Killing spinors.

4
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4.2 Two extremal cases

Let us first discuss two special “extremal” solu-

tions. For C0 = 0 we have

F =
1√
C3 r

, (4.9)

G =
√
C3 ,

H = H∞ − 1√
C3 r

which is just the flat space solution as already

mentioned (to recover the flat Minkowski metric,

we have to redefine r → 1/r).

For C3 = 0 we obtain (after rescaling C0 →
7C0)

F =
(
5
2C
−1/7
0 r−2/7 +H−5/2∞ C

5/14
0 r5/7

)−7/5

G =
(
5
2 r C

−1/7
0 + C

5/14
0 H−5/2∞

)7/5

H =
(
5
2 rC

−1/2
0 +H−5/2∞

)−2/5
(4.10)

which has no smooth limit to flat space since we

cannot scale out the factor C0 in such a way that

the limit C0 → 0 exists. Its curvature diverges
at zero and tends to a constant at infinity. At

H∞ =∞, this solution simplifies to

F =
(
5
2

)−7/5
C
1/5
0 r2/5

G =
(
5
2

)7/5
C
−1/5
0 r−7/5

H =
(
5
2

)−2/5
C
1/5
0 r2/5 (4.11)

This is the metric derived in [3] (in the 10d dual

frame). Its curvature vanishes at infinity but di-

verges at zero.

4.3 The general case

Starting from (4.5) and (4.2), the remaining dif-

ferential equation for H is

r2∂rH

√
C0
7 H

−7 + C3 = 1 (4.12)

Upon rescaling the function H → |C3|−1/2H ,
and the constant C0 → 7 |C3|5/2 C0, we get

r2∂rH
√
C0H−7 + ε1 = 1 (4.13)

with ε1 = ±1 = sgnC3. The negative branch
of the square root corresponds to the solution

H → −H , C0 → −C0.

It follows directly that the asymptotics near

r ∼ 0 must be of one of the following forms:

H(r) =



−r−1 (1 +O(r))
(
2
5

)2/5
C
1/5
0 r2/5 (1 +O(r))

(4.14)

where the first case is possible only for ε1 = +1.

Moreover, r = 0 is the only value of r where

H can diverge or take the value 0 (since in ei-

ther case one of the term under the square root

dominates such that (4.13) may be integrated

and leads to (4.14)). In particular, in the limit

r →∞, H remains regular:

H(r)
r∼∞
= H∞ − 1

r
(C0H

−7
∞ + ε1)

−1/2 +O(r−2)
(4.15)

The differential equation (4.13) further re-

quires

C0H
−7 ≥ − ε1 (4.16)

Since H(r) 6= 0 for r 6= 0 there are hence two
different types of solutions:

H∞ > 0: In this case, (4.16) requires C0 > 0.

Since ∂rH is positive, (4.16) is satisfied for all r

iff it is valid for H∞. For ε1 = 1 this is always
true, for ε1 = −1 this condition gives the upper
bound H∞ < C

1/7
0 . All these solutions have reg-

ular behavior (4.15) at infinity and r2/5 behavior

(4.14) at zero. The computation of the Riemann

tensor (4.6) shows that they have constant cur-

vature at infinity and a singularity at the origin.

In the limit C0 → 0 they tend to

H(r)→
{
0 for r < H−1∞
H∞ − 1/r for r > H−1∞

(4.17)

and thus have no smooth limit to the flat space.

H∞ < 0: In this case, (4.16) requires ε1 = 1.

Then, (4.16) is satisfied automatically for C0 < 0,

whereas for C0 > 0 it further requires the upper

bound H∞ < −C1/70 on the asymptotic value.

All these solutions have regular behavior (4.15)

at infinity and r−1 behavior (4.14) at zero. The
computation of the Riemann tensor (4.6) shows

5
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that they have constant curvature at infinity and

vanishing curvature at the origin. In the limit

C0 → 0 they smoothly tend to the flat space.

4.4 Killing spinors on S8

We here summarize some properties of S8 Killing

spinors. For this purpose we need explicit expres-

sions for the S8 spin connection. With a conve-

nient (and standard, see [11]) choice of coordi-

nates the achtbein on S8 is given by

0

em
a = δam −

y2ω(y)

1 + y2ω(y)

ymy
a

y2
. (4.18)

In terms of these coordinates the S8 spin connec-

tion and Ricci tensor become

0

ωabc = 2ω(y)δa[b yc] , (4.19)

0

Rab = 7 δab

where

ω(y) ≡ − 1
y2
(1 −

√
1− y2)

The Killing spinor equation now reads

(
∂a +

1
2 κω(y) y

b Γab +
m
2 Γa
)
η(y) = 0 (4.20)

with

∂a =
∂

∂ya
+ y2ω(y)nan

b ∂

∂yb
(4.21)

where na = ya

|y| and the SO(9) Γ matrices obey
the standard Dirac algebra

ΓaΓb = δab + Γab

such that

Γa(bΓc) = δbcΓa − δa(bΓc)

The solution can be written in the form

η(y) =
(
A(|y|) +B(|y|)naΓa

)
η0 (4.22)

with

A(|y|) = m√
2κω(y)

,

B(|y|) = −
√
κω(y)

2
|y| .

To see how these Killing spinors are related

to the Killing vectors on S8, we consider the bi-

linear expressions

KIJm (y) = η[I(y) Γm9 η
J](y)

= η
[I
0 Γm9 η

J]
0 − ωymyaη[I0 Γa9 ηJ]0

− yaη[I0 Γam ηJ]0 (4.23)

or

K
m
IJ(y) = Γ

m9
IJ − ω ymya Γa9IJ − ya ΓamIJ (4.24)

Thus there are as many Killing vectors as there

are independent matrices Γab, i.e. 36 Killing vec-

tors as expected. The presence of the extra factor

Γ9 in the above equation is the reason that there

are not 120 independent bilinear combinations as

naive counting would have suggested; there is no

such extra factor in the corresponding expression

for the 28 S7 Killing vectors in terms of bilinears

of the eight S7 Killing spinors [10].

4.5 Properties of the solution

Among the noteworthy features of the compact-

ification described here is its breaking of super-

symmetry. As discussed above, this implies that

either the induced gauged theory is not fully su-

persymmetric but only invariant under a “chiral”

N = 16 supersymmetry or at least its ground

state breaks half of the supersymmetry.

We further note, that there is no nontriv-

ial solution of the Killing spinor equations with

constant functions F or H . The two-dimensional

geometry hence is not AdS2 but only conformally

equivalent (of course, all metrics are conformally

equivalent in two dimensions).

The fact that the solution requires a non-

trivial “warp factor” in the internal part of the

metric seems to indicate that the potential of the

gauged theory in fact does not admit stationary

points for any constant values of the scalar fields.

Rather, it suggests that this potential can be

minimized only with r-dependent scalar fields,

a feature which has no analogue in the known

higher dimensional gauged theories.

5. Remarks on the D = 2 theory

Finally, we sketch the complementary approach

to the construction of the two-dimensional gauged

6
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theory, which is by deformation of the ungauged

i.e. toroidally compactified theory. The latter is

described by a field theory coupled to gravity in

conformal gauge

eµ
α = λ δµ

α . (5.1)

The scalar sector is given by a dilaton field ρ

and an E8(8) valued matrix V which defines the
currents

V−1∂µV = PAµ Y
A + 12Q

IJ
µ X

IJ , (5.2)

where Y A and XIJ denote the 128 noncompact

and 120 compact generators ofE8(8), respectively.

The theory thus has a manifest global E8(8) sym-

metry

V → ΛataV , (5.3)

if by ta we denote all 248 generators of the alge-

bra e8: t
a = {Y A, XIJ}. On the fermionic side,

the theory comprises the 2d gravitino ψIµ and the

dilatino ψI2 transforming in the 16 of SO(16), as

well as the fermionic matter denoted by χȦ and

transforming in the 128. The Lagrangian of the

ungauged theory is given by [5]

L(0) = − 14ρE(2)R(2) + 14ρE(2)PµAPAµ
− ρE(2)εµνψI2DµψIν
− i
2 ρE

(2)χȦγµDµχ
Ȧ

− 12 ρE(2)χȦγνγµψIνΓIAȦPAµ
− i
2 ρE

(2)χȦγ3γµψI2Γ
I
AȦ
PAµ . (5.4)

Gauging this theory corresponds to promoting a

subgroup of the global symmetry (5.3) in a lo-

cal symmetry. As discussed above, one of the

peculiarities of the two-dimensional theory with

respect to its higher dimensional relatives is the

a priori absence of vector fields which are du-

alized away in the process of compactification.

More precisely, the vector fields which are present

in the toroidal compactification of the eleven-

dimensional theory have been dualized into the

scalar sector in three dimensions. The corre-

sponding D = 3 dualization equation takes the

form

εµνρ ∂µBν
a = E(3) V aA PAρ (5.5)

where µ, ν. . . . now run over 0, 1, 2. It explic-

itly exhibits the duality between the scalar fields

contained in the E8(8) matrix V and a set of 248
vector fields combined into an e8 valued matrix

Bµ
a ta. There are hence different equivalent for-

mulations of the D = 3 theory, depending on

the choice of particular complementary subsets

of scalars and vector fields, cf. [12]. For our pur-

pose we consider the reduction of (5.5) back to

two dimensions with the following ansatz

e(3)µ
α =

(
λ δµ

α ρAµ
0 ρ

)
(5.6)

B(3)µ = (Bµ −AµB2, B2) (5.7)

for vielbein and vector fields. Equation (5.5) then

splits into two equations

∂µB2
m = ρεµνVmAPAν (5.8)

Bµν
m = −B2mAµν (5.9)

i.e. into a two-dimensional dualization equation

between scalars V and Ba2 and a relation between
the 2d field strength Bµν and the field strength of

the Kaluza-Klein vector field Aµ. We emphasize

here, that the construction of the gauged theory

will require explicit appearance of both, the orig-

inal scalar fields V as well as their duals B2m. In
toroidal compactification, one uses the equations

of motion for the Kaluza-Klein vector field Aµ to

show that

Aµν = C0 ρ
−3 εµν (5.10)

with constant C0. Asymptotically flat solutions

require C0 = 0 and hence, via (5.9), vanishing

field strength of the two dimensional vector fields.

In other words, under the reduction, the three-

dimensional vector fields split into dual scalars

B2 and nonpropagating vector fields which are

usually dropped from the theory. However, as

it turns out, once the two-dimensional theory

is gauged with these vector fields, the relations

(5.9) also get modifications in order of the cou-

pling constant.

We can now follow the standard recipe [4] by

first covariantizing the derivatives (5.2) w.r.t. a

subgroup of E8(8)

V−1DµV ≡ V−1∂µV + g BaµΘabV−1tbV
= PAµ Y A + 12QIJµ XIJ . (5.11)

7
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The constant tensor Θab here encodes the embed-

ding of the gauged subgroup into E8(8). Contin-

uing the standard procedure, the fermionic su-

persymmetry transformations rules get modified

δψIµ = DµεI + igA1 IJ γµ εJ

δψI2 = ρ−1∂µρ γµ εI

+ ig
(
A2 [IJ] +A2 (IJ)γ

3
)
εJ

δχȦ = i
2 γ
µεI ΓI

AȦ
PAµ

+ ig
(
A3 IȦ +A4 IȦγ

3
)
εI (5.12)

with tensorsA1, . . . , A4 to be determined as func-

tions of the scalar fields. The original Lagrangian

(5.4) is changed by adding a general fermionic

bilinear term in order g of the coupling constant

and a potential term in order g2. These terms

are determined by requiring maximal supersym-

metry of the gauged theory. Moreover, super-

symmetry imposes strong consistency conditions

which eventually select the possible gauged sub-

groups.

A detailed discussion of the construction for

the two-dimensional case shall be reported else-

where [13]. Here, we just state the result, which

is that the consistency conditions for the exis-

tence of a gauged deformation of toroidally com-

pactified D = 2 supergravity may be given in

closed form as a set of linear algebraic equations

for the embedding matrix Θab. Group theoret-

ical arguments then allow to find explicit non-

trivial solutions Θab to these equations and thus

to construct a class of two-dimensional gauged

supergravities.

Some of their common features may already

be observed from (5.12). Since the tensor A2 (IJ)
turns out to have a nonvanishing constant trace

part, the variation of the dilatino ψI2 in (5.12) e.g.

already shows that no solution of the gauged the-

ory can preserve the full supersymmetry. Rather,

we find the same type of chiral symmetry break-

ing as was exhibited in the compactification dis-

cussed above. Moreover, since also A4 IȦ turns

out to be nonvanishing, the variation of the mat-

ter fermions χȦ shows the necessity to invoke

nonconstant scalar fields in a supersymmetric so-

lution as was likewise predicted by our compact-

ification scenario.

Finally, we note, that the equation for the

Kaluza-Klein field strength in the gauged theory

is modified by a contribution quadratic in the

dual scalar fields B2
a

Aµν = C0 ρ
−3 εµν

− 12 g ρ−3 εµν (B2aΘabB2b) (5.13)

This shows that unlike in the toroidal compact-

ification, the Kaluza-Klein vector field Aµ and

hence also the vector fields Bµ can no longer be

dropped. Rather, the solutions appear nontriv-

ially charged under the U(1), as was also explic-

itly found in our compactification.
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