

Some Classical Solutions of Matrix Model Equations

Jens Hoppe

Fachbereich Mathematik, MA 7-2, TU-Berlin, Strasse des 17.-ten Juni 136, D-10623 Berlin, Germany, and IHES, 35, route de Chartres, 91440 Bures-sur-Yvette, France. E-mail: jhoppe@math.tu-berlin.de

ABSTRACT: Based on work of P. Slodowy, P. Kronheimer, and a joint paper with C. Bachas and B. Pioline (hep-th/0007067), I will discuss the space of solutions of the matrix-equations $\dot{X}_a = \epsilon_{abc} X_b X_c - X_a$ for 3 antihermitean traceless $N \times N$ matrices $X_a(t), t \in (-\infty, +\infty)$, interpolating between different representations of su(2). I will also discuss solutions of $\ddot{X}_i = \sum_{j=1}^d [[X_i, X_j], X_j]$.

ONSIDER 3 traceless, antihermitean $N \times N$ matrices $X_a(t), t \in (-\infty, +\infty)$, developping in time according to the equations

$$\dot{X}_a = \epsilon_{abc} X_b X_c - m X_a \,. \tag{1}$$

The stationary points of this flow are representations of su(2), i.e. $X_a = mJ_a$,

$$[J_a, J_b] = \epsilon_{abc} J_c \,. \tag{2}$$

The question is: given 2 such representations, ρ_+ and ρ_- , under which circumstances do there exist solutions $X_a(t)$ of (1) approaching the representation ρ_+ as $t \to +\infty$ and (being conjugate to) ρ_- as $t \to -\infty$?

Denoting the space of such solutions by $\mathcal{M}(\rho-, \rho+)$, Kronheimer [1], in parts building on work of Slodowy [2][3], proved that

$$\mathcal{M}(\rho_{-}, \rho_{+}) = \mathcal{N}(\rho_{-}) \cap S(\rho_{+}), \qquad (3)$$

where the r.h.s. is well known from singularity theory related to Lie algebras [2]. In the main part of my talk, based on joint work with C. Bachas and B. Pioline (see [4]; in particular concerning the physical relevance of (1), (3)) I will discuss (3):

Take

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
(4)

as generators of $s\ell(2,\mathbb{C})$, the complexification of su(2); denote by $H_{\pm} := \rho_{\pm}(h), X_{\pm} := \rho_{\pm}(x),$

 $Y_{\pm} := \rho_{\pm}(y)$, the corresponding $N \times N$ matrices in the representation ρ_{\pm} , i.e. satisfying the same commutation relations as those following from (4),

$$[x, y] = h, \ [h, x] = 2x, \ [h, y] = -2y.$$
 (5)

 $\mathcal{N}(\rho_{\pm})$ is then defined as the orbit of Y_{\pm} under the complexified gauge group, $SU(N)_{\mathbb{C}} = SL(N,\mathbb{C})$:

$$\mathcal{N}(\rho_{(+)}) := \{ gY_{(+)} g^{-1} \mid g \in SL(N, \mathbb{C}) \}$$
(6)

while

$$S(\rho_{(+)}) = Y_{(+)} + Z(X_{(+)})$$
(7)

where

$$Z(X_{+\atop (-)}) := \{A \in s\ell(N, \mathbb{C}) \mid [A, X_{+\atop (-)}] = 0\} (8)$$

is the centralizer of $X_{(-)}^+$.

Example (N = 3):

Let ρ_{-} be the irreducible 3-dimensional representation of su(2), and $\rho_{+} = 2 \oplus 1$ the direct sum of the irreducible 2-dimensional one, and the trivial 1-dimensional (putting all $J_a = 0$). Then one has

i \

$$Y_{-} = \sqrt{2} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} Y_{+} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$X_{-} = \sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} X_{+} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$H_{-} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} H_{+} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \hline & 0 \end{pmatrix} .$$
(9)

In this example,

J

$$S(\rho_{+}) = \left\{ s = \begin{pmatrix} a & b & c \\ 1 & a & 0 \\ 0 & e & -2a \end{pmatrix} \mid a, b, e, c \in \mathbb{C} \right\},$$
(10)

as can be found either by a simple explicit computation, or using the general fact that $s\ell(N,\mathbb{C})$ decomposes, under the adjoint action of ρ_{+} into irreducible representation spaces of $s\ell(2,\mathbb{C})$, each of which contains exactly one 1-parameter family of elements of $Z(X_{(-)}^+)$; in the above case, $s\ell(3,\mathbb{C})$ decomposes, under the action of $(Y_+ =$ $E_{21}, X_{+} = E_{12}, H_{+} = E_{11} - E_{22}$ into one 3dimensional representation space (ρ_{+} itself, contributing $\mathbb{C} \cdot X_+$ to $Z(X_+)$, two 2-dimensional ones: spanned by E_{23} and $[E_{12}, E_{23}] = E_{13} \in$ $Z(E_{12})$, resp. E_{31} and $[E_{12}, E_{31}] = -E_{32} \in$ $Z(E_{12})$, and one 1-dimensional one $(\mathbb{C} \cdot (E_{11} +$ $E_{22} - 2E_{33} \in Z(E_{12})$. Instead of computing $\mathcal{N}(\rho_{-})$ explicitly, $\mathcal{N}(\rho_{-}) \cap S(\rho_{+})$ can, in the above example, be determined by simply demanding $s^3 = 0, s^2 \neq 0$ for the elements in (10); this gives $b = -3a^2$, $ec = 8a^3$, i.e.

$$\mathcal{N}(\rho_{-}) \cap S(\rho_{+}) =$$
(11)
= $\left\{ \begin{pmatrix} a - 3a^2 & c \\ 1 & a & 0 \\ 0 & e & -2a \end{pmatrix} \middle|_{\substack{a,c,e \in \mathbb{C} \\ ec = 8a^3}} \right\}$.

According to (3), $\mathcal{M}(\rho_{-}, \rho_{+})$ is therefore the 4dimensional (singular) space (11). Let me now sketch (part of) the proof of (3) (cp [1]): One first 'gauges' (1) by introducing a 4-th traceless, antihermitean, $N \times N$ matrix, X_0 , and going over to the equations

$$\dot{X}_a + [X_0, X_a] = \frac{1}{2} \epsilon_{abc} [X_b, X_c] - m X_a .$$
 (12)

Due to their invariance under

$$X_a \to X_a = U(t) X_a U^{-1}(t) , X_0 \to \tilde{X}_0 = U X_0 U^{-1} - \dot{U} U^{-1} ,$$
(13)

a solution X_a of (1) may be obtained from a solution X_a of (12) by closing U in (13) such that $\tilde{X}_0 = 0.$ (12) is then split into one complex equation (from now on, m = 2)

$$\dot{\beta} + 2\beta + 2[\alpha, \beta] = 0, \qquad (14)$$

and one real equation,

$$\frac{d}{dt}\left(\alpha + \alpha^{\dagger}\right) + 2(\alpha + \alpha^{\dagger}) + 2[\alpha, \alpha^{\dagger}] + 2[\beta, \beta^{\dagger}] = 0.$$
(15)

Due to $\alpha := \frac{1}{2}(X_0 - iX_3)$ and $\beta := -\frac{1}{2}(X_1 + iX_2)$ no longer having to obey any (anti)hermiticity conditions, the gauge-invariance of (14) is enhanced to complex (!) gauge transformations

$$\begin{aligned} \alpha &\to g \alpha g^{-1} - \frac{1}{2} \dot{g} g^{-1} \\ g &\in SL(N, \mathbb{C}) \qquad (16) \\ \beta &\to g \beta g^{-1} \,. \end{aligned}$$

Kronheimer [1] then proved that any solution of (14) (with the required boundary conditions) is gauge equivalent to

$$\begin{aligned} \alpha_{-}(t) &= \frac{1}{2} H_{-}, \ \beta_{-}(t) = Y_{-} \quad \text{for } t \in (-\infty, 0] \\ \alpha_{+}(t) &= \frac{1}{2} H_{+}, \ \beta_{+}(t) = Y_{+} + e^{-2t} e^{-t \, ad \, H_{+}} Z_{+} \\ \text{for } t \in [0, +\infty) \,, \end{aligned}$$
(17)

with $Z_+ \in Z(X_+)$. Stated the other way round (actually 0 may be replaced by any finite time, in (17)): for any given solution (α, β) of (14) there exist g_+ and g_- (approaching the identity, resp. a constant group element, at $t = +\infty$, resp. $t = -\infty$) such that, for any finite t,

$$\beta = g_{+}^{-1} (Y_{+} + e^{-(2+adH_{+})t} Z_{+})g_{+}$$

$$2\alpha = g_{+}^{-1} H_{+} g_{+} + g_{+}^{-1} \dot{g}_{+}$$
(18)

AND

$$\begin{split} \beta &= g_{-}^{-1}Y_{-}g_{-} \\ 2\alpha &= g_{-}^{-1}H_{-}g_{-} + g_{-}^{-1}\dot{g}_{-} \,. \end{split}$$

This means that for any finite t,

$$Y_{+} + e^{-(2+adH_{+})t}Z_{+}, \qquad (19)$$

which is $\in S(\rho_+)$, must be gauge-equivalent to Y_- , i.e. must be $\in \mathcal{N}(\rho_-)$. Letting $t \to +\infty$, while noting that $(2 + ad H_+)$ is strictly positive^{*}

*in the previous example one would have

$$[H_{+} = E_{11} - E_{22}, \begin{array}{c} X_{+} & 2X_{+} \\ E_{13} \\ E_{32} \\ E_{11} + E_{22} - 2E_{33} \end{array}] = \begin{array}{c} 2X_{+} \\ 1 \cdot E_{13} \\ 1 \cdot E_{32} \\ 0 \end{array}$$

on $Z(X_+)$, one finds that Y_+ (hence $\mathcal{N}(\rho_+)!$) must actually be contained in the closure of $\mathcal{N}(\rho_-)$ (for $\mathcal{M}(\rho_-, \rho_+)$ to be non-empty). If this condition is fulfilled, the dimension of \mathcal{M} , due to S_+ and \mathcal{N}_- meeting transversely, can be computed as follows :

$$\dim(S_+ \cap \mathcal{N}_-)$$
(20)
= dim S_+ + dim \mathcal{N}_- - dim $(S_+ \cup \mathcal{N}_-)$
= dim S_+ - dim S_-.

In the second part of my talk (mostly based on [5],[6]) I would like to recall some solutions to the classical equations of motion,

$$\ddot{X}_{i} = -\sum_{j=1}^{d} [[X_{i}, X_{j}], X_{j}]$$
(21)
$$\sum_{j=1}^{d} [X_{j}, \dot{X}_{j}] = 0, \ X_{i}^{\dagger} = X_{i},$$

of a regularized relativistic membrane in d + 2dimensional Minkowski-space (resp. a reduced d + 1-dimensional SU(N) Yang Mills theory in $A_0 = 0$ gauge, with the fields $A_i = X_i(t)$ being space-independent).

The Ansatz

2

$$X_i(t) = x(t)r_{ij}(t)M_j \tag{22}$$

with $(r_{ij}) = e^{A\varphi(t)} \in SO(d)$, $x^2\dot{\varphi} = L = \text{const}$, $\frac{1}{2}\dot{x}^2 + \frac{\lambda}{4}x^4 + \frac{L^2}{2x^2} = \text{const}$, reduces (22) to the equation

$$\sum_{j} \left[[M_i, M_j], M_j \right] = \lambda M_i \tag{23}$$

for a set of traceless hermitean $N \times N$ matrices M_i , $i = 1 \dots \tilde{d} (\leq d \text{ if } A \equiv 0, \leq \frac{d}{2} \text{ if } A^2 \vec{M} = -\vec{M})$. Solutions of (23) include irreducible representations of semi-simple Lie-algebras, and

$$\vec{M} =$$
 (24)

$$\frac{1}{\sqrt{2}}\left(\frac{U+U^{-1}}{2},\frac{U-U^{-1}}{2i},\frac{V+V^{-1}}{2},\frac{V-V^{-1}}{2i},0\dots0\right)$$

with $VU = \omega UV$, $\omega = e^{\frac{4\pi i}{N}}$, N odd, $U^N = 1 = V^N$. Due to the matrices $S_{\overrightarrow{m}} := \omega^{\frac{1}{2}m_1m_2}U^{m_1}V^{m_2}$ satisfying commutation relations approaching

those of $e^{i(m_1\varphi_1+m_2\varphi_2)}$ (under $[f,g] \sim \in^{rs} \partial_r f \partial_s g$) (24) can be thought of as a discrete analogue of

$$\vec{m} = \frac{1}{\sqrt{2}} (\cos\varphi_1, \ \sin\varphi_1, \cos\varphi_2, \ \sin\varphi_2, \ 0, \dots, 0)$$
(25)

defining a minimal Torus in the unit sphere S^3 (just as $\sum M_i^2 = 1$ for (24)).

It would be very interesting to find solutions of (23) that could be identified as discrete analogues of higher-genus minimal surfaces in S^3 .

Another type of solutions of (21),

$$\dot{X} = \sum_{\alpha} r_{\alpha}(t) E_{\alpha}
\vec{E}_{1} = \frac{1}{2} (S_{\vec{m}_{1}} + S_{-\vec{m}_{1}}, -i(S_{\vec{m}_{1}} - S_{-\vec{m}_{1}}), 0, \dots, 0),
\vec{E}_{2} = \frac{1}{2} (0, 0, S_{\vec{m}_{2}} + S_{-\vec{m}_{2}}, -i(S_{\vec{m}_{2}} - S_{-\vec{m}_{2}}), (26)
0, \dots, 0), \dots
\ddot{r}_{\alpha} = -4r_{\alpha} \sum_{\beta} \sin^{2}(\frac{2\pi}{N}(\vec{m}_{\alpha} \times \vec{m}_{\beta}))r_{\beta}^{2},$$

was given in [6] (including their $N = \infty$, $\vec{E}_a \rightarrow \vec{e}_a$ (φ^1, φ^2) , continuum surface analogues). For recent stability analyses of a spherical analogue of such $(r_{\alpha=1...6}, E_{a+3} := E_a(-\vec{m}_a)$ resp. $e_{a+3} :=$ $e_a(-\vec{m}_a), \not \Rightarrow (\vec{m}_a, \vec{m}_b) = 2\pi/3, a, b = 1, 2, 3)$ solutions, resp. (22)/(23) with $[M_a, M_b] = i \in_{abc} M_c$ (cp. [5],[6]), see [7],[8].

Note added: I learned from E. Corrigan, that eq. (23) was studied by Wainwright, Wilson, and himself in a paper published in Comm.Math.Phys. 98 (1985) 259.

References

- [1] P. Kronheimer, J. Diff. Geom., **32** (1990) 473.
- [2] P. Slodowy, Lecture Notes in Mathematics 815, Springer, 1980.
- [3] P. Slodowy, unpublished.
- [4] C. Bachas, J. Hoppe, B. Pioline, hep-th/0007067.
- [5] J. Hoppe, hep-th/9702169.
- [6] J. Hoppe, "Some Classical Solutions of Membrane Matrix Model Equations", Proceedings of the May 1997 Cargèse Nato Advanced Study Institute.
- [7] M. Axenides, E. G. Floratos, and L. Perivolaropoulos, hep-th/0007198.
- [8] K.G. Savvidy, G.K. Savvidy, hep-th/0009020 (and references therein).