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Abstract: We comment on subtle decoupling properties of the string theory regularization of non-

commutative gauge theories. We focus on two examples: the identification of closed-string winding

modes in thermal noncommutative field theories, and the non-decoupling of string oscillators in time-

like noncommutative strings.
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1. Introduction

The relation between noncommutative field the-

ory (NCFT) and string theory proposed in [1, 2]

and extended in various works [3] has proven a

very fruitful source of insight for both string the-

ory and noncommutative field theory. The basic

issue is that D-brane dynamics in the presence of

a Neveu–Schwarz B-field introduces a noncom-

mutativity in the spacetime coordinates [4]. The

so-called Seiberg–Witten (SW) limit [5] isolates

this effect by specifying a low-energy α′ → 0 limit
of the open-string dynamics given by the sigma-

model action

S =
1

4πα′

∫
gjkdx

j ∧∗dxk+ i

4π

∫
Bjkdx

j ∧dxk,
(1)

in such a way that the sigma-model metric is

negligible compared to the nonvanishing B-field,

i.e. |gij | � α′|Bij |. Thus, in those directions the
world-sheet action is dominated by the topolog-

ical term∫
Σ

Bij dx
i ∧ dxj =

∮
∂Σ

Bij x
i ∂t x

j , (2)

where ∂t denotes derivative with respect to world-

sheet time. The momentum conjugate to xi is
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πj = Bijx
i and canonical quantization [πj , x

k] =

−iδkj implies (3) in the form

[xj , xk] = i

(
1

B

)jk
≡ i θjk. (3)

Finally, combining the resulting conjugate inde-

terminacies ∆xj ∆xk ∼ |θjk| with Heisenberg’s
∆xj ∆pk ∼ δjk, we obtain ∆x

j ∼ θjk∆pk, as

if the noncommutative particles of momentum p

were associated to a rigid rod of length

Lj ∼ pk θjk. (4)

This is the famous UV/IR correspondence of NCFT.

In this context, it means that NCFT retains some

degree of the stringy nonlocality.

More precisely, the SW limit takes α′ → 0
with

gij ∼ (α′)2, Bij ∼ fixed, (5)

including a scaling of the string coupling constant

(we set b ≡ 2πα′B throughout), in such a way
that the effective open-string coupling Gs:

G2s = g
2
s

(−det(g + b)
−det(g)

)
. (6)

remains fixed. This scaling ensures that the effec-

tive metric for open-string dynamics Gij , as well

as the noncommutativity parameters θij remain

fixed in the low-energy limit:

Gij +
θij

2πα′
=

(
1

g + b

)ij
, (7)
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so that the effective dynamics of the massless

gauge fields on the brane is described by the non-

commutative action

SNCYM =
1

4g2YM

∫
Tr
√
−det(G)GijGklF̂ik ? F̂jl,

(8)

where ? is the Moyal product compatible with

(3) and F̂µν = ∂µÂν − ∂νÂµ + i Âµ ? Âν − i Âν ?
Âµ is the corresponding noncommutative field

strength.

From the physical point of view the NC low-

energy limit decouples the open-string oscilla-

tors as α′ → 0. However, the stringy nature of
the fundamental degrees of freedom survives to

some extent as particles behave as ‘rigid dipoles’

[6]. Namely the large B-field polarizes the open

strings and this feature is crucial in the physical

properties of the theory described by (8).

In this lecture we review two instances in

which the decoupling of string oscillators involves

some subtlety.

2. No Decoupling for Time-like Non-

commutativity

This section is based on work with E. Rabinovici

in [7].

The previous discussion of the SW limit as-

sumes implicitly that the B-field (hence the non-

commutativity) is purely space-like. For a B-

field with timelike components, letting the B-

field dominate over the sigma-model metric |g| �
|b| will induce zero eigenvalues of the matrix g+b,
rendering some of the previous formulas mean-

ingless. In particular, the mapping from sigma-

model parameters (g, b, gs) to open-string param-

eters (G, θ,Gs) is singular whenever

det(g + b) = 0. (1)

We shall call these the G-singularities. Conversely,

the inverse mapping from open-string to closed-

string variables is given for example by

g + b =
1

G−1 + θ
2πα′

=
1

1 + Gθ
2πα′

G, (2)

and thus it is singular at the locus

det

(
1 +

Gθ

2πα′

)
= 0. (3)

These are denoted g-singularities. Scaling ar-

guments based on [8, 9] show that perturbative

physics at the two kinds of singularities is slightly

different.

TheG-singularities, with smooth sigma-model

metric, have been studied in the past from var-

ious points of view [10, 11]. In a T -dual pic-

ture [12], they correspond to the limiting speed

of light of a dual D-brane. The salient proper-

ties of G-singularities are a vanishing effective

coupling Gs, so that the effective theory of open

strings becomes classical. On the other hand,

the effective tension of the D-brane vanishes, so

that nonlinear effects are out of control. From

the point of view of defining a NCFT with time-

like θ, these singularities are not very interesting,

since the effective metric Gij that should appear

in (8) is singular.

On the other hand, at g-singularities we have

a blowing-up g, b with fixed G, θ. This is a more

interesting case characterized by a divergent brane

tension

Teff ∼
√
−det(g + b) =

√
−det(G)

−det (1 + Gθ
2πα′
) →∞.
(4)

Open-string loops are effectively weighted by

Gs = gs

√
−det

(
1 +

Gθ

2πα′

)
→ 0, (5)

and nonlinear effects are weighted by λeff ∼ G1/2s →
0. Thus, we have a free classical theory at the g-

singular points, with fixed gs and |Gθ| = 2πα′.
We may define an interacting theory by scaling

gs → ∞, so that Gs remains fixed and nonzero.
The resulting analysis must be done in the S-

dual frame of the underlying closed-string theory.

This is the celebrated NCOS theory introduced

in [13] and much studied in recent works. Its

most important features are the correlation be-

tween the scales of noncommutativity, |θ|, and
the stringy fuzziness, α′, and a decoupling from
closed-string modes off the brane, hence defin-

ing a noncommutative open-string theory with-

out gravity.

For our purposes today, we want to empha-

size the fact that, keeping a non-singular set of

open-string data (G, θ,Gs), and requiring the time-

like noncommutativity to be encoded in Moyal

2
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products at the level of the effective action, means

that we cannot decouple |θ| and α′, while at the
same time keeping control over perturbation the-

ory. The best we can do is to set the maxi-

mum noncommutativity to a value |θmax| ∼ 2πα′
[14, 13, 7]. We conjecture that this is proba-

bly the way in which string theory protects itself

from pathologies such as the lack of unitarity and

acausality that seem to plague time-like noncom-

mutative field theories [14, 7, 15].

For example, insisting in the formal SW limit

takes us into the det(g + b) > 0 region, with

imaginary coupling Gs. Performing a formal an-

alytic continuation over gs and gij allows us to

define the NCFT perturbation theory with time-

like Moyal products. From here we may deduce

the AdS/CFT large-N master field of the theory

along the lines of [16, 17], which turns out to have

a naked singularity at the physical scale of non-

commutativity. Hence all evidence based on di-

agrammatics (perturbative and large-N) points

to the lack of unitarity of such theories [7, 15].

On the other hand, an analysis of very spe-

cific nonperturbative effects in NCQED shows no

pathologies provided the right space-time frame

is used to parametrize the physics [18]. For exam-

ple, the pair-production rate takes the Schwinger

form [19], with the simple replacement of Fµν by

its noncommutative counterpart F̂µν . In addi-

tion, a formal hamiltonian formalism was pro-

posed for NCFT with time-like noncommutativ-

ity [20], and no pathologies were found in a study

of the superficially similar case of light-like non-

commutativity [21]. Thus, it will be interesting

to determine to what extent full nonperturbative

physics can overcome the pathologies inherent to

time-like noncommutativity.

3. Non-Decoupling of Closed-string

Winding Modes?

This section is based on work with G. Arcioni, J.

Gomis and M.A. vázquez-Mozo in [22].

It was noticed in [24] that the UV/IR con-

nection has radical consequences for the decou-

pling of noncommutativity effects at low energies.

Namely in NCFT perturbation theory, the pres-

ence of the Moyal phases in Feynman diagrams

renders many of them finite in the UV, since
√|θ|

and |θpext| for some external momentum pext act

as effective UV cutoffs [23]. This means that,

on renormalizing the theory for nonvanishing θ,

we subtract less UV divergences than at θ = 0.

As a result, the limit (Λeff)
−1 ∼ |θpext| → 0 is

singular in general. This singularity is identifi-

able as a non-analiticity in θ at finite p, or as

an IR singularity at p → 0 and finite θ. Since
these IR singularities originate in the ultraviolet

fluctuations of the noncommutative field, they

are largely independent of the mass of the non-

commutative particles. It must be stressed that

these effects are independent of the special fea-

tures of time-like noncommutativity, discussed in

the previous section. We consider purely space-

like θ throughout this section.

Since the UV/IR effects violate naive decou-

pling, in trying to maintain the standard Wilso-

nian language, the authors of [24, 25] introduced

extra degrees of freedom ψ with effective propa-

gators of the form

〈ψ(p)ψ(−p)〉 = 1

(θp)2 + z2⊥
, (1)

where (θp)µ = θµνpν and z⊥ represent d⊥ ‘trans-
verse’ momentum variables, making ψ propagate

in a (d + d⊥)-dimensional bulk. The tree ex-
change of the ψ-fields mimics the non-standard

infrared singularities caused by the UV quanta

of the original fields.

The interpretation of these poles as light closed-

string modes in a double-twist diagram is very

suggestive (for the one-loop case), given the for-

mal resemblance of (1) with a closed-string prop-

agator in the bulk. Indeed, the particular com-

bination (θp)2 is nothing but the SW limit of

pµg
µνpν , up to powers of α

′. Since gµν is the
metric felt by the closed strings, the interpreta-

tion is rather natural.

Still, it is very odd to find a kinematical

situation where both dual channels (open and

closed) are saturated by massless poles. Nor-

mally, whenever the open-string channel is dom-

inated by massless exchange (Yang–Mills), the

closed-string description of the same diagram in-

volves all the tower of closed-string oscillator states.

Conversely, whenever supergravity is a good ap-

proximation, the open-string picture is not sim-

ple. A partial counterexample may be found in

3
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the case of the AdS/CFT duality, although the

’t Hooft coupling g2YMN = gsN plays there the

role of control parameter separating the ranges

of aplication of both descriptions.

In particular, the SW limit of the double-

twist diagrams in question has been studied re-

cently in great detail [26] with the result that the

whole NCFT perturbation theory comes from the

region of string moduli space where open-string

massless modes dominate.

Nevertheless, a clear smoking gun for closed-

string modes would be the identification of topo-

logically nontrivial configurations such as wind-

ing modes. Interestingly, evidence for thermal

winding modes was recently reported in [27]. These

authors found that the two-loop free energy of

various NCFTs could be written in terms of modes

effectively living at the ‘T -dual’ temperature 1/θT .

More generally, the basic phenomenon can be un-

derstood directly at the level of the nonplanar

one-loop self-energy. Performing the momentum

integral and a Poisson resummation in the ther-

mal frequencies, we can write:

ΠNP(p) = −g
2

β

∑
n

∫
dq

eiθ(p,q)

4π2n2

β2
+ q2 +M2

= −
∑
`

∫
dz⊥

|geff |2
β2`2 + (θp)2 + z2⊥

,(2)

where we have introduced extra 4 − d ‘gaussian
momenta’ z⊥ and an effective coupling

|geff(`,p, z⊥)|2

=
g2

4π2

∫ ∞
0

ds e−s−
M2

4s [β
2`2+(θp)2+z2⊥]. (3)

Expression (2) has the form of a ‘dual channel’

representation [22], where the nonplanar loop is

replaced by the tree-level exchange of an infinite

tower of ‘resonances’ χ` of massM` ∼ |β`|, prop-
agating in 4− d extra dimensions, with an effec-
tive kinetic lagrangian of the form

Lkin ∼ χ`
[−∂2⊥ − (θ∂)2] χ`. (4)

These fields generalize the ψ-fields introduced in

[24, 25]. In particular ψMRS ≈ χ`=0, except that
the infinite tower replaces the whole nonplanar

loop rather than just the UV part.

This ‘channel duality’ representation can be

generalized to arbitrary loops [22]. In the general

case, however, the effective Feynman rules for the

fields χ` are nonlocal. In particular, the Feyn-

man and Schwinger parameters of the original

diagram are not factorizable in the new vertices,

and one ends up with a ‘crossed channel duality’

operating at the level of the integrand over the

moduli space of Feynman and Schwinger param-

eters. This feature is also reminiscent of the way

world-sheet duality works in string theory (lo-

cally in the moduli space of Riemann surfaces).

However, as noted before, there is a puz-

zle in any tentative identification of the χ` fields

with closed-string modes, since we do not expect

the closed-string exchange to be saturated by the

massless fields in the low-energy spectrum. For

the simple example of the nonplanar two-point

function, we would like to have a relation of the

form:

limSW
〈
Dp, Vp|(∆cl)−1|Dp, Vp

〉
=
∑
`

∫
z⊥

|geff |2
β2`2 + (θp)2 + z2⊥

, (5)

for the full closed-string channel expression. The

inverse closed-string propagator is

∆cl =
α′

2

(
gµνpµpν +M

2
cl

)
=
α′

2

(
gµνpµpν +

β2`2

4π2α′2
+M2

osc

)
, (6)

whereM2
osc ∼ Nosc/α′ and the term proportional

to `2 gives the mass of a thermal winding mode.

In the SW limit with Gµν = δµν we have g
µν →

− 1
(2πα′)2 (θ

2)µν and we get the following scaling

of ∆cl:

1

8π2α′
[
β2`2 + (θp)2 + (2πα′)2(p2⊥ +M

2
osc)
]
.

(7)

Thus, we obtain the right scaling if we define

(2πα′)p⊥ ≡ z⊥, since (2πα′)2M2
osc ∼ α′ → 0,

i.e. the infinite tower of oscillator states makes

a negligible contribution to the effective mass

in the SW limit! More precisely, the oscillator

states get squeezed into a continuous band, as

compared to the gap of the winding modes:

oscillator gap

winding gap
∼ α′

β2
→ 0 (8)

in the SW limit. This means that, on the scale

of the effective χ` fields, the whole tower of oscil-

lator closed-string states fails to decouple. The

4
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best we can hope for is to derive sum rules for geff
in terms of the sum over closed-string oscillator

states. Naively

|geff |2 ∼ α′
∑
osc

〈Dp|Ψosc〉 〈Ψosc|Dp〉 , (9)

so that the χ` fields really represent the coherent

exchange of the infinite tower of massive string

states. In fact, (9) is not precisely correct. As

it stands, it is divergent due to the Hagedorn

growth of closed-string states. In addition, the

identification of the formal transverse space of

the z⊥ variables with the real transverse space
to the D-brane is not exactly correct. It is shown

in [22] that these deficiencies can be overcome

by phrasing the sum rule (9) in terms of the in-

tegrand over the moduli space of the Feynman

diagram. Then one finds that Feynman parame-

ters map consistently to Koba–Nielsen moduli of

D-brane boundary states, whereas Schwinger pa-

rameters map to the standard closed-string mod-

ular parameters. The resulting sum rule for the

effective couplings is convergent despite the pres-

ence of open- or closed-string tachyons, and the

correct relation between ‘formal’ and ‘real’ trans-

verse dimensions depends on the number of ex-

ternal insertions. For an amplitude with N ex-

ternal insertions, the formal number of trans-

verse dimensions d⊥χ is related to the real number
of Dirichlet–Dirichlet dimensions, d⊥, of the D-
brane by:

d⊥χ = d⊥ + 2N + 2−D, (10)

where D = 26 for bosonic D-branes and D = 10

for supersymmetric D-branes. We can summa-

rize the basic issues as follows:

• There is a ‘dual channel’ picture in NCFT
with effective ‘closed channel’ fields χ` hav-

ing winding-scaling masses, extra moduli in

effective vertices and propagating in extra

bulk dimensions.

• This structure descends directly from the
corresponding open/closed world-sheet du-

ality in the underlying string theory. In

particular modes with effective massMχ` ∼
|β`| can be associated to closed-string ther-
mal winding modes in the microscopic string

description.

• The literal interpretation of the extra bulk
dimensions where the χ` fields propagate

freely as real dimensions transverse to the

D-brane is not correct. Rather the relation

is rather indirect, and depends on the par-

ticular diagram we are looking at.

• Most importantly, the χ` fields do not rep-
resent individual closed string modes that

fail to decouple. In fact, the χ` fields are

a formal device representing the coherent

coupling of the infinite tower of closed-string

oscillator modes. The fact that they still

behave roughly as standard quantum fields

is one of the surprises of NCFT.

4. Final Remarks

We have discussed two particular instances where

the low-energy decoupling of strings in noncom-

mutative systems is somewhat nontrivial. We

conclude with a brief summary and a highlight

of the differences between the two cases.

In section 2 it is shown that open-string os-

cillators do not decouple at critical electric-field

singular points in moduli space. The resulting

interacting theory, the so-called NCOS, is a gen-

uine string theory with noncommutativity scale

of the order of the string scale. We pointed out

that forcing the decoupling at a formal level, by

performing analytic continuations of the SW for-

mulas, leads to an inconsistent model. Thus, it

seems that time-like NCFT cannot be reached

from a consistent string regularization.

In section 3 we consider a purely space-like

NCFT and focus on the UV/IR mixing as pre-

sented in [24, 25]. Although these theories are

decoupled from gravity by construction, we show

that some rudiments of the open/closed channel

duality of the ultraviolet string theory survive

down to low energies in the SW limit. Namely,

NCFTs are ‘models’ of full open-string dynamics.

We confirm this by looking at the fate of wind-

ing quantum numbers of closed strings at finite

temperature. There is no useful way of thinking

in terms of ‘undecoupled closed strings’, but the

formalism emulates these in the sense that the

quantum number itself does not decouple and is
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visible in the field theory, by means of our ‘chan-

nel duality’ representation.

These remarks should be distinguished from

superficially similar claims in the context of NCOS

theories. It was shown in [13] that NCOS string

theories decouple from closed strings, except in

compact volume, where wound closed strings still

survive in the NCOS Hilbert space [28]. Although

these results are based on the study of the dou-

ble twist one-loop diagram, just as our analysis

in section 3, it must be stressed that both discus-

sions refer to different physical systems in differ-

ent regimes.
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