Some Classical Solutions of Matrix Model Equations

Jens Hoppe

Fachbereich Mathematik, MA 7-2, TU-Berlin, Strasse des 17.-ten Juni 136, D-10623 Berlin, Germany, and IHES, 35, route de Chartres, 91440 Bures-sur-Yvette, France.
E-mail: 'jhoppe@math.tu-berlin.de'

Abstract: Based on work of P. Slodowy, P. Kronheimer, and a joint paper with C. Bachas and B. Pioline (hep-th/0007067), I will discuss the space of solutions of the matrix-equations $\dot{X}_{a}=\epsilon_{a b c} X_{b} X_{c}-X_{a}$ for 3 antihermitean traceless $N \times N$ matrices $X_{a}(t), t \in(-\infty,+\infty)$, interpolating between different representations of $s u(2)$. I will also discuss solutions of $\ddot{X}_{i}=\sum_{j=1}^{d}\left[\left[X_{i}, X_{j}\right], X_{j}\right]$.

CONSIDER 3 traceless, antihermitean $N \times N$ matrices $X_{a}(t), t \in(-\infty,+\infty)$, developping in time according to the equations

$$
\begin{equation*}
\dot{X}_{a}=\epsilon_{a b c} X_{b} X_{c}-m X_{a} . \tag{1}
\end{equation*}
$$

The stationary points of this flow are representations of $s u(2)$, i.e. $X_{a}=m J_{a}$,

$$
\begin{equation*}
\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J_{c} \tag{2}
\end{equation*}
$$

The question is: given 2 such representations, ρ_{+}and ρ_{-}, under which circumstances do there exist solutions $X_{a}(t)$ of (1) approaching the representation ρ_{+}as $t \rightarrow+\infty$ and (being conjugate to) ρ_{-}as $t \rightarrow-\infty$?

Denoting the space of such solutions by
 on work of Slodowy $\overline{2}$, proved that

$$
\begin{equation*}
\mathcal{M}\left(\rho_{-}, \rho_{+}\right)=\mathcal{N}\left(\rho_{-}\right) \cap S\left(\rho_{+}\right) \tag{3}
\end{equation*}
$$

where the r.h.s. is well known from singularity theory related to Lie algebras [2]. In the main part of my talk, based on joint work with C. Bachas and B. Pioline (see [育]; in particular concerning the physical relevance of (1), (3)) I will discuss (3):

Take

$$
h=\left(\begin{array}{cc}
1 & 0 \tag{4}\\
0 & -1
\end{array}\right), x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

as generators of $s \ell(2, \mathbb{C})$, the complexification of $s u(2) ;$ denote by $H_{ \pm}:=\rho_{ \pm}(h), X_{ \pm}:=\rho_{ \pm}(x)$,
$Y_{ \pm}:=\rho_{ \pm}(y)$, the corresponding $N \times N$ matrices in the representation $\rho_{ \pm}$, i.e. satisfying the same commutation relations as those following from (4),

$$
\begin{equation*}
[x, y]=h,[h, x]=2 x,[h, y]=-2 y . \tag{5}
\end{equation*}
$$

$\mathcal{N}\left(\rho_{ \pm}\right)$is then defined as the orbit of $Y_{ \pm}$under the complexified gauge group, $S U(N)_{\mathbb{C}}=$ $S L(N, \mathbb{C})$:

$$
\begin{equation*}
\mathcal{N}\left(\rho_{(+)}^{-}\right):=\left\{g Y_{(+)}^{-} g^{-1} \mid g \in S L(N, \mathbb{C})\right\} \tag{6}
\end{equation*}
$$

while

$$
\begin{equation*}
S\left(\rho_{(-)}^{+}\right)=Y_{(-)}^{+}+Z\left(X_{(-)}^{+}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
Z\left(X_{(-)}^{+}\right):=\left\{A \in s \ell(N, \mathbb{C}) \mid\left[A, X_{(-)}^{+}\right]=0\right\} \tag{8}
\end{equation*}
$$

is the centralizer of $X_{(-)}^{+}$.
Example ($N=3$):
Let ρ_{-}be the irreducible 3-dimensional representation of $s u(2)$, and $\rho_{+}=2 \oplus 1$ the direct sum of the irreducible 2-dimensional one, and the trivial 1-dimensional (putting all $J_{a}=0$). Then one has

$$
\begin{aligned}
& Y_{-}=\sqrt{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) Y_{+}=\left(\begin{array}{ll|l}
0 & 0 & 0 \\
1 & 0 & 0 \\
\hline 0 & 0 & 0
\end{array}\right) \\
& X_{-}=\sqrt{2}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) X_{+}=\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & 0
\end{array}\right)
\end{aligned}
$$

$$
H_{-}=\left(\begin{array}{ccc}
2 & 0 & 0 \tag{9}\\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) H_{+}=\left(\begin{array}{cc|c}
1 & 0 & \\
0 & -1 & \\
\hline & & 0
\end{array}\right) .
$$

In this example,

$$
S\left(\rho_{+}\right)=\left\{\left.s=\left(\begin{array}{ccc}
a & b & c \tag{10}\\
1 & a & 0 \\
0 & e & -2 a
\end{array}\right) \right\rvert\, a, b, e, c \in \mathbb{C}\right\}
$$

as can be found either by a simple explicit computation, or using the general fact that $s \ell(N, \mathbb{C})$ decomposes, under the adjoint action of $\rho_{(-)}^{+}$into irreducible representation spaces of $s \ell(2, \mathbb{C})$, each of which contains exactly one 1-parameter family of elements of $Z\left(X_{(-)}^{+}\right)$; in the above case, $s \ell(3, \mathbb{C})$ decomposes, under the action of $\left(Y_{+}=\right.$ $\left.E_{21}, X_{+}=E_{12}, H_{+}=E_{11}-E_{22}\right)$ into one 3dimensional representation space (ρ_{+}itself, contributing $\mathbb{C} \cdot X_{+}$to $Z\left(X_{+}\right)$), two 2-dimensional ones: spanned by E_{23} and $\left[E_{12}, E_{23}\right]=E_{13} \in$ $Z\left(E_{12}\right)$, resp. E_{31} and $\left[E_{12}, E_{31}\right]=-E_{32} \in$ $Z\left(E_{12}\right)$, and one 1-dimensional one ($\mathbb{C} \cdot\left(E_{11}+\right.$ $\left.\left.E_{22}-2 E_{33}\right) \in Z\left(E_{12}\right)\right)$. Instead of computing $\mathcal{N}\left(\rho_{-}\right)$explicitly, $\mathcal{N}\left(\rho_{-}\right) \cap S\left(\rho_{+}\right)$can, in the above example, be determined by simply demanding $s^{3}=0, s^{2} \neq 0$ for the elements in (10); this gives $b=-3 a^{2}$, ec $=8 a^{3}$, i.e.

$$
\begin{align*}
& \mathcal{N}\left(\rho_{-}\right) \cap S\left(\rho_{+}\right)= \tag{11}\\
= & \left\{\left.\left(\begin{array}{ccc}
a & -3 a^{2} & c \\
1 & a & 0 \\
0 & e & -2 a
\end{array}\right) \right\rvert\, \begin{array}{l}
a, c, e \in \mathbb{C} \\
e c=8 a^{3}
\end{array}\right\} .
\end{align*}
$$

According to (3), $\mathcal{M}\left(\rho_{-}, \rho_{+}\right)$is therefore the 4dimensional (singular) space (11). Let me now sketch (part of) the proof of (3) (cp [1]): One first 'gauges' (1) by introducing a 4 -th traceless, antihermitean, $N \times N$ matrix, X_{0}, and going over to the equations

$$
\begin{equation*}
\dot{X}_{a}+\left[X_{0}, X_{a}\right]=\frac{1}{2} \epsilon_{a b c}\left[X_{b}, X_{c}\right]-m X_{a} \tag{12}
\end{equation*}
$$

Due to their invariance under

$$
\begin{align*}
& X_{a} \rightarrow \tilde{X}_{a}=U(t) X_{a} U^{-1}(t), \\
& X_{0} \rightarrow \tilde{X}_{0}=U X_{0} U^{-1}-\dot{U} U^{-1}, \tag{13}
\end{align*}
$$

a solution \tilde{X}_{a} of (1) may be obtained from a solution X_{a} of (12) by closing U in (13) such that
$\tilde{X}_{0}=0 .(12)$ is then split into one complex equation (from now on, $m=2$)

$$
\begin{equation*}
\dot{\beta}+2 \beta+2[\alpha, \beta]=0 \tag{14}
\end{equation*}
$$

and one real equation,
$\frac{d}{d t}\left(\alpha+\alpha^{\dagger}\right)+2\left(\alpha+\alpha^{\dagger}\right)+2\left[\alpha, \alpha^{\dagger}\right]+2\left[\beta, \beta^{\dagger}\right]=0$.
Due to $\alpha:=\frac{1}{2}\left(X_{0}-i X_{3}\right)$ and $\beta:=-\frac{1}{2}\left(X_{1}+i X_{2}\right)$ no longer having to obey any (anti)hermiticity conditions, the gauge-invariance of (14) is enhanced to complex (!) gauge transformations

$$
\begin{align*}
& \alpha \rightarrow g \alpha g^{-1}-\frac{1}{2} \dot{g} g^{-1} \\
& \beta \rightarrow g \beta g^{-1} \tag{16}
\end{align*}
$$

Kronheimer [1] then proved that any solution of (14) (with the required boundary conditions) is gauge equivalent to

$$
\begin{gather*}
\alpha_{-}(t)=\frac{1}{2} H_{-}, \beta_{-}(t)=Y_{-} \quad \text { for } t \in(-\infty, 0] \\
\alpha_{+}(t)=\frac{1}{2} H_{+}, \beta_{+}(t)=Y_{+}+e^{-2 t} e^{-t a d H_{+}} Z_{+} \\
\text {for } t \in[0,+\infty), \tag{17}
\end{gather*}
$$

with $Z_{+} \in Z\left(X_{+}\right)$. Stated the other way round (actually 0 may be replaced by any finite time, in (17)): for any given solution (α, β) of (14) there exist g_{+}and g_{-}(approaching the identity, resp. a constant group element, at $t=+\infty$, resp. $t=-\infty)$ such that, for any finite t,

$$
\begin{align*}
\beta & =g_{+}^{-1}\left(Y_{+}+e^{-\left(2+a d H_{+}\right) t} Z_{+}\right) g_{+} \\
2 \alpha & =g_{+}^{-1} H_{+} g_{+}+g_{+}^{-1} \dot{g}_{+} \tag{18}
\end{align*}
$$

AND

$$
\begin{aligned}
\beta & =g_{-}^{-1} Y_{-} g_{-} \\
2 \alpha & =g_{-}^{-1} H_{-} g_{-}+g_{-}^{-1} \dot{g}_{-} .
\end{aligned}
$$

This means that for any finite t,

$$
\begin{equation*}
Y_{+}+e^{-\left(2+a d H_{+}\right) t} Z_{+} \tag{19}
\end{equation*}
$$

which is $\in S\left(\rho_{+}\right)$, must be gauge-equivalent to Y_{-}, i.e. must be $\in \mathcal{N}(\rho-)$. Letting $t \rightarrow+\infty$, while noting that $\left(2+a d H_{+}\right)$is strictly positive*

[^0]on $Z\left(X_{+}\right)$, one finds that Y_{+}(hence $\mathcal{N}\left(\rho_{+}\right)$!) must actually be contained in the closure of $\mathcal{N}\left(\rho_{-}\right)$ (for $\mathcal{M}\left(\rho_{-}, \rho_{+}\right)$to be non-empty). If this condition is fulfilled, the dimension of \mathcal{M}, due to S_{+} and \mathcal{N}_{-}meeting transversely, can be computed as follows :
\[

$$
\begin{align*}
& \operatorname{dim}\left(S_{+} \cap \mathcal{N}_{-}\right) \tag{20}\\
& =\operatorname{dim} S_{+}+\operatorname{dim} \mathcal{N}_{-}-\operatorname{dim}\left(S_{+} \cup \mathcal{N}_{-}\right) \\
& =\operatorname{dim} S_{+}-\operatorname{dim} S_{-}
\end{align*}
$$
\]

In the second part of my talk (mostly based on (classical equations of motion,

$$
\begin{align*}
& \ddot{X}_{i}=-\sum_{j=1}^{d}\left[\left[X_{i}, X_{j}\right], X_{j}\right] \tag{21}\\
& \quad \sum_{j-1}^{d}\left[X_{j}, \dot{X}_{j}\right]=0, X_{i}^{\dagger}=X_{i}
\end{align*}
$$

of a regularized relativistic membrane in $d+2$ dimensional Minkowski-space (resp. a reduced $d+1$-dimensional $S U(N)$ Yang Mills theory in $A_{0}=0$ gauge, with the fields $A_{i}=X_{i}(t)$ being space-independent).

The Ansatz

$$
\begin{equation*}
X_{i}(t)=x(t) r_{i j}(t) M_{j} \tag{22}
\end{equation*}
$$

with $\left(r_{i j}\right)=e^{A \varphi(t)} \in S O(d), x^{2} \dot{\varphi}=L=$ const, $\frac{1}{2} \dot{x}^{2}+\frac{\lambda}{4} x^{4}+\frac{L^{2}}{2 x^{2}}=$ const, reduces (22) to the equation

$$
\begin{equation*}
\sum_{j}\left[\left[M_{i}, M_{j}\right], M_{j}\right]=\lambda M_{i} \tag{23}
\end{equation*}
$$

for a set of traceless hermitean $N \times N$ matrices $M_{i}, i=1 \ldots \tilde{d}\left(\leq d\right.$ if $A \equiv 0, \leq \frac{d}{2}$ if $A^{2} \vec{M}=$ - \vec{M}). Solutions of (23) include irreducible representations of semi-simple Lie-algebras, and

$$
\begin{gather*}
\vec{M}= \tag{24}\\
\frac{1}{\sqrt{2}}\left(\frac{U+U^{-1}}{2}, \frac{U-U^{-1}}{2 i}, \frac{V+V^{-1}}{2}, \frac{V-V^{-1}}{2 i}, 0 \ldots 0\right)
\end{gather*}
$$

with $V U=\omega U V, \omega=e^{\frac{4 \pi i}{N}}, N$ odd, $U^{N}=\mathbb{1}=$ V^{N}. Due to the matrices $S_{\vec{m}}:=\omega^{\frac{1}{2} m_{1} m_{2}} U^{m_{1}} V^{m_{2}}$ satisfying commutation relations approaching
those of $e^{i\left(m_{1} \varphi_{1}+m_{2} \varphi_{2}\right)}$ (under $[f, g] \sim \in^{r s} \partial_{r} f \partial_{s} g$) (24) can be thought of as a discrete analogue of

$$
\begin{equation*}
\vec{m}=\frac{1}{\sqrt{2}}\left(\cos \varphi_{1}, \sin \varphi_{1}, \cos \varphi_{2}, \sin \varphi_{2}, 0, \ldots, 0\right) \tag{25}
\end{equation*}
$$

defining a minimal Torus in the unit sphere S^{3} (just as $\sum_{i} M_{i}^{2}=\mathbb{1}$ for (24)).

It would be very interesting to find solutions of (23) that could be identified as discrete analogues of higher-genus minimal surfaces in S^{3}.

Another type of solutions of (21),

$$
\begin{gather*}
\vec{X}=\sum_{\alpha} r_{\alpha}(t) \vec{E}_{\alpha} \\
\vec{E}_{1}=\frac{1}{2}\left(S_{\vec{m}_{1}}+S_{-m_{1}},-i\left(S_{\overrightarrow{m_{1}}}-S_{-\vec{m}_{1}}\right), 0, \ldots, 0\right) \\
\vec{E}_{2}=\frac{1}{2}\left(0,0, S_{\overrightarrow{m_{2}}}+S_{-\vec{m}_{2}},-i\left(S_{\overrightarrow{m_{2}}}-S_{-\vec{m}_{2}}\right),\right. \tag{26}\\
0, \ldots, 0), \ldots \\
\quad \ddot{r}_{\alpha}=-4 r_{\alpha} \sum_{\beta} \sin ^{2}\left(\frac{2 \pi}{N}\left(\overrightarrow{m_{\alpha}} \times \vec{m}_{\beta}\right)\right) r_{\beta}^{2}
\end{gather*}
$$

was given in $\left[\frac{-\overline{6}]}{[\underline{L}}\right.$ (including their $N=\infty, \vec{E}_{a} \rightarrow \vec{e}_{a}$ $\left(\varphi^{1}, \varphi^{2}\right)$, continuum surface analogues). For recent stability analyses of a spherical analogue of such $\left(r_{\alpha=1 \ldots 6}, E_{a+3}:=E_{a}\left(-\vec{m}_{a}\right)\right.$ resp. $e_{a+3}:=$ $\left.e_{a}\left(-\vec{m}_{a}\right), \Varangle\left(\vec{m}_{a}, \vec{m}_{b}\right)=2 \pi / 3, a, b=1,2,3\right)$ solutions, resp. (22)/(23) with $\left[M_{a}, M_{b}\right]=i \in_{a b c} M_{c}$

Note added: I learned from E. Corrigan, that eq. (23) was studied by Wainwright, Wilson, and himself in a paper published in Comm.Math.Phys. 98 (1985) 259.

References

[1] P. Kronheimer, J. Diff. Geom., 32 (1990) 473.
[2] P. Slodowy, Lecture Notes in Mathematics 815, Springer, 1980.
[3] P. Slodowy, unpublished.
[4] C. Bachas, J. Hoppe, B. Pioline, hep-th/0007067.
[5] J. Hoppe, hep-th/9702169.
[6] J. Hoppe, "Some Classical Solutions of Membrane Matrix Model Equations", Proceedings of the May 1997 Cargèse Nato Advanced Study Institute.
[7] M. Axenides, E. G. Floratos, and L. Perivolaropoulos, hep-th/0007198.
[8] K.G. Savvidy, G.K. Savvidy, hep-th/0009020 (and references therein).

[^0]: *in the previous example one would have

 $$
 \left[H_{+}=E_{11}-E_{22}, \begin{array}{cc}
 X_{+} & 2 X_{+} \\
 E_{13} \\
 E_{32} & 1 \cdot E_{13} \\
 E_{11}+E_{22}-2 E_{33} & 0
 \end{array}\right.
 $$

