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Abstract: I briefly try to give a critical assessment of this idea, discussing what it means, the extent

to which it is true, and how it relates to other ideas in mathematics and physics. Examples of related

physical concepts concern solitons and integrability in space-times of two dimensions, supersymmetry,

superstring theory, and so on. Relevant mathematical developments appear to be the Atiyah-Singer

index theorems, homology theory, the theory of modular functions, and, maybe, Borcherds algebras.
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Claus Montonen and I were well aware of

the similarity between our 1977 proposal of a

principle of S-duality in the context of a sponta-

neously broken SU(2) gauge theory in the space-

time IR3,1, [1], and the much earlier (1941) result

of Kramers and Wannier in the context of the

Ising model in IR2 concerning a duality transfor-

mation between high and low temperatures, [2].

We also suspected that the S transformation was

just one element of a larger discrete group, such

as the modular group, but were unsuccessful in

developing this idea.

Now we know that the modular group is in-

deed relevant in IR3,1 but less so in IR2. The

progress that led to the present day level of un-

derstanding came much later, in several distinct

steps, including recognition of the following points:

(1) the role of supersymmetry (in the broken

SU(2) gauge theory), [3]

(2) the significance of the θ angle in the SU(2)

gauge theory, [4]

(3) the hyperkähler nature of the metric on the

relative moduli space of two like BPS monopoles,

[5]

(4) Sen’s synthesis of this and his vision of how

the modular group acts on the totality of charged

single particle states, [6].

I have reviewed all this in more detail else-

where. As the texts are readily available I shall

refrain from repeating myself [7].
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The S-duality principle stemmed from rather

old ideas of electromagnetic duality referring to

the similarity between electric and magnetic fields

in IR3,1. This is why I shall refer to the extended

principle as extended electromagnetic duality. It

seems to me to furnish what is potentially an

extremely important new principle, indeed one

that transcends quantum theory. However it is

only applicable to certain classes of QFT, pre-

cisely which ones we do not know, even though

we see that it is relevant to many physically in-

teresting examples of QFT e.g. supersymmetric

gauge theories, supergravity theories and super-

string theories.

The reason I had to use the above qualifi-

cation “potentially” is that the principle lacks

any real proof. Indeed, because of its nature,

it looks as if a proof would first require a con-

crete construction of the quantum field theory in

question, an impossible task within the present

level of mathematical knowledge. Nevertheless

the nature of the support for the validity of the

idea is rather encouraging as it stems from the

application of new and powerful mathematical

ideas. Indeed the eventual proof could well de-

pend upon branches of mathematics yet to be

discovered, whose creation could be triggered by

the physical ideas associated with duality.

I have not yet tried to state exactly what

the new principle is and that is because, in my

opinion, a satisfactory formulation has yet to be

found. Indeed, I have to say that much of what
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I have found in the existing literature seems to

me to be confusing or maybe worse. As a conse-

quence, facilitated by the TMR network, I have

made my own attempt (together with Marcos Al-

varez [8,9]) to clarify the ideas by analysing a

“toy” model that seems to be the simplest situ-

ation in which the principle applies and, indeed,

is very nearly capable of proof.

Before trying to formulate the duality state-

ment I shall describe this toy setup. It is rather

trivial from the particle physics point of view

but nevertheless rather interesting mathemati-

cally, as E Verlinde and E Witten were the first

to realise independently, in 1995 [10,11]. The

mathematics that turns up is quite sophisticated

by the standards of ordinary theoretical physics.

Seeing how it works in connection with duality

opens up a number of new questions, as we shall

see.

The context is somewhat like that of a su-

pergravity theory but space-time is not dynam-

ical, just a fixed, curved background supporting

a dynamical electromagnetic field. Nor is there

any supersymmetry. It is not the curvature that

is important but rather that the space-time is

topologically complicated with sufficient “holes”

to capture frozen magnetic fluxes. This infor-

mation is encoded in the homology structure of

space-time. I do not want to treat this in detail

other than to say that it is precisely that branch

of mathematics that was originally inspired by

the concepts of Faraday and Maxwell concerning

the electromagnetic field.

The electromagnetic field is assumed to be

smooth and nonsingular. Since it is specified by

an antisymmetric tensor it can conveniently be

used to define a two-form F = 1
2Fµνdx

µ ∧ dxν .
Two of the four Maxwell equations imply that F

is closed, dF = 0, where d is the exterior deriva-

tive. Let Σ be a two-dimensional surface embed-

ded in space-time. Then we can define a flux of

F through Σ, written simply as
∫
Σ F .

If Σ is a closed two-surface, that is has no

boundary, written ∂Σ = 0, and called a two-

cycle, then the flux through it has remarkable

invariance properties. It is unchanged either if

Σ is altered to Σ′ differing by the boundary of a
three-surface or if F is altered by a total deriva-

tive. These are straightforward consequences of

Stokes’ theorem. This means that the flux is

a number associated with a (homology) class of

two-cycles and a (cohomology) class of field strengths.

If Σ is itself a boundary of a three-surface,

it is certainly closed. But then any flux through

it must vanish. But if space-time is sufficiently

complex this need not be the case and then Σ can

capture a nonzero flux which is associated with

the “hole” in space-time enclosed within Σ.

That the values of these fluxes cannot be ar-

bitrary was pointed out by Dirac, in 1931, by tak-

ing account of the quantum theory that should

apply to any electrically charged particles mov-

ing in space-time [12]. Suppose such a particle

is spinless and carries electric charge q. Then it

should have a complex scalar wave function φ(x)

that can be defined all over space-time, at least

in a piecemeal sense.

Now the gauge principle implies that φ cou-

ples to the gauge potential, A where F = dA.

The field strength F is well defined all over space-

time but A can only be obtained from it by in-

tegration. The result is unambiguous only if the

integration is restricted to a topologically triv-

ial region or neighbourhood. Likewise the wave

function φ can also only be defined in such a

neighbourhood. Space-time can be covered with

such regions and when there is an overlap the two

versions of A and φ should be capable of being

related by a gauge transformation:

φ(x)→ e iqχ(x)h̄ , A→ A+ dχ. (1)

This procedure is only consistent if the fluxes

satisfy certain constraints, the celebrated Dirac

quantisation conditions [12]:

q

2πh̄

∫
Σ

F = m(Σ) ∈ ZZ. (2)

This version of the argument was due to Orlando

Alvarez in 1985 [13].

Notice that electrically charged particles have

entered in a surreptitious way, as has Planck’s

constant h̄.

So far space-time has been assigned neither

a metric nor even a dimension. Now we take the

latter to be four and see that this implies some-

thing special, given the electromagnetic field F .

For there is a natural closed four-form F ∧ F ,
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quadratic in F , defined on space-time. Its inte-

gral over space-time should be something topo-

logical (though different from the instanton num-

ber it would be if the field were non abelian in-

stead of abelian). In fact the integral can be

evaluated to be quadratic in the fluxes already

introduced:

( q
2πh̄

)2 ∫
F ∧ F =

b2∑
i,j=1

m(Σi)Qijm(Σj), (3)

if it is assumed that space-time is Poincaré dual,

that is closed, compact and orientable. The classes

of two-cycles mentioned above can be added in

a perfectly natural way and, as a consequence,

form a lattice, whose dimension defines the sec-

ond Betti number, b2. Σ1,Σ2, . . .Σb2 form a ba-

sis for this lattice and the number (Q−1)ij is the
intersection number of Σi with Σj . This is well

defined precisely because of the sum 2 + 2 = 4,

the dimension of space-time. So (Q−1)ij is an
integer valued matrix. It is also symmetric, and

more remarkably has determinant ±1, because of
Poincaré duality. Hence the matrixQij occurring

above also has integer entries and the expression

(3) above is quantised too.

One role for expression (3) is as a possible

contribution to the action. Since it is the integral

of a total derivative it would leave the classical

equations of motion unaffected and only affect

quantum amplitudes. Indeed when multiplied by

a coefficient denoted θh̄/2 it yields what is known

as the theta term.

To specify the action fully it is necessary

to introduce a Minkowski metric on space-time

(thereby limiting its possible topology). With

this it is possible to define a Hodge star oper-

ation mapping p-forms onto 4 − p-forms. This
therefore maps 2-forms onto themselves and it

does so in a way which is unaltered if the metric

gµν(x) is rescaled:

gµν(x)→ λ(x)gµν(x), (4)

i.e. a Weyl transformation. In this notation, the

conventional Maxwell term in the action reads as
1
2

∫
F ∧ ∗F , making altogether the free action

h̄

4π

( q
h̄

)2 ∫
F ∧
(
θ

2π
+
2πh̄

q2
∗
)
F.

This can be simplified by introducing the “geo-

metric” version of the field strength, f = qF/h̄,

rescaled to have dimensionless fluxes according

to (2). Then the quantum phase factor

e i
WMINKOWSKI

h̄ = e
i
4π

∫
f∧τ̂f
, (5)

where

τ̂ =
θ

2π
+
2πh̄

q2
∗ . (6)

The metric has Minkowski signature, ∗∗ =
−1, and so ∗ acts like an imaginary unit. Ac-
cordingly we can define a complex variable τ by

(6) with ∗ replaced by i. Notice this variable is
intrinsically dimensionless and that its imaginary

part is essentially the inverse of the fine structure

constant, and hence positive.

Evidently the transformation θ → θ+2π cor-
responds to τ → τ + 1 and is a symmetry of the
quantum phase (5), providing the matrix Q in

(3) has even integer entries on the diagonal. If

not, Q is said to be odd, and the phase (5) has

the lesser symmetry θ → θ + 4π or τ → τ + 2.
We are now ready to start discussing the

electromagnetic duality transformations.

The Euler-Lagrange equations resulting from

varying the gauge potential in the action

WMINKOWSKI in (5) is simply d(τ̂ f) = 0. Since

we also have df = 0 the following transformations

provide symmetries of the equations of motion,

transporting solutions into solutions:

τ̂f → Aτ̂ f +B f (7a)

f → Cτ̂ f +Df, (7b)

where the coefficients A,B,C and D are simply

real numbers [14,15]. The field strength can be

eliminated between these two equations yielding

a fractional linear transformation of the complex

dimensionless coupling τ :

τ → Aτ +B
Cτ +D

. (8a)

Before discussing what this can mean, let us note

that it implies that τ2, the imaginary part of τ

and the inverse of the fine structure constant,

transforms as

τ2 → (AD −BC)τ2|Cτ +D|2 . (8b)

3
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Since τ2 is intrinsically positive the determinant

AD−BC should be positive, and in fact unity, for
reasons to be seen below. Let us accept this and

look at the subgroup of the SL(2, IR) group of

transformations leaving τ unchanged. Obviously

the fine structure constant is unchanged, so, by

(8b), Cτ +D is a phase. This means that there

exists an angle φ for which Cτ1 + D + iCτ2 =

eiφ = cos φ+ i sin φ, and we have an SO(2) sub-

group. Hence inserting in (7b),

f → f cos φ+ ∗f sin φ.
If the Minkowski metric is flat we recognise this

as describing electromagnetic duality rotations

through φ between the electric and magnetic fields.

Rotation through π/2 supplies the original elec-

tromagnetic duality transformation.

It is very familiar that these electromagnetic

duality rotations that do not affect the coupling

τ leave the energy momentum tensor invariant.

We now consider the effect of the more general

transformations (7) that do change τ . Since the

energy momentum tensor θµν is proportional to

the response of the action to a variation of the

metric gµν , it cannot depend on the angle θ and

hence τ1, since expression (3) is topological. In

fact

θµν/h̄ =
τ2

4π
(fµλfσν + ∗fµλ ∗ fσν) gλσ

in terms of the geometric field strengths, f . The

effect of the transformations (7) is to produce an

overall factor AD−BC. Since energy is intrinsi-
cally positive, this factor again has to be positive.

The demand that the energy-momentum tensor

be invariant requires the factor to be unity so

that the transformations form the group SL(2, IR).

Notice that to achieve this when τ is not fixed,

the transformations have to be applied to the ge-

ometric field strengths f rather than the original

physical ones F .

Evidently, if τ is altered, the transformations

(7) provide not a symmetry of a given theory

but rather relationships between similar theories

at different values of the coupling. But there is

something fishy for it is the dimensionless cou-

pling that is altered and this involves Planck’s

constant according to (6). So it is not a classical

effect that is at stake but rather a quantum ef-

fect. We should therefore be be taking account of

quantum mechanics, for example the Dirac quan-

tisation conditions (2).

Indeed we have already met the transforma-

tion T sending τ to τ + 1 which is sometimes a

symmetry of the quantum phase (5), when ac-

count is taken of of (2) and (3). It corresponds

to the SL(2, IR) matrix T =

(
1 1

0 1

)
.

The S transformation of Montonen and my-

self corresponded to the matrix S =

(
0 −1
1 0

)

sending τ to −1/τ and very dramatically inter-
changing strong and weak coupling regimes. In

the supersymmetric SU(2) gauge theory it was

realised by interchanging a magnetically charged

soliton, the ’t Hooft-Polyakov monopole [16,17],

with a gauge particle. This is the relation be-

tween duality, solitons and integrability, all themes

of our TMR network.

Now S and T generate an infinite subgroup

of SL(2, IR), denoted SL(2, ZZ), and essentially

the modular group. How can the action of S be

realised in the toy model I have beeen describing?

Certainly not as a symmetry of the action or even

the quantum phase (5), but maybe it is possible

in terms of some physically observable quantities

such as the energy, H .

Unfortunately this cannot be constructed ex-

plicitly but the partition function, Z(τ) = Tr(e−H),
can. According to Feynman’s ideas this emphat-

ically Minkowski metric quantity can be reex-

pressed as a Feynman path integral involving an

action which is Euclidean rather than Minkowski

because of the imaginary time implied [18]. Fur-

thermore, the trace implies periodicity in this

time and the effective four-dimensional space-

time in the action therefore factorises into a cir-

cle S1 times a 3-manifold. It is also possible to

consider an extended partition function (which is

no longer real) and involves any (Poincaré dual)

four-manifold with a Euclidean metric. It could

even have non-vanishing Euler number and con-

sequently lack any Minkowski metric and, in-

deed, any obvious physical interpretation.

The effect of the Dirac quantisation condi-

tions (2) is an unexpected simplification of the

evaluation of the path integral. The field con-

figurations integrated over fall into topological

sectors labelled by the flux quanta m. By a

4
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theorem due to Hodge, there is just one solu-

tion to Maxwell’s equations in each sector. This

makes it easy to apply the semi-classical approx-

imation which is essentially exact. The result is

a sum over the integers, m, of an exponential

of a quadratic in m. This is a generalised sort

of theta function associated with the unimodu-

lar matrix Q (and the metric). For example, if

four-dimensional space-time is the complex pro-

jective space CP (2), the Betti number b2 is just

one and the result is simply proportional to the

familiar theta function associated with the uni-

modular lattice consisting of integers, ZZ, namely∑
n∈ZZ e

iπτn2 . This transforms nicely under S

because of the Poisson summation formula and

so do all the other theta functions because the

matrix Q is unimodular by virtue of Poincaré

duality.

When the matrix Q is even, the previous ar-

gument suffices to show that the partition func-

tion is invariant under T and hence transforms

nicely under the whole modular group acting on

the coupling τ . Thus quantum effects do break

the SL(2, IR) group action (8a) on the coupling

τ to the discrete subgroup given by restricting

to integer entries. Division by the invariant sub-

group consisting of plus or minus the unit matrix

yields the modular group.

When the matrixQ is odd only T 2 works and

not T . But there is then another difficulty, asso-

ciated with possible spin 1/2 particles that will

compensate. The difficulty is that real spinor

wave functions are now forbidden on such space-

times because of what mathematicians know as a

Stiefel-Whitney obstruction. Complex (and thus

electrically charged) spinor wave functions are

possible only if some if the integral flux units

in (2) become half-integral. To accommodate

this, a second partition function is needed in ad-

dition to the one for integral fluxes associated

with scalar wave functions and spinless particles.

The pair (together with a third) then support

the action of the whole modular group. Details

of this are explained in the two papers by M Al-

varez and myself [8,9], but the main message is

an interplay between topology, the Atiyah-Singer

index theorem and the properties of unimodular

lattices and associated theta functions.

Many questions remain, even in this limited

context. The most impressive demonstration ap-

pears to be that of the modular transformation

properties of the extended partition functions as-

sociated with an arbitary (Poincaré dual) four-

manifold. These partition functions require the

assignment of a Euclidean metric (which is al-

ways possible) but their transformation proper-

ties are independent of this choice as they are

characterised by weights which are linear com-

binations of topological invariants that have the

property of being local, that is integrals of lo-

cal quantities over the four manifold (the Euler

number and the Hirzebruch signature) [11]. The

trouble is that electromagnetic duality is a fea-

ture of space-time with a Minkowski signature

and these space-times cannot be assigned such a

metric unless the Euler number vanishes.

The only case with an obvious direct physi-

cal interpretation is when the four-manifold fac-

torises as a circle times a three-manifold. Then

the partition function is genuinely of the form

Tr(e−H) and is indeed exactly modular invari-
ant as the weights vanish.

It is desirable to find other quantities which

can be identified physically and exhibit good be-

haviour under the modular group. One possibil-

ity concerns a sort of correlation function involv-

ing loop operators [10].

The SL(2, IR) transformations (7) were first

considered in the contexts of supergravity theo-

ries where there is an important difference from

our context. In supergravities the quantity τ is

not a coupling but a function of additional scalar

fields in the theory. Thus (8a) is just another field

transformation and what is being considered is

a continuous group of classical transformations

forming symmetries of the energy momentum-

tensor in a single theory. This interpretation is

conceptually quite different from that discussed

in the concept of the toy model.

In supergravity theories there naturally oc-

cur several copies of the Maxwell field, N , say.

Obviously these can be rotated into each other

and the full set of linear transformations extend-

ing (7) forms the group Sp(2N, IR) [15]. Of course

Sp(2, IR) and SL(2, IR) are isomorphic. It is nat-

ural to expect that quantum effects would break

this to the discrete subgroup Sp(2N,ZZ).

The ideas can be extended to space-times

5
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of higher even dimension, 2n say, equipped with

closed mid-forms, i.e. n-forms F . Because F 1 ∧
F 2 = (−1)nF2 ∧ F1 and ∗∗ = (−1)n+1, it mat-
ters whether n is even or odd. The relevant

transformation groups turn out to be Sp(2N, IR)

and O(N,N, IR) respectively [19]. Presumably,

when the (n − 1)-form potential couples to the
world-volume of a (n− 2)-brane [20], these con-
tinuous groups break to the discrete subgroups

Sp(2N,ZZ) and O(N,N,ZZ) respectively. How-

ever it is not clear how to generalise the analysis

described above for n = 2. This is because it

is not really known how to formulate the wave-

function of a brane and distinguish the scalar and

spinor cases. Thus one is not sure which fluxes

are integral or half-integral and how this relates

to suitably generalised Stiefel-Whitney classes.

Notice that if n = 1 and N = 1 the relevant

group is O(1, 1, ZZ). When this is divided by the

invariant subgroup ±I the result is a Z2 gener-
ated by the S transformation, agreeing with the

old result of Kramers and Wannier [2].

Superstring theories display an even richer

structure which is still being explored. Never-

theless one sees an expanding role for generalisa-

tions of the modular group and associated func-

tions. That is one reason why the theory of

those very large algebras called Borcherds alge-

bras may be important. They associate algebraic

structures generalising ones originating in string

theory with new sorts of modular group.
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