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ABSTRACT: Based on work of P. Slodowy, P. Kronheimer, and a joint paper with C. Bachas and B. Pio-
line (hep-th/0007067), I will discuss the space of solutions of the matrix-equations Xo = €abe Xp Xo—Xa
for 3 antihermitean traceless N x N matrices X, (t), t € (—o0, +00), interpolating between different
representations of su(2). I will also discuss solutions of X; = Z?Zl [X:, X;],X;] .

ONSIDER 3 traceless, antihermitean N x N
matrices X, (t), t € (—o0,+00), develop-
ping in time according to the equations

Xa = eabCXch — mXa . (1)

The stationary points of this flow are represen-
tations of su(2), i.e. X, = mJ,,

[Jaa Jb] == 6achC . (2)

The question is: given 2 such representations,
p+ and p_, under which circumstances do there
exist solutions X, (t) of (1) approaching the rep-
resentation py as ¢ — +oo and (being conjugate
to) p— ast — —o0?

Denoting the space of such solutions by
M(p—, p+), Kronheimer @], in parts building
on work of Slodowy [4][3], proved that

M(p—, p+) =N(p-) N S(p+), (3)

where the r.h.s. is well known from singularity
theory related to Lie algebras [2].
part of my talk, based on joint work with C.
Bachas and B. Pioline (see ['4_1:], in particular con-

In the main

cerning the physical relevance of (1), (3)) I will
discuss (3):
Take

= (10) = (2) = (39)

as generators of s£(2,C), the complexification of
su(2); denote by Hy := py(h), Xy = pi(2),

Y, := pi(y), the corresponding N x N matri-
ces in the representation pi, i.e. satisfying the
same commutation relations as those following
from (4),

[$>y] = h, [h7 l‘] = 2z, [hvy] =—2y. (5)

N(ps) is then defined as the orbit of Yy un-
der the complexified gauge group, SU(N)c =
SL(N,C):

e —1
Np)=19Y . 97 |g€ SLIN.C)}  (6)
while
Slor)=Y+ +Z(X +) (7)
where

Z(X ;) ={A€sUN,C) | [A,X 1+ | =0} (8)

is the centralizer of X ke

Example (N = 3):

Let p_ be the irreducible 3-dimensional rep-
resentation of su(2), and py = 2@ 1 the direct
sum of the irreducible 2-dimensional one, and the
trivial 1-dimensional (putting all J, = 0). Then
one has

000 00]0
Y_=v2|100]|Y,=[10]0
010 000
010 01
X =v2[o001] x,=]00
000 0
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20 0 10
H. =000 | H.=|0-1 )
00 —2 0

In this example,

ab c
Spr)=<cs=[1a 0 |a,b,e,ceC 3 |
0e —2a

(10)
as can be found either by a simple explicit com-
putation, or using the general fact that s¢(N,C)
decomposes, under the adjoint action of p(+) into

irreducible representation spaces of s£(2, C), each
of which contains exactly one 1-parameter fam-
ily of elements of Z(X(+)); in the above case,

s£(3,C) decomposes, under the action of (Y} =
E21, X+ = Elg, H+ = E11 — EQQ) into one 3-
dimensional representation space (p; itself, con-
tributing C - X4 to Z(X4)), two 2-dimensional
ones: spanned by Ess and [Eqa, Fo3] = Eq3 €
Z(Elg), resp. Fs3; and [E127E31] = —F3 €
Z(E12), and one 1-dimensional one (C - (E1; +
Esy — 2E33) € Z(FE12)). Instead of computing
N (p-) explicitly, N'(p—)NS(p+) can, in the above
example, be determined by simply demanding
s3 = 0, s # 0 for the elements in (10); this

2

gives b = —3a?, ec = 8a?, i.e.

N(p-)NS(ps) = (11)
a —3a® ¢
_ ,c,e€C
=491 e 0 T
e —2a

According to (3), M(p—, p4) is therefore the 4-
dimensional (singular) space (11). Let me now
sketch (part of) the proof of (3) (cp [1]): One
first ‘gauges’ (1) by introducing a 4-th traceless,
antihermitean, N x N matrix, X, and going over
to the equations

1
Xo + [Xo, Xa] = ) €abe| Xp, Xc] —mX, . (12)

Due to their invariance under

Xo = Xo = U)X UL(t), (13)
Xo— Xo=UXU L —UU?,

a solution X, of (1) may be obtained from a so-
lution X, of (12) by closing U in (13) such that

X, =0. (12) is then split into one complex equa-
tion (from now on, m = 2)

B+26+2[a,f]=0, (14)

and one real equation,

% (a+ah) +2(a+al)+2(a,al]+2(8, 81 = 0.
(15)
Due to a := 1(Xo—iX3) and 8 := — 3 (X1 +iX5)
no longer having to obey any (anti)hermiticity
conditions, the gauge-invariance of (14) is en-
hanced to complex (!) gauge transformations

1 1

o — gag™t— 249

g€ SL(N,C) (16)

B — gBg~".

Kronheimer [1] then proved that any solution of
(14) (with the required boundary conditions) is
gauge equivalent to

_ !

a(t) =5 H, () =Y. forte(~00,0]
1 - —1 a

a(t) = §H+7 Bi(t) =Yy +e e tedHe 7,

for t € [0,+00), (17)

with Z, € Z(X,). Stated the other way round
(actually 0 may be replaced by any finite time,
in (17)): for any given solution (a, ) of (14)
there exist g+ and g_ (approaching the identity,
resp. a constant group element, at ¢ = +o0, resp.
t = —o0) such that, for any finite ¢,

B =g (Yy +e Crediiz g,
2a = g7 Hygy + 95 9r (18)
AND
B=g-'Y.g
20 =g~'H g +g_'g_.
This means that for any finite ¢,
Y+ + e—(2+adH+)tZ+ , (19)

which is € S(p4), must be gauge-equivalent to
Y_, i.e. must be € NM(p—). Letting t — +oo,
while noting that (24 ad H. ) is strictly positive*

*in the previous example one would have

Xy 2X 4
Ei3 1-FEi3
Hy =Fi; — FE =
[Hy 11 22, Es ] 1. Es
E11 + E22 — 2E33 0
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on Z(X.), one finds that Y, (hence N(py)!)
must actually be contained in the closure of N (p_
(for M(p—, p+) to be non-empty). If this condi-
tion is fulfilled, the dimension of M, due to S,
and N_ meeting transversely, can be computed
as follows :

d1rn(S+ N N_)

= dim S} +dimN_ — dim(Sy UN_)
= dimS; —dimS_.

(20)

In the second part of my talk (mostly based on
[8],[6]) T would like to recall some solutions to the
classical equations of motion,

d
== X, X;],

Jj=1

(21)

d
XX =0, X =X,
j—1

of a regularized relativistic membrane in d + 2-
dimensional Minkowski-space (resp. a reduced
d + 1-dimensional SU(N) Yang Mills theory in
Ao = 0 gauge, with the fields A; = X;(¢) being
space-independent).
The Ansatz

Xi(t) = x(t)ri; (1) M; (22)

with (r;;) = e4¢®) € SO(d), 22 = L = const,
2

142 4+ 22* + L5 = const, reduces (22) to the
equation

> My, My), M) = AM;

(23)

for a set of traceless hermitean N x N matrices
M,i=1..d(<dif A=0, <$if A2 M=
— M). Solutions of (23) include irreducible rep-
resentations of semi-simple Lie-algebras, and

N

M= (24)

1 (U+U’1

v-u! v4v! v-v!
7 —0...0

2 ’ 21 ’ 2 ’ 21

with VU = wUV, w=e*, N odd, UN =1 =
V. Due to the matrices S;l (= wimamaym ) me

satisfying commutation relations approaching

)

those of e!(m1¥1+m2¢2) (under [f, g] ~€™* 0, fsg)
(24) can be thought of as a discrete analogue of

m= %(cos ©1, singi,cosps, sings, 0,...,0)
(25)
defining a minimal Torus in the unit sphere $3

(just as Y M? = 1 for (24)).
It would be very interesting to find solutions
of (23) that could be identified as discrete ana-

logues of higher-genus minimal surfaces in S3.
Another type of solutions of (21),

. -
X =3 ,7a(t) Ea
By = 3o 48— —i(S2 S~ ),0,...,0),
Bo = 1(0,0,5,, +5 - ,~i(S,. —5 - ), (26)
0,...,0),...
271' — —

= —4r, Z sin?

moz X mﬂ))T?i ,

was given in [@] (including their N = oo, Ea%?a
(o1, p?), continuum surface analogues).
cent stability analyses of a sp}Lerical analogue of
such (ﬁazl, G,Ea+3 := Eo(— myg) resp. eqig :=
ea(— ma),ﬁ(ma,mb) =2n/3,a,b=1,2,3) solu-
tions, resp. (22)/(23) with [My, My| = i €ape M,
(cp. 518, see K.

Note added: I learned from E. Corrigan, that
eq. (23) was studied by Wainwright, Wilson, and
himself in a paper published in Comm.Math.Phys.
98 (1985) 259.

For re-
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