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Abstract: Based on work of P. Slodowy, P. Kronheimer, and a joint paper with C. Bachas and B. Pio-

line (hep-th/0007067), I will discuss the space of solutions of the matrix-equations Ẋa = εabcXbXc−Xa
for 3 antihermitean traceless N × N matrices Xa(t), t ∈ (−∞,+∞), interpolating between different
representations of su(2). I will also discuss solutions of Ẍi =

∑d
j=1 [[Xi, Xj ], Xj] .

C onsider 3 traceless, antihermitean N × N
matrices Xa(t), t ∈ (−∞,+∞), develop-

ping in time according to the equations

Ẋa = εabcXbXc −mXa . (1)

The stationary points of this flow are represen-

tations of su(2), i.e. Xa = mJa,

[Ja, Jb] = εabcJc . (2)

The question is: given 2 such representations,

ρ+ and ρ−, under which circumstances do there
exist solutions Xa(t) of (1) approaching the rep-

resentation ρ+ as t→ +∞ and (being conjugate
to) ρ− as t→ −∞ ?
Denoting the space of such solutions by

M(ρ−, ρ+), Kronheimer [1], in parts building
on work of Slodowy [2][3], proved that

M(ρ−, ρ+) = N (ρ−) ∩ S(ρ+) , (3)

where the r.h.s. is well known from singularity

theory related to Lie algebras [2]. In the main

part of my talk, based on joint work with C.

Bachas and B. Pioline (see [4]; in particular con-

cerning the physical relevance of (1), (3)) I will

discuss (3):

Take

h =

(
1 0

0 −1
)
, x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
(4)

as generators of s`(2,C), the complexification of

su(2); denote by H± := ρ±(h), X± := ρ±(x),

Y± := ρ±(y), the corresponding N × N matri-
ces in the representation ρ±, i.e. satisfying the
same commutation relations as those following

from (4),

[x, y] = h, [h, x] = 2x, [h, y] = −2y . (5)

N (ρ±) is then defined as the orbit of Y± un-
der the complexified gauge group, SU(N)C =

SL(N,C):

N (ρ −
(+)
) := {gY −

(+)
g−1 | g ∈ SL(N,C)} (6)

while

S(ρ +
(−)
) = Y +

(−)
+ Z(X +

(−)
) (7)

where

Z(X +
(−)
) := {A ∈ s`(N,C) | [A,X +

(−)
] = 0} (8)

is the centralizer of X +
(−)
.

Example (N = 3):

Let ρ− be the irreducible 3-dimensional rep-
resentation of su(2), and ρ+ = 2 ⊕ 1 the direct
sum of the irreducible 2-dimensional one, and the

trivial 1-dimensional (putting all Ja = 0). Then

one has

Y− =
√
2


 0 0 01 0 0

0 1 0


 Y+ =



0 0 0

1 0 0

0 0 0




X− =
√
2


 0 1 00 0 1

0 0 0


 X+ =



0 1

0 0

0



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H− =


 2 0 00 0 0

0 0 −2


 H+ =



1 0

0 −1
0


 . (9)

In this example,

S(ρ+) =


s =


 a b c

1 a 0

0 e −2a


 | a, b, e, c ∈ C


 ,
(10)

as can be found either by a simple explicit com-

putation, or using the general fact that s`(N,C)

decomposes, under the adjoint action of ρ +
(−)
into

irreducible representation spaces of s`(2,C), each

of which contains exactly one 1-parameter fam-

ily of elements of Z(X +
(−)
); in the above case,

s`(3,C) decomposes, under the action of (Y+ =

E21, X+ = E12, H+ = E11 − E22) into one 3-
dimensional representation space (ρ+ itself, con-

tributing C · X+ to Z(X+)), two 2-dimensional
ones: spanned by E23 and [E12, E23] = E13 ∈
Z(E12), resp. E31 and [E12, E31] = −E32 ∈
Z(E12), and one 1-dimensional one (C · (E11 +
E22 − 2E33) ∈ Z(E12)). Instead of computing
N (ρ−) explicitly, N (ρ−)∩S(ρ+) can, in the above
example, be determined by simply demanding

s3 = 0, s2 6= 0 for the elements in (10); this
gives b = −3a2, ec = 8a3, i.e.

N (ρ−) ∩ S(ρ+) = (11)

=




 a −3a

2 c

1 a 0

0 e −2a


 a,c,e∈C
ec=8a3


 .

According to (3), M(ρ−, ρ+) is therefore the 4-
dimensional (singular) space (11). Let me now

sketch (part of) the proof of (3) (cp [1]): One

first ‘gauges’ (1) by introducing a 4-th traceless,

antihermitean, N×N matrix, X0, and going over
to the equations

Ẋa + [X0, Xa] =
1

2
εabc[Xb, Xc]−mXa . (12)

Due to their invariance under

Xa → X̃a = U(t)XaU−1(t) ,
X0 → X̃0 = UX0U−1 − U̇U−1 , (13)

a solution X̃a of (1) may be obtained from a so-

lution Xa of (12) by closing U in (13) such that

X̃0 = 0. (12) is then split into one complex equa-

tion (from now on, m = 2)

β̇ + 2β + 2[α, β] = 0 , (14)

and one real equation,

d

dt
(α+α†) + 2(α+α†) + 2[α, α†] + 2[β, β†] = 0 .

(15)

Due to α := 1
2 (X0−iX3) and β := − 12 (X1+iX2)

no longer having to obey any (anti)hermiticity

conditions, the gauge-invariance of (14) is en-

hanced to complex (!) gauge transformations

α → gαg−1 − 12 ġg−1
g ∈ SL(N,C)

β → gβg−1 .
(16)

Kronheimer [1] then proved that any solution of

(14) (with the required boundary conditions) is

gauge equivalent to

α−(t) =
1

2
H−, β−(t) = Y− for t ∈ (−∞, 0]

α+(t) =
1

2
H+, β+(t) = Y+ + e

−2te−t adH+Z+

for t ∈ [0,+∞) , (17)

with Z+ ∈ Z(X+). Stated the other way round
(actually 0 may be replaced by any finite time,

in (17)): for any given solution (α, β) of (14)

there exist g+ and g− (approaching the identity,
resp. a constant group element, at t = +∞, resp.
t = −∞) such that, for any finite t,

β = g−1+ (Y+ + e
−(2+ adH+)tZ+)g+

2α = g−1+ H+g+ + g
−1
+ ġ+ (18)

AND

β = g−1− Y−g−
2α = g−1− H−g− + g

−1
− ġ− .

This means that for any finite t,

Y+ + e
−(2+adH+)tZ+ , (19)

which is ∈ S(ρ+), must be gauge-equivalent to
Y−, i.e. must be ∈ N (ρ−). Letting t → +∞,
while noting that (2+ adH+) is strictly positive

∗
∗in the previous example one would have

[H+ = E11 −E22,
X+
E13
E32

E11 +E22 − 2E33
] =

2X+
1 ·E13
1 ·E32
0
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on Z(X+), one finds that Y+ (hence N (ρ+)!)
must actually be contained in the closure ofN (ρ−)
(forM(ρ−, ρ+) to be non-empty). If this condi-
tion is fulfilled, the dimension of M, due to S+
and N− meeting transversely, can be computed
as follows :

dim(S+ ∩ N−) (20)

= dimS+ + dimN− − dim(S+ ∪ N−)
= dimS+ − dimS− .

In the second part of my talk (mostly based on

[5],[6]) I would like to recall some solutions to the

classical equations of motion,

Ẍi = −
d∑
j=1

[[Xi, Xj ], Xj ] (21)

d∑
j−1
[Xj, Ẋj ] = 0, X

†
i = Xi ,

of a regularized relativistic membrane in d + 2-

dimensional Minkowski-space (resp. a reduced

d + 1-dimensional SU(N) Yang Mills theory in

A0 = 0 gauge, with the fields Ai = Xi(t) being

space-independent).

The Ansatz

Xi(t) = x(t)rij(t)Mj (22)

with (rij) = e
Aϕ(t) ∈ SO(d), x2ϕ̇ = L = const,

1
2 ẋ
2 + λ

4x
4 + L2

2x2 = const, reduces (22) to the

equation

∑
j

[[Mi,Mj],Mj ] = λMi (23)

for a set of traceless hermitean N ×N matrices
Mi, i = 1 . . . d̃ (≤ d if A ≡ 0, ≤ d

2 if A
2
⇀

M=

− ⇀

M). Solutions of (23) include irreducible rep-

resentations of semi-simple Lie-algebras, and

⇀

M= (24)

1√
2

(
U+U−1
2 , U−U

−1
2i , V+V

−1
2 , V−V

−1
2i , 0 . . . 0

)

with V U = ωUV, ω = e
4πi
N , N odd, UN = 1l =

V N . Due to the matrices S⇀
m
:= ω

1
2m1m2Um1V m2

satisfying commutation relations approaching

those of ei(m1ϕ1+m2ϕ2) (under [f, g] ∼∈rs ∂rf∂sg)
(24) can be thought of as a discrete analogue of

⇀
m= 1√

2
(cosϕ1, sinϕ1, cosϕ2, sinϕ2, 0, . . . , 0)

(25)

defining a minimal Torus in the unit sphere S3

(just as
∑
i

M2i = 1l for (24)).

It would be very interesting to find solutions

of (23) that could be identified as discrete ana-

logues of higher-genus minimal surfaces in S3.

Another type of solutions of (21),

→
X =

∑
α rα(t)

⇀

Eα
→
E1 =

1
2 (S →m1

+ S →
−m1
, −i(S →

m1
− S →

−m1
), 0, . . . , 0) ,

→
E2 =

1
2 (0, 0, S→m2

+S →
−m2
,−i(S →

m2
−S →

−m2
), (26)

0, . . . , 0), . . .

r̈α = −4rα
∑
β

sin2(
2π

N
(
→
mα × →

mβ))r
2
β ,

was given in [6] (including their N =∞,⇀Ea→⇀e a
(ϕ1, ϕ2), continuum surface analogues). For re-

cent stability analyses of a spherical analogue of

such (rα=1...6, Ea+3 := Ea(− ⇀
ma) resp. ea+3 :=

ea(− ⇀
ma), <)(

⇀
ma,

⇀
mb) = 2π/3, a, b = 1, 2, 3) solu-

tions, resp. (22)/(23) with [Ma,Mb] = i ∈abc Mc
(cp. [5],[6]), see [7],[8].

Note added: I learned from E. Corrigan, that

eq. (23) was studied by Wainwright, Wilson, and

himself in a paper published in Comm.Math.Phys.

98 (1985) 259.
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