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Introduction

Functional relations are assuming a growing im-

portance in the study of integrable lattice mod-

els and integrable quantum field theories. The

aim of this talk is to sketch a recently-discovered

link between certain sets of these relations and a

rather more classical area of mathematics, namely

the theory of Stokes multipliers and spectral de-

terminants for ordinary differential equations in

the complex domain. For most of the talk the

focus will be on the simplest example of this

‘ODE/IM correspondence’, connecting 2nd order

ordinary differential equations to Bethe ansatz

systems of SU(2) type. However, at the end some

recent work extending this to nth order ODEs,

and linking them to Bethe ansatz systems asso-

ciated with SU(n), will get a mention. To the

extent that this talk has any logical structure at

all, it is as follows:

(1) 2nd order ODEs

(Schrödinger

equations)

(2) Functional equa-

tions in integrable

models


→ (3) Connection

↓

(4) Generalisations

Papers directly concerned with this topic include

[1]–[9], but it should be stressed it all relies heav-

ily on earlier studies by, among others, Sibuya [10],

Voros [11], and Bender et al [12, 13, 14] (on the

ODE side) and by Baxter [15], Klümper, Pearce

and collaborators [16, 17], Fendley et al [18], and

Bazhanov, Lukyanov and Zamolodchikov [19, 20]

on the integrable models side.

1. Schrödinger equations

Stokes sectors, and their relationship with eigen-

value problems defined in the complex plane, will

be important in the following, and to introduce

these topics we begin by describing a class of

problems much studied by Bender and collabo-

rators in recent years. It all began with a ques-

tion posed by Bessis and Zinn-Justin, many years

ago. . .

Question 1: What does the spectrum of the

Hamiltonian

H = p2 + ix3

look like?

This is a cubic oscillator, with purely imaginary

coupling i. (Strictly speaking, Bessis and Zinn-

Justin, motivated by considerations of the Yang-

Lee edge singularity, were interested in more gen-

eral Hamiltonians of the form p2 + x2 + igx3,

from which the above problem can be recovered

as a strong-coupling limit.) The corresponding

Schrödinger equation is

− d2

dx2
ψ(x) + ix3ψ(x) = Eψ(x)

and we will initially say that the (possibly com-

plex) number E will be in the spectrum if and
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only if, for that value of E, the equation has a

solution ψ(x) on the real axis which decays both

at x→ −∞ and at x→ +∞:1

ψ(x)

x

Note that the wavefunction ψ(x) will inevitably

be complex. Since the Hamiltonian is not (at

least in any obvious way) Hermitian, the usual

arguments to show that all of the eigenvalues E

must be real do not apply. Nevertheless, per-

turbative and numerical studies led Bessis and

Zinn-Justin to the following conjecture:

• the spectrum of H is real, and positive.
In 1997 Bender and Boettcher [13] proposed

a nice generalisation of this problem:

Question 2: What is the spectrum of

H = p2 − (ix)N (N real, > 0) ?

Later, it will turn out that the passage from ques-

tion 1 to question 2 corresponds to a change in

a coupling constant in a sine-Gordon model, or

of a quantum group deformation parameter in a

Bethe ansatz system. But for now, the general-

isation is appealing because it unites into a sin-

gle family of eigenvalue problems both the N=3

case, for which we have the Bessis-Zinn-Justin

conjecture, and the more easily-understoodN=2

case, the harmonic oscillator. The Schrödinger

equation is now

− d2

dx2
ψ(x)− (ix)Nψ(x) = Eψ(x)

and, as before, we look for those values of E at

which there is a solution along the real x-axis

which decays at both plus and minus infinity.

Two details need extra care: for non-integer val-

ues of N , the ‘potential’ −(ix)N is not single-
valued; and whenN hits 4, the naive definition of

the eigenvalue problem runs into difficulties. The

first problem is easily cured by adding a branch

cut along the positive imaginary x-axis, but the

1To be more precise, the decay should be fast enough

that ψ lies in L2(R), the space of square-integrable func-

tions. This means that we are actually discussing the

so-called point spectrum of H – see, for example, [21].

second is more subtle and will be discussed in

greater detail below.

This caveat aside, there is already a surprise

while N remains below 4. Figure 1 is taken from

[4], and it reproduces the results of [13]. Ignor-

ing for a moment the region N > 4, it is clear

that something strange occurs as N decreases

through 2 – infinitely-many eigenvalues pair off

and become complex, and only finitely-many re-

main real. By the time N reaches 1.5, all but

three have become complex, and as N tends to 1

the last real eigenvalue diverges to infinity. In

fact, at N=1 the problem has no eigenvalues

at all, as can be seen by solving the relevant

Schrödinger equation in terms of an Airy func-

tion. For N > 2, the numerically-obtained spec-

trum is entirely real, and positive, and so the

conjecture of Bessis and Zinn-Justin has found a

natural generalisation. The ‘phase transition’ to

infinitely-many complex eigenvalues at N=2 was

interpreted in [13] as a spontaneous breaking of

PT symmetry.
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Figure 1: H = p2 − (ix)N :
real eigenvalues as a function of N

Although figure 1 agrees with the plot in [13],

it was obtained in [4] by an entirely different

route – rather than making a direct numerical at-

tack on the ordinary differential equation, a non-

linear integral equation for the relevant spectral

determinant was solved. This method of solv-

ing such eigenvalue problems is a byproduct of

the ODE/IM correspondence and appears to be

new, though it owes a heavy debt to earlier work

of Voros [11]. Numerically, it is rather efficient –

see for example the tables in [1] of eigenvalues of

various anharmonic oscillators.
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Another idea motivated by the correspon-

dence is the notion [4] to study the effect of an ad-

ditional angular-momentum term l(l+1)x−2 on
the Bender-Boettcher problem. For −1 < l < 0,

this turns out to have a remarkable effect on the

behaviour of the spectrum as the N=2 phase

transition is crossed.
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Figure 2: H = p2 − (ix)N − 0.024735 x−2 :
real eigenvalues as a function of N

Figure 2 zooms in on this part of the spectral plot

for l = −0.025, and reveals that the picture has
changed dramatically – the connectivity of the

real eigenvalues has been completely reversed, so

that while for l=0 (the original Bender-Boettcher

problem) the first and second excited states pair

off, at l = −0.025 the first excited state is instead
paired with the ground state, and so on up the

spectrum. With this in mind, it may be a little

hard to see how it is possible to pass between the

sets of spectra depicted in figures 1 and 2 simply

by varying the continuous parameter l from zero

to −0.025. The puzzled reader is invited to have
a look at figure 2 of [4] to resolve the mystery.

There remains one piece of unfinished busi-

ness: what goes wrong at N=4, and what can be

done to resolve it? On figures 1 and 2, the curves

continue smoothly past N=4, but in fact this is

only achieved by implementing a suitable distor-

tion of the problem as originally posed. Consider

the situation precisely at N=4 : the Hamiltonian

is p2 − x4, an ‘upside-down’ quartic oscillator,

and a simple WKB analysis (about which more

shortly) shows, instead of the exponential growth

or decay more generally found, wavefunctions be-

having as x−1 exp(±ix3/3) as x tends to plus or
minus infinity. All solutions thus decay, albeit al-

gebraically, and this complicates matters signif-

icantly. The problem moves from what is called

the limit-point to the limit-circle case (again, see

[21]), and additional boundary conditions should

be imposed at infinity if the spectrum is to be

discrete. While interesting in its own right, this

is clearly not the right eigenproblem if we wish

to find a smooth continuation from the region

N < 4. Instead, it is more fruitful to enlarge the

perspective and treat x as a genuinely complex

variable. This has been discussed by many au-

thors, and is particularly emphasised in the book

by Sibuya [10]; the treatment which follows is

very close to that of [12, 13].

The key is to examine the behaviour of so-

lutions as |x| → ∞ along a general ray in the
complex plane, even though the only two rays

that we initially need are the positive and nega-

tive real axes. The WKB approximation tells us

that

ψ(x) ∼ P (x)−1/4 e±
∫ x√P (t)dt

as |x| → ∞, with P (x) = −(ix)N − E. (This is
easily derived by substituting ψ(x) = f(x)eg(x)

into the ODE.) Since we set the problem up with

a branch cut running up the positive-imaginary

axis, it is natural to define a ray in the complex

plane by setting x = ρeiθ/i with ρ real:

θρ

Re

Im x

For N > 2, the asymptotic is not changed if P (x)

is replaced by −(ix)N , and substituting into the
general formula we see two possible behaviours,

as expected of a second-order ODE:

ψ± ∼ P−1/4 exp
[
± 2
N+2e

iθ(1+N/2)ρ1+N/2
]
.

For most values of θ, one of these solutions will be

exponentially growing, the other exponentially

decaying. But whenever <e[eiθ(1+N/2)] = 0, the
two solutions swap roles and there is a moment

when both oscillate, and neither dominates the

other. The relevant values of θ are

θ = ± π

N+2
, ± 3π

N+2
, ± 5π

N+2
, . . .

3
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(Confusingly, the rays that these values of θ de-

fine are sometimes called ‘anti-Stokes lines’, and

sometimes ‘Stokes lines’.) Whenever one of these

lines lies along the positive or negative real axis,

the eigenvalue problem as originally stated be-

comes much more delicate, for the reasons de-

scribed above. Increasing N from 2, the first

time that this happens is N=4, the case of the

upside-down quartic potential. But now we see

that the problem is easy to avert – it arose be-

cause the line along which the wavefunction was

being considered, namely the real axis, happened

to coincide with an anti-Stokes line2. But since

all functions involved are analytic, there is noth-

ing to stop us from examining the wavefunction

along some other contour in the complex plane.

In particular, before N reaches 4, the two ends

of the contour can be bent downwards from the

real axis without changing the spectrum, so long

as their asymptotic directions do not cross any

anti-Stokes lines in the process. Having thus dis-

torted the original problem, N can be increased

through 4 without any difficulties. The situa-

tion for N just bigger than 4 is illustrated below,

with the anti-Stokes lines shown dashed and the

wiggly line a curve along which the wavefunction

ψ(x) can be defined.

Re

Im x

The wedges between the dashed lines are called

Stokes sectors, and in directions out to infin-

ity which lie inside these sectors, wavefunctions

either grow or decay exponentially, leading to

eigenvalue problems with straightforward, and

discrete, spectra. Note that once N has passed

through 4, as in the figure, the real axis is once

again a ‘good’ quantisation contour – but for a

different eigenvalue problem, which is not the an-

alytic continuation of the originalN < 4 problem

to that value of N . (For the analogue of figure 1

for this new problem, see figure 20 of [14].)

2as just mentioned, some would call this a Stokes line

There is a lesson to be drawn from all of

this [10, 12, 13, 14]. Associated with an ODE of

the type under consideration there are many dif-

ferent eigenvalue problems, each defined by spec-

ifying a pair of Stokes sectors, and then asking for

the values of E at which there exist solutions to

the equation which decay exponentially in both

simultaneously. For a given value of N , the two

sectors which cover the positive and negative real

axes may appear to be the most natural choice,

but if we want to discuss analytic continuation

then all must be put on an equal footing. This

picture will find a precise analogue on the inte-

grable models side of the correspondence, but be-

fore describing this we need to review some more

basic material.

2. Functional relations in integrable

models

In this section a very rough caricature of the

‘functional relations’ approach to integrable mod-

els will be given. A number of other speakers at

the conference talked about this topic, in particu-

lar J.-M. Maillet, R. Poghossian and F. Smirnov,

and their contributions should be consulted for

more in-depth reviews. Not to forget, of course,

the book [15] by Baxter. . .

We will discuss the six-vertex model, defined

initially on anN×M lattice, with periodic bound-
ary conditions and N/2 even. On each (horizon-

tal or vertical) link of the lattice, we place a spin

1 or 2, conveniently depicted by an arrow point-

ing either left or right (for the horizontal links)

or up or down (for the vertical links). Only those

configurations of spins which preserve the ‘flux’

of arrows through each vertex are permitted. Lo-

cally this gives just six options (hence the name

of the model) to which Boltzmann weights are

assigned as follows:

R1111 = R
22
22 = a

R2112 = R
12
21 = b

R1212 = R
21
21 = c

The relative probability of finding any given con-

figuration is found by multiplying together the

Botzmann weights for the individual vertices, and

4
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a first quantity to calculate is just the sum of

these numbers over all possible configurations –

the partition function, Z. Very crudely speaking,

a model is said to be integrable if it is possible to

evaluate quantities such as Z (or even better, the

free energy) exactly, at least in the limit where

N andM both tend to infinity. The model under

discussion turns out to be integrable in this sense

for all values of a, b and c. The overall normali-

sation factors out trivially from all calculations,

and it is convenient to parametrise the remaining

two degrees of freedom using a pair of variables ν

(the spectral parameter) and η (the anisotropy):

a = sinh(ν−iη) , b = sinh(ν+iη) , c = sinh(2iη) .

To calculate Z, one line of attack proceeds via

the so-called transfer matrix, T :

T
α′1α

′
2...α

′
N

α1α2...αN
=

∑
{βi}

R
α′1β2
β1α1

R
α′2β3
β2α2

. . . R
α′Nβ1
βNαN

The job of T , a 2N×2N matrix, is to perform the
sum over a set of horizontal links. In this picture

the indices of T correspond to the spin variables

sitting on the vertical links, which can now be

summed by matrix multiplication. Thus:

Z = Trace
[
TM

]
.

The next step is to compute via a diagonalisation

of T . For example, the free energy per site in the

limit M →∞ can be obtained as

f = 1
NM
logZ = 1

NM
log Trace

[
TM

]
∼ 1
N
log t0

where t0 is the largest eigenvalue of T (corre-

sponding to the ground state). Note that the

eigenvalues t0, t1 . . . are all functions of ν and η.

However, there is still work to be done to find

out what these functions are. At this point we

just state that there exists a technique, the (al-

gebraic) Bethe ansatz, for doing this. Skipping

all details, the method works in two stages:

(i) Guess a form for an eigenvector of T , depend-

ing on a finite number of parameters ν1, . . . νn
(the ‘roots’).

(ii) Discover that this guess only works if the {νi}
together solve a certain set of coupled equations

(the ‘Bethe ansatz equations’).

These equations will be written down shortly,

but first we describe a particularly neat reformu-

lation that was found by Baxter. The first input

is the fact that the transfer matrices commute at

different values of ν:

[T (ν), T (ν′)] = 0 .

This means that they can be diagonalised simul-

taneously, with ν-independent eigenvectors, and

it allows us to focus on the individual eigenvalues

t0(ν), t1(ν),. . . as functions of ν. From the ex-

plicit form of the Boltzmann weights these func-

tions are entire, and iπ-periodic.

Now for the key result: for each eigenvalue

function t(ν), there exists an auxiliary function

q(ν), also entire and (at least for the ground

state) iπ-periodic, such that

t(ν)q(ν) = aNq(ν + 2iη) + bNq(ν − 2iη) .

We shall call this the T-Q relation, though this

phrase might more properly be reserved for the

corresponding matricial equation, involving T (ν)

and another matrix Q(ν), from which the above

can be extracted when acting on eigenvectors. It

is not immediately clear why this result repre-

sents progress – we started with one unknown

function t(ν), and have now been told that if we

multiply this by another unknown function q(ν),

we recover two copies of that same function at

shifted values of its argument. However, the fact

that both t and q are entire makes this condition

much more restrictive than might first appear.

To make the match with the ODEs described

in the last section, we will need to take a cer-

tain large-N limit, simultaneously shifting ν and

rescaling the TQ relation. This has the effect of

eliminating the factors aN and bN , and since it

also simplifies the formulae, from here on we will

assume that this has been done. The relation

becomes

t(ν)q(ν) = q(ν + 2iη) + q(ν − 2iη) (TQ)

and the iπ-periodic function q(ν) can be written

as a product over its zero positions as

q(ν) =
∏
l

sinh(ν − νl) . (Q)

Strictly speaking this product only converges if

the number of zeroes is finite, which is not true

in the limit we consider – the νl accumulate at

infinity. Given certain growth conditions, q(ν)

5
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can more correctly be written as a product of

factors (1 − e2(ν−νl)) . We are only interested
in giving the flavour of the argument here, so

having mentioned this caveat we retain the form

appropriate for finite N . Now the reasoning goes

as follows. First, we know from (TQ) that t is

fixed by q, and from (Q) that q is fixed by the

set {νi}. To fix the {νi}, set ν = νi in (TQ). On
the LHS we then have t(νi), which is nonsingular

since t is entire, times q(νi) which is zero by (Q).

Thus the LHS vanishes, and rearranging we have

q(νi + 2iη)

q(νi − 2iη)
= −1 , i = 1, 2 . . .

or, using (Q) one more time,

∏
l

sinh(νi − νl + 2iη)
sinh(νi − νl − 2iη)

= −1 , i = 1, 2 . . .

This is exactly the Bethe ansatz equation (BAE)

for the problem, with the νi the roots. The for-

mula for t(ν) implied by (TQ) then matches that

resulting from a direct application of the alge-

braic Bethe ansatz. It is important to realise

that the BAE does not have a unique solution,

but a discrete set of them (infinite in the N →∞
limit), matching the fact T has many eigenval-

ues3. To select a particular solution, supplemen-

tary analyticity conditions should be imposed. In

particular, the ground state emerges if we require

that all of the νi lie on the real axis.

So far we have been discussing the behaviour

of lattice models. However, Bazhanov, Lukyanov

and Zamolodchikov were able to construct ana-

logues of the T and Q operators directly in the

context of a continuum quantum field theory [20],

using a free-field representation of the massless

limit of the sine-Gordon model. The functional

relation (TQ) is then most usually written in

terms of a variable λ, on which the ‘shifts’ on

the RHS act multiplicatively, as follows:

T (λ)A±(λ) =

e∓2πipA±(q−1λ) + e±2πipA±(qλ) (TQ′)

Here T and A± are entire functions of λ2, q =
eiπβ

2

with β the sine-Gordon coupling, and p, an

3We won’t go into the question of the completeness of

the BAE solutions here; see [22] for a recent discussion.

extra parameter compared to the previous dis-

cussion, is related to the possibility of adding a

twist to the periodic boundary conditions (an op-

tion which also exists on the lattice). Note also

that q can be interpreted as a quantum group

deformation parameter.

3. The TQ/ODE connection

The goal now is to show that (TQ′) also arises
naturally in connection with the eigenvalue prob-

lems discussed in section 1. First, we need to de-

velop our treatment of ordinary differential equa-

tions in the complex domain a little further, re-

lying largely on the book by Sibuya [10].

Consider the ODE[
− d2

dx2
+ P (x)

]
ψ(x) = 0 (*)

where P (x) = x2M −E, and M is real and posi-
tive. (This is the Bender-Boettcher problem with

N = 2M , x → x/i and E → −E – a change
which is made purely for convenience.) Then [23]

the ODE (*) has a solution y(x,E) such that

(i) y is an entire function of (x,E)

[ though x lives on a cover of C\{0} if 2M/∈Z ]
(ii) as |x| → ∞ with | arg x| < 3π/(2M+2),

y ∼ x−M/2 exp
[
− 1
M+1 x

M+1
]

y′ ∼ −xM/2 exp
[
− 1
M+1 x

M+1
]

[ though there are small modifications for M ≤ 1 ]
These properties fix y uniquely; to understand

where they come from we quickly recall the dis-

cussion of section 1. With the shift from x to

x/i, the anti-Stokes lines for the current problem

are

arg(x) = ± π

N+2
, ± 3π

N+2
, . . .

and in between them lie the Stokes sectors, which

we label by defining

Sk =
∣∣∣∣arg(x) − 2πk

2M+2

∣∣∣∣ < π

2M+2
.

The asymptotic quoted in property (ii) is just

the WKB result in S−1∪S0∪S1 . One more piece
of notation: an exponentially-growing solution in

a given sector is called dominant (in that sector);

6
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one which decays is called subdominant. It is easy

to check that y as defined above is subdominant

in S0, and dominant in S−1 and S1. Note that
subdominant solutions to a second-order ODE

are unique up to a constant multiple; this is why

the quoted asymptotics pin down y uniquely.

Having identified one solution to the ODE,

we can now generate a whole family using a trick

due to Sibuya. Consider the function ŷ(x,E) =

y(ax,E) for some (fixed) a ∈ C. From (*),[
− d2

dx2
+ a2M+2x2M − a2E

]
ŷ(x,E) = 0 .

(This is sometimes given the rather-grand name

of ‘Symanzik rescaling’.) If a2M+2=1, it follows

that ŷ(x, a−2E) solves (*). Setting

ω = e2πi/(2M+2)

and

yk(x,E) = ω
k/2y(ω−kx, ω2kE)

we therefore have the key statements

• yk solves (*) for all k ∈ Z ;
• up to a constant, yk is the unique solution to
(*) subdominant in Sk. [ This follows easily via

the asymptotic of y. ]

• each pair {yk, yk+1} forms a basis of solutions
for (*). [ This follows on comparing the asymptotics

of yk and yk+1 in either Sk or Sk+1. ]
We have almost arrived at the T-Q relation.

First, expand y−1 in the {y0, y1} basis:

y−1(x,E) = C(E)y0(x,E) + C̃(E)y1(x,E) .

We will call this a Stokes relation, with the coef-

ficients C(E) and C̃(E) Stokes multipliers. They

can be expressed in terms of Wronskians. A

quick reminder [24]: the Wronskian of two func-

tions f and g is

W [f, g] = fg′ − f ′g .

For two solutions of a second-order ODE with

vanishing first-derivative term, W [f, g] is inde-

pendent of x, and vanishes if and only if f and g

are proportional. To save ink we set

Wk1,k2 =W [yk1 , yk2 ]

and record the following two useful properties:

Wk1+1,k2+1(E) =Wk1,k2(ω
2E) , W0,1(E) = 2i .

Now by ‘taking Wronskians’ of the Stokes rela-

tion first with y1 and then with y0 we find

C =
W−1,1
W0,1

, C̃ = −W−1,0
W0,1

= −1

and so the relation can be rewritten as

C(E)y0(x,E) = y−1(x,E) + y1(x,E) ,

or, in terms of the original function y, as

C(E)y(x,E)

= ω−1/2y(ωx, ω−2E) + ω1/2y(ω−1x, ω2E) .

This looks very like the T-Q relation! The only

fly in the ointment is the x-dependence of the

function y. But this is easily fixed: just set x to

zero. We can also take a derivative with respect

to x before setting it to zero, which swaps the

phase factors ω±1/2. So we define

D−(E) = y(0, E) , D+(E) = y′(0, E) .

(The notation will be justified shortly.) Then the

Stokes relation implies

C(E)D∓(E) =

ω∓1/2D∓(ω−2E) + ω±1/2D∓(ω2E) (CD)

Finally we are ready to make the comparison. If

we set

β2 =
1

M+1
, p =

1

4M+4

then the match between (TQ′) and (CD) is per-
fect, with the following correspondences between

objects from the IM and ODE worlds:

T ↔ C

A± ↔ D∓

How should we think about C and D? In fact

they are spectral determinants. Recall that C(E)

is proportional to W−1,1(E). Thus C(E) van-
ishes if and only ifW [y−1, y1] = 0, in other words
if and only if E is such that y−1 and y1 are lin-
early dependent. But this means that (*) has

a solution decaying in the two sectors S−1 and
S1 simultaneously, which is exactly the spectral
problem discussed in section 1, modulo the triv-

ial redefinitions of x and E. This is enough to

7
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deduce that, up to a factor of an entire function

with no zeroes, C(E) is the spectral determinant

for the Bender-Boettcher problem. Even this am-

biguity can be eliminated, via Hadamard’s fac-

torisation theorem, once the growth properties

of the functions involved have been checked; see

[4] for details. To see that the functions D± are
spectral determinants is even more easy: first, we

note that by their very definition the functions

y(x,E) decay at (real) x → ∞ for all values of
E. If D−(E) = y(0, E) = 0, then this solution,

decaying at +∞, also vanishes at x = 0, while
if D+(E) = 0, then it has vanishing first deriva-

tive there. A moment’s thought shows that this

corresponds to there existing odd or even, respec-

tively, wavefunctions for the equation on the full

real axis with potential |x|2M . (It was for this
reason that the functions D± were so labelled.)
This insight allows us to fill in one gap in the

correspondence. While the T-Q relation is very

restrictive, as remarked in section 2 it does not

have a unique solution. So to say that D−(E) is
‘equal’ toA+(λ) begs the question: whichA+(λ)?

To answer, we first note that, in contrast to the

Bender-Boettcher problem, the full-line problem

with |x|2M potential (or equivalently, the half-
line problem with y(0) = 0 boundary conditions)

is self-adjoint, and so all of its eigenvalues are

real. Back in the integrable model, the only so-

lution to the BAE with all roots real is known to

be the ground state, so the question is answered:

the relevant A+(λ) is that corresponding to the

ground state of the model.

As it stands, the correspondence is still not

entirely satisfactory since, for each value of β2,

it picks out just one value of p. A more com-

plete mapping would find partners for the BAE

at other values of the twist parameter as well.

This was sorted out very shortly after the original

observation of the correspondence in [1]: in [2],

Bazhanov, Lukyanov and Zamolodchikov pointed

out that the ODE (*) should be generalised to[
− d2

dx2
+ x2M +

l(l+1)

x2
− E

]
ψ(x) = 0 .

(This observation, combined with the discovery

of the role of the T operator made in [4], pro-

vided the motivation to study the spectra shown

in figure 2 of section 1.) The previous mapping

between parameters becomes

β2 =
1

M+1
, p =

2l+1

4M+4
,

and varying l away from zero allows us to ex-

plore the other values of p. This is a continuation

through continuous values of angular momentum

in a radial (three-dimensional) Schrödinger equa-

tion – in other words, non-relativistic Regge the-

ory! A little more care is needed in the definition

of D± once l(l+1) is nonzero, since the equation
acquires a regular singularity at the origin. The

resolution is to match the solutions yk onto so-

lutions ψ± with simple scaling behaviours at the
origin; the details can be found in [2, 4].

Two more points deserve a mention. First,

studies of integrable models had already shown

how to transform a T-Q relation into a nonlinear

integral equation (NLIE), which in turn can be

solved by numerical iteration rather easily [17,

25, 20]. The NLIE is particularly simple for the

ground state, and it was this that allowed the

spectral plots of section 1 to be obtained in [4]

with relatively little pain, building on the checks

for specific cases performed in [1]. Second, we

should mention that there is another strand to

the functional relations approach to integrable

models, based on the so-called fusion hierarchy

and its truncations (see for example [16, 19]).

This proceeds via the definition of fused trans-

fer matrices Tj , j = 0,
1
2 , 1,

3
2 , . . . (with T0 = 1

and the original T identified with T1/2), and ul-

timately leads to another set of nonlinear inte-

gral equations, often referred to as being of ‘TBA

type’ [26]. Obviously it would be nice to find a

role for these objects as well, and it turns out

that this is possible. They are simply mapped

onto the WronskiansWk1,k2 with |k1−k2| > 2 [4],
and they therefore correspond to the other eigen-

value problems that were mentioned at the end

of section 1 above. Truncation of the fusion hi-

erarchy can then be reinterpreted in terms of the

(quasi-)periodicity (in k) that the functions yk
exhibit whenever M is rational. In the simplest

cases (with M rational and l(l+1)=0) this peri-

odicity arises because the solutions to the ODE

live on a finite cover of C\{0}; for other cases,
the monodromy around x=0 needs a little more

care, but the story remains essentially the same.

8
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All good correspondences need a dictionary,

and to end this section we give a summary of the

mapping between objects seen by the integrable

model and the Schrödinger equation:

Integrable
Model

Schrödinger
equation

Spectral parameter ↔ Energy

Anisotropy ↔ Degree of potential

Twist parameter ↔ Angular momentum

(Fused) transfer

matrices
↔ Spectral problems de-

fined at |x|=∞

Q operators ↔ Spectral problems link-

ing |x|=∞ and |x|=0

Truncation of the

fusion hierarchy
↔ Solutions on finite cov-

ers of C\{0}

(The two classes of spectral problems mentioned

in this table are related to the ‘lateral connection’

and ‘radial connection’ problems in general WKB

theory – see, for example, [27].)

Armed with the dictionary, the horizontal

axis of figure 1 can be annotated to indicate which

integrable models correspond to the various val-

ues of N in the Bender-Boettcher problem. Thus

for N = 1, 2, 3, 4 and 6, the relevant integrable

models are the N=2 SUSY point of the sine-

Gordon model, the free-fermion point, the Yang-

Lee model, Z4 parafermions and the 4-state Potts

model respectively. It is amusing that the x3 po-

tential is related by the correspondence to the

Yang-Lee model (or, strictly speaking, to the sine-

Gordon model at the value of the coupling which

allows for a reduction to Yang-Lee), thus return-

ing by a very indirect route to a neighbourhood

of the original thought of Bessis and Zinn-Justin.

4. Generalisations

The Bethe ansatz equations seen so far can all

be written in terms of the variable E as

∞∏
j=1

(
Ej − ω2MEk
Ej − ω−2MEk

)
= −ω2l+1, k = 1, 2 . . .

where ω = e2πi/(2M+2),M is related to the quan-

tum group deformation parameter, or anisotropy,

of the lattice model, and l is related to the twist.

These are the n=2 cases of a general fam-

ily of SU(n)-related Bethe ansatz systems, re-

lating n−1 sets of unknowns {E(m)k }, with m =
1, 2 . . . n−1 and k = 1, 2 . . .∞ :
n−1∏
t=1

∞∏
j=1

(
E
(t)
j − ω

nM
2 CmtE

(m)
k

E
(t)
j − ω−

nM
2 CmtE

(m)
k

)
= −ωnτm+1.

As in the SU(2) case, M can be viewed as a de-

formation parameter, but this time there are not

one but n−1 independent twists, τ1, τ2, . . . τn−1.
The indices m and t should be thought of as liv-

ing on an SU(n) Dynkin diagram, of which Cmt
is the Cartan matrix. To obtain these equations

using operators defined directly in a continuum

quantum field theory, as achieved in [19, 20] for

the SU(2) case, appears to be a largely open

problem, though the first steps have been under-

taken in [28]. But even without this motivation,

it is very natural to ask whether the correspon-

dence described above can be extended to cover

BA systems of these more general types.

The answer is yes [8], and it turns out that

one has to turn to higher-order ordinary differen-

tial equations. Earlier but less complete results

in this direction were obtained in [5, 6]; aspects

of the problem are also discussed in the recent

article [9]. One of the main difficulties is to find

a parametrisation of the higher-order differential

operators which incorporates the twists in a man-

ageable way. The solution found in [8] starts by

defining an elementary first-order differential op-

erator, D(g):

D(g) =

(
d

dx
− g

x

)
.

Elementary properties are D(g)† = −D(−g) and
D(g2−1)D(g1) = D(g1−1)D(g2). Now, given a
vector g = (g0, g1 . . . gn−1) , set

D(g) =

D(gn−1−(n−1))D(gn−2−(n−2)) . . . D(g0)

and impose
∑n−1
i=0 gi = n(n−1)/2 to ensure that

the (n−1)th order derivative term vanishes (this
allows various theorems aboutWronskians to hold

in their simplest forms). With this notation in

place, the ODE to consider is an immediate gen-

eralisation of those seen earlier:(
(−1)n+1D(g) + P (x,E)

)
ψ(x) = 0

9
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with P (x,E) = xnM − E. After some work, it
turns out this ODE does indeed contain a hid-

den set of SU(n) Bethe ansatz equations. The

parameter M in P (x,E) is equal to the M ap-

pearing in the SU(n) BAE quoted above, while

the vector of parameters g is related to the twists

in the BAE by

g =


0

1

2
...

n−1

+

1−n 2−n 3−n . . .

1 2−n 3−n . . .

1 2 3−n . . .
...

...
...

1 2 3 . . .




τ1
τ2
...

τn−1


The SU(n) structure is encoded via certainWron-

skiansW [yi],W [yi, yj ],W [yi, yj, yk] . . . These are

m-dimensional determinants of matrices formed

by the functions yk1 ,. . . ykm and their first (m−1)
derivatives, for m = 1 . . . n−1. The functions
yk themselves are certain special solutions of the

ODE, subdominant in particular sectors of the

complex plane. They generalise the yk intro-

duced by Sibuya for second-order ODEs, that

were described in section 3 above. For the precise

definitions and more details of how the mapping

goes, the paper [8] should be consulted, since

space prevents a fuller discussion in this short

review.

5. Conclusions

The headline conclusion of this talk should al-

ready be clear: it is that the T and Q operators

which arise in certain integrable quantum field

theories encode spectral data, at least in their

ground-state eigenvalues. This gives a novel per-

spective on the Bethe ansatz, and also a new way

to treat spectral problems via the solution of non-

linear integral equations.

One important topic not covered here is the

new light that the correspondence sheds on some

previously-conjectured duality properties of inte-

grable models [2, 4, 5, 8]. A generalisation of the

Langer [29] transformation can be employed to

map the ODE with the potential xM to one with

potential xM̃ , M̃ = −M/(M+1). For n = 2,

this sends the parameter q = eiπ/(M+1) to q̃ =

eiπ/(M̃+1) = eiπ(M+1), which is precisely the kind

of duality discussed in the talk by F. Smirnov at

this conference.

There are many further problems to be ex-

plored, of which we list just a few. First, one

would like to know how many other BA sys-

tems can be brought into the correspondence,

beyond the An−1-related cases described above,
and whether more general polynomial potentials

might also have a role to play. The set is certainly

not empty – see [7] – but the problem of finding

ODEs even for the D and E related BA systems

remains open. Second, the correspondences es-

tablished to date have all concerned massless in-

tegrable lattice models, in a ‘field theory’ limit

where the number of sites, and of Bethe ansatz

roots, tends to infinity. Correspondences for more

general massive models, and for lattice models

with a finite number of sites, would be very in-

teresting. Finally, we should admit that our ob-

servations remain at a rather formal and mathe-

matical level. At some stage one should ask what

physics lies behind all of this, but perhaps such

questions will have to wait until the answers to

the other open problems have been found and

classified. In this sense, we may still be in a

‘stamp-collecting’ phase, and we can expect that

further work will lead to a much more systematic

understanding of the whole story.
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Poincaré Vol XXXIX (1983) 211;

— ‘Exact resolution method for general 1D

polynomial Schrödinger equation’, J. Phys.

A32 (1999) 5993, math-ph/9903045

[12] C.M. Bender and A. Turbiner, ‘Analytic

continuation of eigenvalue problems’, Phys.

Lett. A173 (1993) 442

[13] C.M. Bender and S. Boettcher, ‘Real spectra in

non-hermitian Hamiltonians having PT
symmetry’, Phys. Rev. Lett. 80 (1998) 4243,

physics/9712001

[14] C.M. Bender, S. Boettcher and P.N.

Meissinger, ‘PT symmetric quantum
mechanics’, J. Math. Phys. 40 (1999) 2201,

quant-ph/9809072

[15] R. Baxter, Exactly solved models in statistical

mechanics (Academic Press 1982)
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