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Abstract: According to Mumford the applicability of algebraic geometry to integrable models is

due to their relation to affine Jacobi variety. We give elementary explanation of this fact based on

the method of separation of variables. Further we explain the quantum version of this construction

making stress on Baxter equation and duality.

1. Introduction.

The importance of methods of algebraic geometry
for the theory of classical integrable models is well-
known. The solutions of integrable equations are writ-
ten in terms of Riemann theta-function. The question
usually asked is where is the analogue of the Rie-
mann theta-function in the quantum case. The an-
swer to this exactly question is not known, but the
quantum analogue of classical methods of algebraic
geometry can be explained in wider context.

This wider point of view on the classical inte-
grable models was nicely explained by Mumford [1].
First, we have to admit that all the exact solutions that
we know are obtained for algebraically integrable
model. The Liouville theorem tells that the phase
space of any integrable model is foliated into tori ev-
eryone of these tori represents the level of integrals of
motion. In the case of algebraic integrable model the
tori in question happen to be real sections of Jacobi
variety of Riemann surfaces, the moduli of these Rie-
mann surfaces are defined by values of the integrals
of motion.

Obviously, the complexification must be impor-
tant in this situation. Usually, it can be shown that
the complexified phase-space allows embedding into
affine complex space. Under this embedding the com-
plexified Liouville torus happens to be non-compact
affine Jacobi variety. Affine Jacobi variety is obtained
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from the Jacobi variety by removing the theta-divisor:
the sub-variety on which the theta-function vanishes.
This is how the theta-functions enter the game.

Let me explain what is going on in some de-
tails. Typically the phase space of an algebraically
integrable model is defined as follows. There is a
N × N matrixm(z) which depends polynomially
on the spectral parameterz. The coefficients of de-
composition of the matrix elements are considered as
coordinates in an affine spaceV . Consider the char-
acteristic polynomialf(z, w) = det(m(z) − wI).
all the coefficients of these polynomial are integrals
of motion. The level of these integrals of motion is
affine Jacobi variety of the algebraic curve
f(z, w) = 0.

This construction allows quantum deformation
as we shall explain in this talk. We shall consider
the case2 × 2 matrixm(z) when the spectral curve
is hyper-elliptic. We shall show that certain impor-
tant properties of the affine ring (the classical algebra
of observables) are preserved. Finally, we shall see
that in the quantum case new phenomenon of duality
appears.
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2. Algebraic model of affine Jacobi vari-
ety.

Consider the matrix

m(z) ≡
(
a(z) b(z)

c(z) d(z)

)
which depends polynomially on the parameterz. We
require that the matrix elements are of the form:

a(z) = zg+1 + a1z
g + · · ·+ ag+1,

b(z) = zg + b1z
g−1 + · · ·+ bg,

c(z) = c2z
g + c3z

g−1 · · ·+ cg+2,
d(z) = d2z

g−1 + d3zg−2 · · ·+ dg+1

Let us impose further the equation:

a(z)d(z)− c(z)b(z) = 1

which defines a quadricM in the spaceC4g+2 with
coordinates

a1, · · · ,ag+1, b1, · · · , bg, c2, · · · , cg+2,d2, · · · ,dg+1

The algebra of functions onM is denoted byA. Con-
sider theg-dimensional section ofM

t(z) ≡ a(z) + d(z) = t(z)

where the coefficients oft(z) are fixed. Theseg-
dimensional variety coincides with affine Jacobi va-
rietyJ (t) of the hyper-elliptic curveX(t):

w2 − t(z)w + 1 = 0 (2.1)

This construction is explained in details in [1].
Equivalent description of affine Jacobi variety is

as follows:

J (t) = X(t)×g/Sg −D

where the divisorD is:

D = {(p1, · · · , pg)| pi = σ(pj)}

By σ we denote the hyper-elliptic involution:

σ(z, w) = (z, t(z)− w)

Equivalence of the two description is established as
follows. Consider zeros of the polynomialb(z):

b(z) =

g∏
j=1

(z − zj) (2.2)

Obviously these zeros together with the variables

wj = d(zj)

satisfy equation of the curve (2.1). So we construct
from the matrixm(z) the divisorp = (p1, · · · , pg)
wherepj = {zj ,wj}. Oppositely, suppose we are
given the divisorp. Thenb(z) is constructed trivially,

d(z) =

g∑
j=1

∏
k 6=j

(
z − zk
zj − zk

)
wj (2.3)

a(z) andc(z) can be found from trace and determi-
nant. It is important to notice that the expression (2.3)
has singularities on the divisorD.

Let us return to the algebra of functionA. The
dynamical structure defined by integrable model al-
lows to define vector fieldsDj, j = 1, · · · , g:

[Dj , Dk] = 0, Djtk = 0

The algebraA possesses the important property:
∀x ∈ A we have

x =
∑
α

Pα (D1 · · ·Dg) hα

The coefficients ofPα depend ontj ,

hα dζ1 ∧ · · · ∧ dζg
representHg(J (t)). ThusA is generated by action
of vector-fieldsDj from finite number of functions.
This property is important for quantization.

In the paper [2] it is conjectured that

hα = hα(b1 · · · , bg)

The algebraA can be identified with the alge-
bra of functions of certain integrable model.A is
Poisson algebra. Thus the Poisson structure can be
introduced. The coefficients oft(z) are commuting
Hamiltonians:

{tj , tk} = 0, Djx = {tj ,x}
The introduction of the Poisson structure is the first
step to quantization.
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3. Algebra A(q).

Introduce the parameter of deformation:

q = eiγ

The deformed algebraA(q) is defined by quadratic
commutation relations:

r21(z1, z2)m1(z1) k12(z1) s12m2(z2) k21(z2) =

=m2(z2) k21(z2) s21m1(z1) k12(z1) r12(z1, z2)

(3.1)

This equation is written inC2 ⊗ C2, a1 = a ⊗ I,
a2 = I ⊗ 2, a21 = Pa12P TheC-number matrices
r, k, s are given by:

r12(z1, z2) =
z1 − qz2
1− q (I ⊗ I) +

+
z1 + qz2
1 + q

(σ3 ⊗ σ3) +
+ 2 (z1σ

− ⊗ σ+ + z2σ+ ⊗ σ−),
k12(z) = I ⊗ (I − σ3) +
+
(
q−σ

3

+ z(q2 − 1)σ−
)
⊗ (I + σ3),

s12 = I ⊗ I − (q − q−1)σ− ⊗ σ+

The relation of this algebra to usualr-matrix algebra
is explained in [3]. The quantum determinant

qd(z)t(zq−2)− q2d(z)d(zq−2)− qb(z)c(zq−2) = 1

belongs to the center. One finds the commutative
family created by

t(z) = qa(z) + q2d(z)− z(q2 − 1)b(z)

We accept the following

Conjecture 1. Everyx ∈ A(q) can be presented as

x = pL(t1, · · · , tg)hα(b1, · · · , bg)pR(t1, · · · , tg)
with finite number of functionshα playing the role
of quantum cohomologies.

4. Realization of A(q).

I would like to describe a realization of the algebra
A(q) which explains the relation to integrable mod-
els. Consider the self-adjoin operatorsxj andy which

satisfy the commutation relations:

xkxl = q
2xlxk k < l,

yxk = qxky ∀k
The Hamiltonian of the system:

h = q−1
2g+2∑
k=1

xkx
−1
k−1

where

x2g+3 ≡ qyx1
Consider the algebraA generated byu andv satisfy-
ing the commutation relations:

uv = qvu

These operators are realized inL2(R) as follows:

v = eϕ, u = eiγ
d
dϕ

The algebraA⊗(2g+2) is generated byuj, vj with j =
1, · · · , 2g + 2.
We have the following representation ofxj , y:

xk = vk

k−1∏
j=1

u−2j , y =

2g+2∏
j=1

uj

in the spaceH = (L2(R))⊗(2g+2).

Define so called monodromy matrix:

m̃(z) =

(
ã(z) b̃(z)

c̃(z) d̃(z)

)
= l2g+2(z) · · · l1(z)

where the l-operators are

l(z) =
1√
z

(
zu −qvu

zv−1u−1 0

)
The modified monodromy matrix

m(z) ≡
(
a(z) b(z)

c(z) d(z)

)
=

=

(
ã0b̃

−1
0 0

−d̃1b̃
−1
0 1

)
m̃(z)

(
b̃0ã

−1
0 0

qd̃1ã
−1
0 1

)

(ã0, b̃0, d̃1 are leading coefficients of corresponding
polynomials) satisfies the commutation relations (3.1),
and their matrix elements have correct polynomial
structure. Thus we are dealing with a realization of
the algebraA. The Hamiltonianh is one of coeffi-
cients oft(z).
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5. Diagonilization of Hamiltonians.

The next step of our construction is diagonalization
of the Hamiltonianh in the spaceH. We find the
Baxter’s operatorQ(ζ) which depends on the loga-
rithmic spectral parameterζ = 1

2 log(z). The Bax-
ter’s operator commutes with Hamiltonians:

[Q(ζ1), t(z2)] = 0
It satisfies the equation:

(−1)g+1t(z)Q(ζ) =Q(ζ + iγ) +Q(ζ − iγ)

(5.1)

Baxter’s operator is constructed as the trace:

Q(ζ) = tra
(La2q+2(ζ) · · · La1(ζ))

Where the universalL-operator acting inL2(R) ⊗
L2(R) is defined as follows. Consider

v = eϕ, u = eiγ
d
dϕ , w = eψ = uvu

It is convenient to describe the universalL-operator
by its matrix elements in mixed representation:

〈 ϕ′ | ⊗ 〈 ψ′ | L(ζ) | ψ 〉 ⊗ | ϕ 〉 =
= δ(ϕ− ϕ′)δ(ψ − ψ′)λ(ζ | ϕ− ψ′)

where

λ(ζ | ψ) = e− 1
2iγ ζψ+

π+γ
γ (ψ−ζ) Φ(ψ − ζ),

The important functionΦ(ϕ) is given by:

Φ(ϕ) = exp

 ∫
R+i0

eikϕ

4 sinhγk sinhπk

dk

k


It satisfies the functional equation:

Φ(ϕ+ iγ)

Φ(ϕ− iγ) =
1

1 + eϕ

This is the only property ofΦ(ϕ) important for con-
struction the universalL-operator.

Here we realize the extraordinary property of our
integrable model which is the duality. Notice that the
functionΦ(ϕ) satisfies the dual functional equation:

Φ(ϕ+ iπ)

Φ(ϕ− iπ) =
1

1 + e
π
γ ϕ

Duality implies existence ofT (Z)which satisfies the
equation:

(−1)g+1T (Z)Q(ζ) =Q(ζ + πi) +Q(ζ − πi)
(5.2)

whereZ = e
2π
γ ζ . At the same timeT (Z) defines the

Hamiltonians of the dual model:

T (Z) = tr(M̃(Z))

with

M̃(Z) = L2g+2(Z) · · · L1(Z)

L(Z) =
1√
Z

(
ZU−1 −QV U

ZV −1U−1 0

)
The dual operators

U = e
π
γ ϕ, V = eπi

d
dϕ

satisfy the commutation relations

UV = QV U

with dual

Q = ei
π2

γ

It is easy to see:

[ t(z),T (Z) ] = 0

The equations (5.1,5.2) hold for the eigen-vectors of
commuting operatorst(z), T (Z) andQ(ζ). The
main conjecture concerning these dual integrable mod-
els is that their spectrum is defined by different solu-
tions of the equations (5.1,5.2) withQ(ζ) being an
entire function of its argument with certain asymp-
totic at the infinity [3]. The above construction proves,
in particular, existence of solutions to these equa-
tions.

6. Separation of variables.

The last important ingredient of our construction is
the method of separation of variables. This method
was developed in the quantum case by Sklyanin [4].

According to the commutation relations (3.1) we
have the commutative family:

[ b(z), b(z′) ] = 0
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Introduce the operator-valued zeroszj :

b(z) =
∏
(z − zj)

Introduce further the operators

wj = (−1)g+1q d(←−z j)

where←−z j means thatzj is substituted from the left
into the polynomiald whose coefficients are opera-
tors. One finds the commutation relations

zjwk = wkzj , j 6= k; zjwj = q
2wjzj

The operatorszj ,wj satisfy equation of ”Quan-
tum hyper-elliptic curve”:

w2j −wjt(←−z j) + 1 = 0

Introduce the operators:

ζj =
1
2 log(zj)

Following [4] we find that the eigen-function inζ-
representation factorize:

〈 ζ1, · · · , ζg | t1, · · · , tg 〉 = Q(ζ1) · · ·Q(ζg)

whereQ(z) satisfies the equation:

Q(ζ + iγ) +Q(ζ − iγ) = (−1)g+1t(z)Q(ζ)

This is nothing but equation on the eigen-values of
Baxter’s operatorQ(z).

ConsiderX ∈ A(q)⊗A(Q), following the Con-
jecture 1 it can be presented as

X = xX = (6.1)

= pL(t1, · · · , tg)PL(T 1, · · · ,T g)
× g(b1, · · · , bg)G(B1, · · · ,Bg)
× PR(T 1, · · · ,T g)pR(t1, · · · , tg)

Introduce the notation:

h(z1, · · · , zg) =
∏
zi
∏
i<j

(zi − zj)

× g(b1(z1, · · · , zg), · · · , bg(z1, · · · , zg))

the polynomialh(z1, · · · , zg) is anti-symmetric. Fol-
lowing [4, 3] one introduces the weight of integra-
tion in the space of functions ofζj consistent with

the scalar product inH. For the matrix elements we
find:

〈 t1, · · · tg ; T1, · · · , Tg | X | t′1, · · · t′g ; T ′1, · · · , T ′g 〉 =
= pL(t1, · · · , tg)pR(t′1, · · · , t′g)
× PL(T1, · · · , Tg)PR(T ′1, · · · , T ′g) (6.2)

×
∞∫

−∞
dζ1 · · ·

∞∫
−∞

dζg

g∏
j=1

Q(ζj)Q′(ζj)

× h(z1, · · · , zg)H(Z1, · · · , Zg)

Obviously, the only non-trivial piece of this formula
is the matrix element ofgG given by the integral.
This explains importance of the representation (6.1).
We considerh as “differential forms”. Actually we
need to calculate the integrals only for “cohomolo-
gies” identifying the “forms” whose integrals vanish.
The relation to the classical case is obvious. On the
“differential forms” define the∧-product:

(h ∧ h′)(z1, · · · , zk+l) =
=
1

k! l!

∑
π∈Sk+l

(−1)π h(zπ(1), · · · , zπ(k))

× h′(zπ(k+1), · · · , zπ(k+l))

Let V1 be the space of polynomials of one variable
z (of degree≥ 1) with coefficients polynomial intj ,
t′j , and

Vk = ∧kV1

Certain basis can be defined inV1 [3] for which the
following properties are satisfied.

sk, −g ≤ k ≤ ∞, deg(sk) = k + g + 1

We shall denote that the “form” vanishes under the
integral by'. We have

1. Fork ≥ g + 1 we have:

sk ∧ Vg−1 ' 0

2. Considerc ∈ V2 defined as

c =

g∑
j=1

sj ∧ s−j

we have

c ∧ Vg−2 ' 0
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3. Considerd ∈ V1 defined as

d = (tj − t′j)s−j
we have

d ∧ Vk−1 ' 0

The description of “cohomologies” following from
these “exact forms” is a deformation of classical co-
homologies of affine Jacobi variety [2].

However, the most interesting feature of our con-
struction is its duality. One introduces the dual ob-
jects:V1 is the space of polynomials ofZ (of degree
≥ 1), Vk = ∧kV1, and

Sk, C, F

There are two classical limits: one of them is
usual: γ → 0, another is dual:γ → ∞. Comput-
ing the asymtotics of integrals in these limits one de-
scribes the duality as follows:

sj1 ∧ · · · ∧ sjg =
{

form: γ → 0
cycle:γ →∞

Sj1 ∧ · · · ∧ Sjg =
{

cycle:γ → 0
form: γ →∞

Thus the objects that define cycles and forms in
the classical limit are represented on quantum level
as absolutely similar objects related by week-strong
dualityγ → π2

γ
.
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