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Abstract: A central problem of mirror symmetry is to understand Calabi-Yau moduli spaces at

large complex structure. The basic techniques for this problem have been developped by Griffiths,

Deligne and Schmid. The moduli space for complex structures is mapped into Griffiths’ classifying

space for Hodge structures, and the image is approximated by a nilpotent orbit up to exponentially

small terms. Schmid described the geometry of the nilpotent orbit by equations which later were

found by the speaker in the context of magnetic monopoles. The nilpotent orbit case corresponds to

the special case of a maximally degenerate spectral curve.
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1. Boundaries of the M-theory mod-

uli space

There are two limits in which non-perturbative

string theory (alias M-theory) is accessible to cal-

culations, namely small spacetime curvature and

small string coupling. In the first case, in partic-

ular for strings on the product of a flat spacetime

with a compact internal space of large radius, one

obtains in the limit a conventional quantum field

theory on an Einstein spacetime. The behaviour

at small string coupling, on the other hand, is de-

scribed by a superconformal theory on the string

worldsheet. If the present indications of a low

Higgs mass will hold true, one even can hope for

low energy supersymmetry and consequently for

extended supersymmetry in the worldsheet the-

ory. Together with T- and S-duality, the two lim-

its might give sufficient control over the bound-

aries of the (hypothetical) M-theory moduli space

to get a handle on more realistic situations.

At present, even the understanding of the

boundaries is far from complete. Even in the

favorable case of extended supersymmetry, the

conformal field theories are only solvable for spe-

cial parameters, and there is still much to be

learned from the case where the two limits are

performed together. But at least a complete un-

derstanding of the geometry and metric of their

moduli spaces seems feasible. This means that

it will be much easier to classify the theories

then to describe them in detail. Moreover, for

the special physical quantities described by mero-

morphic functions the description of the moduli

space takes us very close to an explicit computa-

tion, since for a conventional vacuum one expects

compactifiable spaces.

2. Classical and quantum moduli spaces

The moduli space M of a conformal theory with

extended supersymmetry is closely related to cer-

tain moduli spaces of classical geometrical struc-

tures. In the limiting case when both the string

coupling and the spacetime curvature tend to

zero, it is clear that the conformal theory is given

by a non-linear sigma model on a Calabi-Yau

manifold X , such that M can be projected to

the moduli spaceM(X) of complex structures of

the underlying differentiable manifold. For IIA

theories with (exactly) N = (2, 2) supersymme-

try, in particular for central charges c = 3 and

c = 9, one also obtains a projection to the mod-

uli space of the mirror manifold X ′, and M =

M(X) × M(X ′), at least locally. The spaces
M(X),M(X ′) have complex structures of their
own.
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For c = 6 one does not find such a factoriza-

tion. Indeed, mirror symmetry is obtained from

the non-trivial automorphism of a U(1) subgroup

of the supersymmetry. For c = 6, the super-

symmetry gets extended to N = (4, 4), the U(1)

group is embedded in SU(2) and all automor-

phisms are inner. Thus the moduli space is no

longer described by the product of two moduli

spaces of classical geometry. Nevertheless, the

relation to classical structures is still close, as we

shall see.

The classical moduli spaces have been stud-

ied extensively by mathematicians, and many re-

sults still have to be assimilated by physicists.

On the other hand, the physics perspective opened

new directions for mathematics, too, with many

new directions to explore. The present talk will

hint at some issues which may deserve more at-

tention.

Omitting some subtleties, the classical mod-

uli spaces are described as follows. Consider a

manifold or algebraic variety X of complex di-

mension D = c/3 and its cohomology group

H∗(X,R). This is a real vector space with a sub-
lattice H∗(X,Z) and a wedge product. The pro-
jection of the latter to the generator ofHD(X,R)

yields groupsO(Heven(X,R)) and Sp(Hodd(X,R)).

The position of every natural subspace ofH∗(X,Z)
yields continuous parameters, which can be de-

scribed by positions in some coset of those groups.

Again, the case of complex dimension D = 2

is somewhat special. Here Ricci flatness of the

metric implies that X is a torus or a K3 vari-

ety. The torus case is easy, so let us consider

X = K3. In this case Hodd vanishes, and all

the interesting classical structure is contained in

H2(X,R), which has 22 dimensions. Under the

wedge product it has signature (3, 19). Moreover,

on H2(X,R) the metric induces an action of the

Hodge star operator. One is in the middle dimen-

sion, such that this automorphism ofH2(X,R) is

independent of the scale of the metric. Its square

is 1, such that H2(X,R) decomposes into its

eigenspaces H+ and H− on which the Hodge op-
erator has eigenvalues +1 and -1, resp. Locally,

this yields a map from the moduli space of Ricci

flat K3 metrices to SO(H2(X,R))/(SO(H+) ×
SO(H−)). It turns out that H+ has dimension 3
and is positive definite, whereas H− is negative

definite and has dimension 19.

Together with the integral sublattice, this

decomposition is sufficient to classify the Ricci

flat metrics. If one fixes the lattice, the Grass-

mannian of subspaces of dimension 3 has the

form

O(3, 19)/O(3)×O(19)
and dimension 57. Actually one should be more

careful about the connected components of the

orthogonal groups [1].

If one takes into account the lattice automor-

phism group Γ(3, 19) the moduli space becomes

Γ(3, 19)\O(3, 19)/O(3)×O(19).
This structure is typical, a non-compact Lie group

modulo a maximal compact subgroup and an arith-

metic subgroup.

In the string moduli space, the scale of the

metric becomes important due to quantum cor-

rections. Moreover, one has 22 B-field compo-

nents, such that the complete moduli space has

80 dimensions. Roughly speaking, the moduli

space takes the form

Γ(4, 20)\O(4, 20)/O(4)×O(20).
Its points can be interpreted as specifying the rel-

ative position of a positive definite four-dimensional

subspace and the integral latticeH∗(X,Z) within
the 24-dimensional space H∗(X,R). This mod-
uli space no longer has any symmetries, such that

any conformal field theory which can be placed

in it has a unique location. Finding this location

is interesting, since one may be able to interpo-

late between two theories or otherwise explore

the space of the corresponding string theories.

One example is given by the Z2 orbifolds

of four dimensional torus theories. The moduli

space of the torus theories has the form

Γ(4, 4)\O(4, 4)/O(4)×O(4)
(Narain) and the Z2 orbifolding procedure should

yield an embedding. The torus moduli space cor-

responds to a sublattice of an eight dimensional

space (the charge lattice of the theory), and a

subspace which corresponds to the splitting of

charges into left and right components.

On first sight, one might want to embed this

space into the K3 moduli space by the direct sum
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with a standard 16 dimensional space, but this

turns out to be wrong. When one takes parity

into account, the action on the Narain and K3

spaces is incompatible with such a simple proce-

dure. Instead, one first has to use O(4, 4) triality,

which works analogously to the well known O(8)

triality. There is a two-fold ambiguity, which cor-

responds to the fact that generic points of the

Narain moduli space correspond to two points

of the K3 space, corresponding to two N = 2

subalgebras of the N = 4 supersymmetry. More-

over, the eight dimensional geometry has to be

rescaled by a factor of two. A direct sum with

a standard 16 dimensional space occurs, but this

only yields a sublattice of finite index of the K3

lattice.

Similar results apply to other torus orbifolds,

see [1] for Z4 and [2] for Z3 and Z6. Finding the

location of Gepner points of the K3 moduli space

needs different techniques, but is possible, too.

3. Schmid’s work on large complex

structures

Now let us consider c = 9, corresponding to

strings on three dimensional Calabi-Yau varieties,

which for simplicity we take to be simply con-

nected. Their classical moduli space is given by

the Hodge decomposition of the complexification

of H3(X,R). More precisely, H3(X,R) decom-

poses into a two dimensional real vector space

given by the real part of H0,3⊕H3,0 and a com-
plementary H1,2 ⊕ H2,1. On both of them, the
Hodge decomposition yields a complex structure.

Locally, this yields an embedding of the moduli

space into Sp(H3(X,R))/(U(1)×U(h1,2)), where
h1,2 is the dimension of H1,2. Globally, one still

has to divide by the action of Sp(H3(X,Z).

Bryant and Griffiths have shown that one al-

ready obtains an embedding by considering the

real part of H0,3 ⊕H3,0, which gives an embed-
ding into Sp(H3(X,R))/(U(1) × Sp(h1,2)) [3].
The latter space has a complex structure given

by the U(1) action on its tangent space. Its com-

plex dimension is 2h1,2+1. The analogous space

for c = 3 is Sp(2)/U(1), which is just the com-

plex upper half plane. The embedding of M(X)

is compatible with the complex structures.

The complex structure of the space

Sp(H3(X,R))/(U(1) × Sp(h1,2)) can be made
manifest by including it in Sp(H3(X,R)/B, where

B is a suitable Borel subgroup. In a suitable

basis, B is described by lower triangular ma-

trices. In this basis, the grading of gl(N) in-

duced by d(eij) = j − i for the elementary ma-
trices eij descends to a corresponding grading of

sp(H3(X,R). The grading counts the matrix di-

agonals with integers which are negative below

the main diagonal and positive above.

Under mirror symmetry, rescaling the metric

of X corresponds to a large complex structure

limit of the mirror X ′. In this limit the com-
plex structure degenerates. In the following let

us consider a classical type of moduli spaces with

one complex parameter q, which for q = 0 de-

scribes a degenerating complex structure (chang-

ing the parameter by q′ = q + O(q2) affects the
calculation of non-perturbative effects but here

it will not matter). In a well-known paper [4],

Schmid has proven two important theorems about

this situation.

The first one is the nilpotent orbit theorem.

It states that for some nilpotent generator N of

Sp(H3(X,R)), the map from the q-plane to the

moduli space can be approximated up to expo-

nentially small terms by q 7→ exp(Nz)a, where
q = exp(2πiz) and a is a point in Sp(H3(X,Z)/B.

For consistency, z and z+1 must yield the same

point in the moduli space, such that exp(N) has

to belong to Sp(H3(X,Z)).

For the case of the mirror of the quintics

5∏
i=1

xi = q
5∑
i=1

x5i

which is given by the same equation modulo Z5
actions, one easily obtains the values of N and

a from [5], [6]. One has h1,2 = 1, such that N

is a 4 × 4 matrix acting on a three-dimensional
projective space, namely

N =




10 11/2 −5 0

0 0 0 0

20 10 −10 0
10 −25/6 −11/2 0




For the transpose of a one finds.

at = (−25/12, 1, −25/6, 25iζ(3)π−3)
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The transcendental entry in a is remarkable,

since everything else is given by rational num-

bers. Under mirror symmetry it is related to a

loop integral, as discussed in [5]. The later math-

ematical reception of this paper did not com-

ment on this number. One possible reason is

that in the physics literature it occurs as constant

term of the prepotential, a quantity with no clear

mathematical meaning. As we have seen, it is

implicit in the old mathematical literature, how-

ever. As a guess, it might be related to Deligne’s

work on mixed Hodge structures and Tate mo-

tives, which unfortunately remains largely un-

published.

The second theorem of Schmid is the SL2
orbit theorem. It yields a more precise descrip-

tion of the orbit q 7→ exp(Nz) ◦ a, where we now
include the real part of H1,2 ⊕ H2,1 in the de-
scription. Schmid shows that one can write

exp(Nz)a = h(z)a

where h(z)−1h′(z) only has components of de-
grees 1 and -1 in the grading of sp(H3(X,R) in-

troduced above. He changes variables to z = iy

and considers real y. He introduces the linear

map θ = (−)d which acts as -1 on elements of odd
degree of sp(H3(X,R) and as +1 on elements of

even degree. With

A(z) = −2h(y)−1h′(y)
F (y) = h(y)−1Nh(y)
E(y) = −θF (y)

he shows that

2E′(y) = −[A(y)E(y)]
2F ′(y) = [A(y)F (y)]
A′(y) = −[E(y)F (y)]

Modulo a base change of sl(2) these are the

same equations which were found later in the de-

scription of self-dual magnetic monopoles [7] [8]

[9].

When one conjugates by h, one obtains dif-

ferential equations for the matrices h′(y)h(y)−1

and h(y)E(y)h(y)−1. These equations can be
solved in terms of Riemannian theta functions

and a linear flow on the Jacobian of a spectral

curve. In Schmid’s case the spectral curve is

maximally degenerate, since for y →∞ all matri-
ces converge to zero. This means that the entries

of h′(y)h(y)−1 and h(y)E(y)h(y)−1 are rational
functions of y, a fact proved by Schmid in a dif-

ferent way.

Since a lot of experience has beeen gained in

the solution of the monopole equations, it may

be interesting to return to Schmid’s work from

this perspective.

Schmid’s construction shows that N has a

natural interpretation as the raising generator of

an sl2 Lie algebra. Under mirror symmetry this

sl2 given by the limit of large complex structure

corresponds to the sl2 generated by the Kähler

operator and its adjoint. The analogy between

the two Lie algebras is stressed on page 249 of [4],

a remarkably early premonition of mirror sym-

metry, and another instance of astonishing par-

alellism in the development of mathematics and

physics.
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