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Representation of non compact quantum groups

is of central importance in different theoretical

physics systems. We can at least give three ex-

amples of this fact:

1. Chern-Simons theory with non compact group

G. This is particularly important in view of

its applications to quantum gravity in 2+1

dimensions where the group G is equal to

SO(3, 1) (Λ > 0), ISO(2, 1) (Λ = 0) or

SL(2,R)×SL(2,R), (Λ < 0) depending on
the sign of the cosmological constant Λ.

2. Discretization of Lorentzian gravity in the

spirit of Ponzano-Regge.

3. Liouville theory in the weak and probably

strong coupling regime.

In these three cases, there is an associated “non

compact” quantum group, which is a star Hopf

algebra, with a category of unitary representa-

tions. The computation of physical quantities

in these three systems amounts to compute ex-

plicitely, or to have a good understanding of the

• coupling of two unitary representations (i.e
decomposition in irreducible representations

of the tensor product of two unitary rep-

resentations). This is what physicists call

the computation of Clebsch-Gordan coeffi-

cients or 3J .

• recoupling of three unitary representations.
This is what physicists call the computa-

tion of Racah-Wigner coefficients or 6J .

We are not only interested in the exact value of

these coefficients but also in the relations they

satisfy.

When the group is SU(2), this is already a

not completely trivial task. Of central impor-

tance is to understand the important link be-

tween hypergeometric functions and Clebsch-Gordan

and Racah coefficients. Indeed 3J are expressed

in terms of 3F2 and 6J in terms of 4F3 [1].As a re-

sult one can obtain non trivial results in the the-

ory of hypergeometric functions using represen-

tation theory and vice-versa. Of course all this

can be generalized to Uq(su(2)) with relatively

minor modifications, i.e replacing hypergeomet-

ric functions by basic hypergeometric functions.

For an introduction to the theory of hypergeo-

metric function of one variable and its q-analog,

called basic hypergeometric function, a very good

reference is [2].

When the group is non compact and of rank

1, i.e SL(2,R), SL(2,C), this is a much harder

problem, because it is not just purely algebraic,

but also functional analysis techniques have to be

added. In this case, even up to now, very little

is known for example of the Racah coefficients of

unitary representations of SL(2,R), SL(2,C).

When the group is compact and of rank higher

than 1, then this problem is not fully solved, be-

cause multiplicities occur when tensoring two ir-

reducible representations.

The theory of dynamical quantum groups

has proven to be a very effective tool to obtain
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results in the theory of Racah coefficients, partic-

ularly in the case where the Lie algebra is of rank

greater than one and even in the classical case.

The aim of this note is to introduce the reader to

the basic ideas of the theory, and to emphasize

its future relevant role for the study of Clebsch-

Gordan and Racah coefficients for non compact

quantum groups.
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1. Fusion matrices

The fundamental article on this topic is [3], a

survey article is [4]. Let g be a semisimple Lie

algebra and h ⊂ g a Cartan subalgebra. A choice
of a polarisation on the roots gives a decompo-

sition g = n+ ⊕ h ⊕ n− and induces a partial
order < on the vector space of weights h?. We

denote by Uq(g) the standard quantization of the

universal envelopping algebra of g. It is a Hopf

algebra and denote by ε the counit. Let λ be

a weight and denote by Mλ the Verma mod-

ule of Uq(g), with mλ highest weight vector, i.e

hmλ = λ(h)mλ, emλ = 0, ∀e ∈ Uq(n+) ∩ kerε.
Let V be a finite dimensional Uq(g) module, it is

necessarily h semi-simple and we denote by V [ν]

the subspace of weight ν for the action of h. Let

Φ be an element of HomUq(g)(Mλ,Mµ ⊗ V ), we
can define an element < Φ >∈ V [λ − µ] as fol-
lows: Φ(mλ) = mµ⊗ < Φ > +

∑
i xi ⊗ vi where

xi is of weight strictly less than µ. A fundamen-

tal result [3] is: ifMµ is irreducible then the map

<>: HomUq(g)(Mλ,Mµ ⊗ V ) → V [λ − µ] is an
isomorphism. In particular Mµ is irreducible if

and only if the Shapovalov form on Mµ is non

degenerate. As a result if µ is not located on

the zeroes of the Shapovalov determinant, which

are a countable family of hyperplanes,Mµ is irre-

ducible. In this case we will say that µ is generic.

Assume that all the weights of the Verma mod-

ules appearing in the sequel are generic. Let v

in V an homogeneous element of weight v, we

denote by Φvλ ∈ HomUq(g)(Mλ,Mλ−v ⊗ V ), the
unique element such that < Φvλ >= v. As a re-

sult, if λ is generic, if V and W are two finite

dimensional modules and if v ∈ V [v], w ∈ V [w],
we can define the intertwiner (Φvλ−w ⊗ idW )Φwλ :
Mλ → Mλ−v−w ⊗ V ⊗W. Let us define the fu-
sion operator JVW (λ) : V ⊗ W → V ⊗ W by

JV,W (λ)(v ⊗ w) =< (Φvλ−w ⊗ idW )Φwλ > . The
following shifted 2-cocycle condition is then a di-

rect consequence of the definition:

JU⊗V,W (λ)(JU,V (λ− h(3))⊗ 1) =
= JU,V⊗W (λ)(1 ⊗ JVW (λ)). (1.1)

Note that there exists a universal element J(λ) ∈
Uq(g)

⊗2 such that JV,W (λ) is the action of J(λ)
on V ⊗W , as a result the 2-cocycle equation can
be also written as:

∆12(J(λ))J12(λ − h(3)) = ∆23(J(λ))J23(λ).
(1.2)

Let define F (λ) = J(−λ), from this we can define
R(λ) = F21(λ)

−1R12F12(λ) which satisfies the
quantum dynamical Yang-Baxter Equation also

called Gervais-Neveu-Felder Equation:

R12(λ+ h
(3))R13(λ)R23(λ+ h

(1)) =

= R23(λ)R13(λ + h
(2))R12(λ). (1.3)

”Dynamical Quantum groups” are the algebraic

objects which are associated to the solution of

this equation [6]. The reader is invited to read

the work of P.Etingof, A. Varchenko on the study

of the algebra of interwiners and on the numer-

ous results on representation theory that can be

obtained [3, 8].

One can wonder if there are other way to

compute F (λ) apart from the definition: a cen-

tral result is the linear equation satisfied by F (λ)

which has been first discovered in [10]. We will

denote by ω the restriction of the Killing form to

h×h. This form identifies h and h∗, we will denote
by hλ the element of h associated to the weight

λ via this identification. F (λ) is the unique solu-

tion, in Uq(b
+)⊗ Uq(b−), of the linear equation:

F (λ)(1 ⊗ B(λ)) = R(0)−1(1⊗B(λ))F (λ) (1.4)
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with B(λ) = qhλ+ω
ijhihj , R = qω

ijhi⊗hjR(0).
When λ is non generic, for example when λ

is a dominant integral weight, this theory can be

still applied when λ is sufficiently far from the

wall of the Weyl chamber. ([7] for details)

Indeed let λ be an integral dominant weight

and denote by Vλ the finite dimensional simple

module of highest weight vector vλ. To any φ ∈
Hom(Vλ, Vµ ⊗ Vν) we can still define < φ >
by φ(vλ) = vµ⊗ < φ > +

∑
i vi ⊗ wi with vi

of weight strictly less than µ. If λ, µ, ν ∈ P+,
<>: Hom(Vλ, Vµ ⊗ Vν) → Vν [λ − µ] is always
injective, and is also surjective if (for fixed ν)

µ (and therefore λ) is sufficiently far from the

wall of the Weyl chamber. We can therefore still

define operators JVW (λ) in this situation, and

they satisfy the 2-cocycle equation. In the case

of Uq(sl(2)) the construction of [5] is very simi-

lar, the only difference amounts to the fact that

the normalization of the intertwiners φvλ are cho-

sen differently. A very important relation, first

described in [5], is the relation between Racah

Coefficients and matrix elements of the matrix

F (λ) in the representation Vj1 ⊗ Vj2 . More pre-
cisely we have the relation:

F j1j2(λ)σ1σ2,σ′1σ′2 =
∑
j12

(
j1 j2 j12
σ1 σ2 σ1 + σ2

)

{
j1 j2 j12
j(λ) j(λ) + σ′1 + σ′2 j(λ) + σ′2

}
. (1.5)

where we have used the conventions of [3] and

2j(λ) + 1 = λ ∈ Z+. This results shows that
the matrix elements of F (λ) can be expressed in

terms of 3J of Uq(su(2)) and 6J of Uq(su(2)).

From this relation, it is trivial to show that the

pentagonal equation on 6J of Uq(su(2)) is equiv-

alent to the 2-cocycle identity on F (λ). Note that

because F (λ) can be defined for generic λ ∈ C,
the previous relation still hold exactly true with

6J coefficients of Uq(su(2)) prolongated in the

complex variable λ. We call these coefficients

6J(1) to recall that they have been extended in

1 complex parameter.

2. Harmonic Analysis on Uq(sl(2,C)R)

It is impossible in such a small amount of space to

fully describe the content of the papers [11][12].

We will give here a brief review of the theorems

which have been proven in these works. Uq(su(2)),

q = e−~ ∈]0, 1[ is a star Hopf algebra whose
quantum double D(Uq(su(2)) can be taken as

the definition of the quantum envelopping alge-

bra Uq(sl(2,C)R) of the realification of the Lie

algebra sl(2,C). In [13] a definition of the spaces

of compact supported continuous functions on

SL(2,C) is given, it is a multiplier C∗ algebra.
In [14] the classification of irreducible unitary

representations is given and is completely paral-

lel to the classification of unitary representations

of the complex group SL(2,C) (up to tensoring

with a one dimensional representation which has

no classical analog). Infinite irreducible unitary

representations are classified by two parameters

(m, ρ) and we obtain:

• Principal representations Π(m, ρ), m ∈ 12Z+,
ρ ∈]− π

~
, π
~
[, acting on V(m,ρ)

• Complementary representations Πc(0, ρ), ρ ∈
]0, 1[.

In [11] we have proved a Plancherel theorem,

i.e we have shown that:

L2(SLq(2,C)R) =

=
⊕
m∈ 12Z+

∫ ⊕
V(m,ρ) ⊗ V ∗(m,ρ)dP (m, ρ) (2.1)

with dP (m, ρ) = [m + iρ]q[m − iρ]q, where as
usual we denote [z]q =

qz−q−z
q−q−1 . In order to prove

this theorem, we have shown that the matrix

elements of Π(m, ρ), acting on any element of

Uq(sl(2,C)R) can be expressed in terms of pro-

longation of 6J of Uq(su(2)) in one complex spin,

i.e m + iρ. Plancherel theorem amounts to inte-

gral identities on these prolongation of 6J sym-

bols.

It would be particularly interesting to gener-

alize these results to the case of the quantization

of any semi-simple complex Lie group.

In [12] we have shown the following theorem:

Π(m1, ρ1)⊗Π(m2, ρ2) =
=

⊕
m∈ 12Z+,m+m1+m2∈Z

∫ ⊕
Π(m, ρ)dρ, (2.2)

and we have computed exactly the Clebsch-

Gordan coefficients of this decomposition. We
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have shown that these 3J of the principal rep-

resentation can be expressed naturally in terms

of both prolongation of 6J of Uq(su(2)) in one

complex variable, called 6J(1), and prolongation

of 6J of Uq(su(2)) in three complex parameters,

namely m1+ iρ1,m2+ iρ2,m+ iρ, that we called

6J(3).

We have also shown that these Clebsch-Gordan

coefficients can be expressed in terms of Racah

polynomials and Askey-Wilson polynomials. The

orthogonality relations on the Clebsch-Gordan

coefficients of the principal representations trans-

late to orthogonality relations mixing Racah poly-

nomials and Askey-Wilson polynomials. The sim-

plest of these relations being the orthogonality

relation of Askey-Wilson polynomial for the Askey-

Wilson measure.

These 6J(3) have a natural representation

theory interpretation1 and can be computed us-

ing the universal F (λ). More precisely, there ex-

ists a family of infinite dimensional irreducible

modules, denoted Gν,µ which basis is (vβ) with

β ∈ ν+Z. The action of the standard generators
h, e, f of Uq(sl(2)) reads:

hvβ = 2βvβ ,

evβ = [µ− β]qvβ+1, fvβ = [µ+ β]qvβ−1,
the value of the Casimir element in this represen-

tation is [µ]q[µ+ 1]q. The 6J(3) are obtained by

representing F (λ) in the representation VI⊗Gν,µ,
with 2λ+1 = m+ iρ, 2ν+1 = m2+ iρ2, 2µ+1 =

m1 + iρ1 −m− iρ.
It remains to compute exactly Racah coeffi-

cients for recoupling of principal representations.

We expect that these coefficients can be expressed

in terms of non terminating 8φ7 basic hypergeo-

metric functions.

We are presently applying these mathemat-

ical tools to the two previously stated physical

problems:

• we can modify the construction of the rep-
resentation of the moduli algebra in the

compact case [15] to apply it to the quan-

tum Lorentz group case. We will there-

fore obtain non trivial result in 2+1 quan-

tum gravity with positive cosmological con-

stant.
1I thank P.Etingof for explaining this to me.

• the exact expression of Racah coefficients
of principal representations of the Lorentz

and of the quantum Lorentz groups are the

very beginning step for the definition of

Lorentzian quantum gravity models in 3+1

dimensions. [16]. The use of dynamical

quantum groups, through the use of the

Fusion matrices, should simplify the com-

putation of these coefficients.
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