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Abstract: After a brief review of the description of black holes on branes, we examine the evaporation

of a small black hole on a brane in a world with large extra dimensions. We show that, contrary to

previous claims, most of the energy is radiated into the modes on the brane. This raises the possibility

of observing Hawking radiation in future high energy colliders if there are large extra dimensions.

1. Introduction

It has been realized that space may have ex-

tra compact dimensions as large as a millime-

ter, in a way that can be consistent with all cur-

rent observations [2]. To achieve this, the Stan-

dard Model fields are required to be confined

on a three-brane, and only gravity propagates

into the extra dimensions. The validity of the

Standard Model up to energies around a TeV re-

quires the thickness of the brane to be less than

1 TeV−1 ∼ 10−16 mm. On the other hand, the
four-dimensional character of gravity has been

tested only down to the centimeter scale. This

sets un upper bound on the size L of the extra

dimensions1. Since the effective four-dimensional

Newton’s constantG4 is related to its d-dimensional

(fundamental) counterpartGd byG4 = Gd/L
d−4,

if the fundamental scale of gravity in the bulk is

of order a TeV, and we take d = 6, then G4 has

the observed value provided L ∼ 1 mm, consis-
tent with the bound mentioned above, and fal-

sifiable in the near future. This value of L can

be lowered, while keeping a fundamental TeV en-

ergy scale, by taking higher values for d, which

leads to smaller extra dimensions. In what fol-

lows, our results will hold for any number of large

∗Based on work in collaboration with G.T. Horowitz
and R.C. Myers [1].
1This is in the simplest models, where the extra dimen-

sions are taken to be flat. In models such as the one of

Randall and Sundrum [3], the bound is on the curvature

of the extra dimensions.

extra dimensions.

For an observer that lives on the brane (e.g.,

ourselves), the main effect of these large extra di-

mensions is to introduce a number of light (and

heavy) fields, which come from the decomposi-

tion of the bulk metric into the four-dimensional

graviton and an infinite tower of Kaluza-Klein

modes. The latter act like four-dimensional spin-

two fields with masses that, for d = 6, start at

as low as 1/L ∼ 10−4 eV. So, at a given en-
ergy scale E < TeV, the light fields on the brane

consist of the Standard Model fields, a four di-

mensional graviton (the zero mode in the Kaluza-

Klein decomposition of the d-dimensional gravi-

ton), and a large number, of order (EL)d−4, of
light Kaluza-Klein modes. The latter, however,

couple very weakly, with four-dimensional grav-

itational strength, to the matter fields that are

confined on the brane.

The existence of a low fundamental Planck

scale implies that the strength of gravity becomes

comparable to other interactions at around the

TeV scale. One of the most striking consequences

of this is the possibility of forming semiclassical

black holes at rather low energies, say of order

100 TeV. Suppose one collapses matter (or col-

lides particles) on the brane to form a black hole

of size `fun � r0 � L (where `fun = G1/(d−2)d

is the fundamental, i.e., d-dimensional, Planck

length). This black hole has a temperature T ∼
1/r0 which is much larger than the mass of the

light Kaluza-Klein modes. Since gravity couples
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to everything, and there are so many Kaluza-

Klein modes with mass less than the Hawking

temperature, it has been claimed [4, 5] that the

Hawking radiation will be dominated by these

Kaluza-Klein modes, with only a tiny fraction of

the energy going into standard model particles.

In other words, most of the energy would be ra-

diated off of the brane into the bulk. Since the

Kaluza-Klein modes couple so weakly to matter,

they would escape our detectors and therefore,

if this argument were correct, the Hawking ra-

diation from these small black holes would be

essentially unobservable.

However, we have proven, in work with Gary

Horowitz and Rob Myers [1], that this argument

is incorrect, and most of the Hawking radiation

goes into the Standard Model fields on the brane.

While the detection of this Hawking radiation

would likely not be the first experimental sig-

nature of large extra dimensions, such measure-

ments would provide a dramatic new window on

black hole microphysics.

2. Black Holes on Branes

We start by reviewing the description of black

holes in a brane-world with extra dimensions of

size L. We are far from having any exact, an-

alytic description that accounts for all the ef-

fects involved. In fact, such a detailed descrip-

tion would be strongly model-dependent, but if

we make several approximations we will be able

to obtain generic results in the regimes of most

interest. First, we will take the brane to have

negligible thickness. This is indeed reasonable,

since the actual thickness of the brane is likely

to be of order the fundamental scale `fun, and

a black hole will behave semi-classically only if

its size is r0 � `fun. Therefore, we will work

in a sort of low energy effective approach where

we do not probe the details of the structure of

the brane. The latter is simply represented as a

four-dimensional Lorentzian hypersurface in the

full spacetime, and, in principle, acts as a distri-

butional source for gravity.

Even in this approximation, it has not been

possible to find a full analytic description of a

black hole on a brane in any realistic model, al-

though it has been possible to work out in de-

tail a useful toy model in low dimensions [6, 7].

In general, the self-gravity of the brane intro-

duces severe complications, and makes the anal-

ysis strongly dependent on the number of extra

dimensions. When describing large black holes

(relative to the compactification scale; see be-

low) this difficulty can be easily overcome, but

the representation of small black holes proves still

too hard in general. Small black holes are in fact

much more effective at probing the extra dimen-

sions, and will be the main focus here. If we take

the horizon size to be sufficiently smaller than

the length scale of the curvature induced by the

brane, then it will be reasonable to neglect brane

self-gravity. Also, if the black hole size is much

smaller than the compactification length, then,

close to the black hole, finite-size effects will be

negligible, while at distances much larger than

L we will be able to integrate over the internal

space. In this way our results will be largely inde-

pendent of the precise compactification scheme.

Nevertheless, for definiteness and simplicity, we

will be mainly considering the extra dimensions

to be wrapped on a square (d − 4)-dimensional
torus.

Let us then consider a general dimension d

for the bulk spacetime, and assume that we live

on a (3+1)-dimensional brane. A black hole hori-

zon on a three-brane arises from the intersection

of a higher dimensional horizon with the brane

worldvolume. This horizon can originate from

two different sorts of higher dimensional objects:

one is the “black brane,” (in fact, a (d−4)-brane)
obtained by taking the product of the four di-

mensional Schwarzschild solution and the (d−4)-
dimensional internal spaceMd−4,

ds2 = ds2Schwarzschild4 + ds
2
Md−4 . (2.1)

An observer on the brane (which is localized at

a certain point in the internal space) perceives

exactly the four-dimensional Schwarzschild solu-

tion, without any corrections arising from the ex-

istence of extra dimensions. In other words, no

Kaluza-Klein modes are excited in this solution,

only the massless zero mode of the bulk gravi-

ton that yields four dimensional gravity on the

brane.

On the other hand, one can also envisage a

different configuration that results in a horizon
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on the brane, namely, a d-dimensional black hole

intersected by the three-brane. This is a localized

black hole, as opposed to the black brane which is

delocalized in the extra dimensions. Now, we are

taking the extra dimensions to be compactified

with characteristic length L. In the simplest case

of toroidal compactification this is equivalent to

regarding space in the directions transverse to

the brane as being periodic with period L. While

this periodicity can be readily imposed on the

black brane solution above, a localized black hole

will instead require for its description a (d − 4)-
dimensional array of d-dimensional black holes.

No such exact periodic solutions are known in

dimensions d > 4. Nevertheless, if we restrict

to black holes of size r0 much less than L, then

the geometry near the black hole will be very well

approximated by a d-dimensional Schwarzschild

solution,

ds2 = −f(r) dt2 + f−1(r) dr2 + r2dΩ2d−2 (2.2)

with f(r) = 1− (r0/r)d−3. The event horizon is
at r = r0, and has area Ad = r

d−2
0 Ωd−2 where

Ωn denotes the volume of a unit n-sphere. Since

we are neglecting its self-gravity, the brane is to

be identified as a surface of vanishing extrinsic

curvature, which, by symmetry, cuts through the

equator of the black hole. Then the induced met-

ric on the brane will be

ds2 = −f(r) dt2 + f−1(r) dr2 + r2dΩ22 . (2.3)

On the brane then, the event horizon is again at

r = r0, and its area is A4 = 4πr
2
0. This induced

metric on the brane is certainly not the four-

dimensional Schwarzschild geometry. Indeed, one

can think of it as a black hole with matter fields

(i.e., Kaluza-Klein modes) around it. However,

the calculation of Hawking evaporation relies mainly

on properties of the horizon, such as its surface

gravity (i.e., temperature). Since the Hawking

temperature is constant over the horizon, it is

the same for both the black hole in the bulk and

on the brane, and is given by T = (d−3)/(4πr0).
In the metric (2.3) the gtt component has no

1/r term and hence seems to give zero mass in

four dimensions. However, this metric only de-

scribes the geometry near the black hole. In or-

der to consider the metric at distances large from

the black hole we have to take into account the

effects of compactification, i.e., of the full array

of black holes, each of massM and separated by a

distance L. From a large distance2, the periodic

array looks like a “surface density” ρ =M/Ld−4,
where M is the mass of the d-dimensional black

hole. Thus, asymptotically the metric will be of

the form (2.3), but now with f(r) = 1−(2Gdρ/r).
However, since Gd = G4L

d−4, this is equiva-
lent to f(r) = 1 − (2G4M/r). So, for r � L
the geometry will be approximated by (2.3) with

f(r) ' 1−(2G4M/r), and the mass measured on
the brane is the same as the mass in the bulk.

So we have two objects, namely, the extended

brane and the localized black hole, that can de-

scribe a black hole of size r0 on the brane
3. Which

of the two is the preferred configuration for a col-

lapsed object? The answer can be easily deter-

mined on the basis of entropy arguments, which

are furthermore supported by a study of the clas-

sical stability of the black brane [10]. It turns

out that, for r0 greater than the compactifica-

tion size L, the black brane has larger entropy

and thus dominates. On the other hand, for

r0 roughly smaller than L, an instability of the

black brane sets in so that the localized, higher

dimensional black hole becomes the stable (and

more entropic) configuration. The transition be-

tween these two regimes is very poorly under-

stood, and any progress in the construction of pe-

riodic arrays of black holes in dimensions larger

than four would be of great help.

Large black holes, therefore, give us virtually

no clues as to the presence of extra dimensions.

It is by looking at small black holes that we can

expect to probe the physics of large extra dimen-

sions. We now turn to study their evaporation

through Hawking radiation.

3. Radiation On and Off the Brane

Since we are interested in black holes of radius

2Here, we ignore the gravitational interaction energy of

the black holes in the array, which is justified for r0 � L.
3However, in the Randall-Sundrum model with a

non-compact dimension the extended solution—a black

string—is unphysical [8], and both large and small black

holes are localized on the brane. The above description of

small black holes is still essentially valid, but large black

holes are rather like pancakes on the brane [6, 9].
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much less than the size of the internal space,

we can treat, as far as the radiation process is

concerned, the extra dimensions as non-compact.

Then, for a single massless bulk field, the rate at

which energy is radiated is of order

dE

dt
∼ Ad T d ∼ r

d−2
0

rd0
∼ 1
r20

(3.1)

where Ad denotes the area of the higher dimen-

sional black hole. For a single massless four-

dimensional field on the brane, the rate of energy

loss is of order

dE

dt
∼ A4 T 4 ∼ r

2
0

r40
∼ 1
r20

(3.2)

and hence is the same. That is, with a single

relevant scale r0 determining the Hawking ra-

diation, bulk and brane fields must both have

dE/dt ∼ r−20 . Hence the Hawking evaporation
must emit comparable amounts of energy into

the bulk and brane. However, with the typical

assumption that there are many more fields on

the brane than in the bulk, one would conclude

that most of the energy goes into the observable

four-dimensional fields.

Notice that it would be incorrect to think of

brane fields as bulk fields confined to a limited

phase space. The brane fields are intrinsically

four-dimensional, and their emission is governed

by the four-dimensional relation (3.2), and not

the d-dimensional formula (3.1) with a restricted

area.

Another important point worth stressing is

that even if there are a large number (of or-

der (L/r0)
d−4) of light Kaluza-Klein modes with

masses below the scale of the Hawking tempera-

ture, they do not dominate the evaporation. The

pitfall here is to think of the individual Kaluza-

Klein modes of the bulk graviton as massive spin

two fields on the brane with standard (minimal)

gravitational couplings. Rather, since the Kaluza-

Klein modes are excitations in the full transverse

space, their overlap with the small (d-dimensional)

black holes is suppressed by the geometric factor

(r0/L)
d−4 relative to the brane fields. Hence this

geometric suppression precisely compensates for

the enormous number of modes, and the total

contribution of all Kaluza-Klein modes is only

the same order as that from a single brane field.

In order to see in more detail how this geo-

metric suppression factor appears, it is instruc-

tive to look into the calculation of the emission

rate of a massless bulk field from the four dimen-

sional perspective, i.e., by decomposing it into

Kaluza-Klein modes. Thus, let us separate the

modes of the bulk field according to the momen-

tum k which they carry into the d− 4 transverse
dimensions. On the brane, this Kaluza-Klein mo-

mentum is identified with the four-dimensional

mass of these modes, which we denote m = |k|.
If we then sum over all other quantum numbers,

we will find the emission rate corresponding to a

Kaluza-Klein mode with momentum k. In this

way, we get, for the emission rate per unit fre-

quency interval, of modes with momenta in the

interval (k,k + dk),

dE

dωdt
(ω,k) ' (ω2 −m2) ωAd

eβω − 1 d
d−4k . (3.3)

Here, Ad is the area of the black hole in the d-

dimensional bulk. We are neglecting purely nu-

merical factors since we have found that they do

not play any significant role.

Consider a light Kaluza-Klein mode, with a

mass much smaller than the black hole temper-

ature, m � 1/r0. We set dd−4k ∼ (1/L)d−4 for
an individual mode, and Ad ∼ rd−40 Ab, with Ab
the sectional area on the brane. Then,

dE

dωdt
(ω,m) '

(r0
L

)d−4
(ω2 −m2) ωAb

eβω − 1 .
(3.4)

which is identical to the emission rate of a mas-

sive field in four dimensions, except for a sup-

pression factor of (r0/L)
d−4. (Note that this for-

mula applies equally well for m = 0.) So we

see that the Hawking radiation into each Kaluza-

Klein mode (among these, the massless graviton)

is much smaller, by a factor of (r0/L)
d−4, than

the radiation into any other minimally coupled

field that propagates only in four dimensions.

Still the total radiation into a bulk field is com-

parable to that into a field on the brane, because

there are of order (L/r0)
d−4 light modes with

m < T ∼ 1/r0. So if we integrate the emission
rate over all Kaluza-Klein modes, and then over

frequency, we recover eq. (3.1), as it must be for

consistency.
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Since the number of relevant fields on the

brane may be only a factor of ten or so larger

than the number of bulk fields, one might worry

that the claim that the Hawking radiation is dom-

inated by brane fields could still be thwarted by

large numerical factors coming from the higher

dimensional calculation. To check this, we have

considered two improvements over the rough es-

timate of the radiation rates given in (3.1) and

(3.2). The first is to include the dimension de-

pendent Stefan-Boltzman constant that appears

in the black body radiation formula. A second

improvement concerns the effective area of the

radiating black body, which is slightly larger than

the horizon area. We have found there are no un-

expected large factors to ruin the naive estimate

that a Hawking evaporation emits as much en-

ergy into a typical brane field as into a typical

bulk field. A definitive comparison of the bulk

and brane radiation rates would require a de-

tailed analysis, with a specific brane-world model

to determine the exact black hole geometry and

the precise multiplicity of bulk and brane fields.

So far we have considered small black holes

with r0 < L. Larger black holes (which are

described by (2.1)) also radiate mainly on the

brane. The essential feature now is that the

Hawking temperature is lower than the mass of

all Kaluza-Klein modes, so their contribution to

the Hawking radiation is clearly suppressed. Also,

the massless mode of the bulk field radiates in

this regime identically to a brane field. So for

large black holes, a bulk field still carries essen-

tially the same energy as a field on the brane, but

the latter again dominate the Hawking radiation

since they are more numerous.

We have also shown in [6] that black holes in

the Randall-Sundrum scenario [3] with an infinite

extra dimension still radiate mainly on the brane.

4. The Evaporation Process

We are thus led to the following picture for the

evaporation of a black hole that initially has a

radius r0 > L. At the beginning, as a result of

Hawking evaporation, it will decrease its size, at

a rate determined by four dimensional physics.

When r0 ∼ L, the solution (2.1) becomes un-
stable [10], and is believed to break up into d-

dimensional black holes which coalesce and form

a single higher dimensional black hole. It can be

shown [1] that this final black hole will lie in the

brane, and not in the bulk, since it feels a restor-

ing force due to the brane tension. From this

point on, the evaporation of the small black hole

starts to differ from the way predicted by the four

dimensional law. The radiation rate, as we have

seen, varies smoothly across the transition be-

tween regimes, and the evaporation slows down.

This is a consequence of the fact that, in this

regime, the black brane has given way to another

configuration, the localized black hole, that, for

a given mass, has higher entropy. Although the

area is larger, the temperature is lower, and the

evaporation rate is slower. As a consequence, the

lifetime of a small black hole is longer (possibly

enormously longer) by a factor (L/r0)
2(d−4) than

would have been expected from four-dimensional

Einstein gravity. Finally, notice that the black

hole can be described semiclassically down to a

mass scale (say, of order 100 TeV) much smaller

than the four dimensional Planck mass of 1019 GeV

[5].

So we conclude that the brane-world scenario

has the potential to make interesting observable

predictions about small black holes appearing ei-

ther in collider experiments or in the early uni-

verse. Much of their detailed phenomenology is

still to be investigated.
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