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Abstract:We discuss the finite-size properties of a simple integrable quantum field theory in 1+1 di-

mensions with non-trivial boundary conditions. Novel off-critical identities between cylinder partition

functions of models with differing boundary conditions are derived.

1. Introduction

A fair amount of work has been devoted in recent

years to the investigation of non-perturbative phe-

nomena in integrable quantum field theories. Be-

sides the fact that such systems might be used

as a testing ground for general ideas in quantum

field theory, such as RG flows and dualities, the

wide success of the topic is probably due to its

relevance in condensed matter physics. More re-

cently, variants of such systems defined on non-

trivial geometries have been considered [1]. This

is a topic which has an even larger set of poten-

tial applications. In condensed matter physics,

for example, these include the study of Kondo-

type systems and the fractional quantum Hall

effect (see [2, 3] for detailed reviews of recent re-

sults in these research areas). String theorists [4]

have also shown a certain interest in the subject,

and surprisingly connections with other relevant

pieces of modern mathematics and physics [5, 6]

have been discovered.

In this note we shall sketch results more ex-

tensively presented in a series of collaborative

works [7, 8, 9, 10] concerning a simple interact-

ing quantum field theory confined on a strip-type

geometry.

TheM2,5 model is perhaps the simplest non-

trivial rational Conformal Field Theory (CFT).

It has central charge c = −22/5, and can be iden-
tified with the non-trivial RG fixed point of the

(T < Tc) Ising model in a strong purely imag-

inary magnetic field. This fixed point coincides

with the accumulation point of the Lee-Yang ze-

ros and the corresponding conformally invariant

theory is known as the Lee-Yang CFT.

The model contains only two irreducible rep-

resentations of the Virasoro algebra. These have

weights 0 and −1/5, and the corresponding bulk
primary fields are the identity 11, and a scalar

field ϕ of scaling dimension xϕ=−2/5. There are
two conformally-invariant boundary conditions

denoted by 11 and Φ and three relevant boundary

fields interpolating pairs of boundary conditions.

They all have conformal weight −1/5. Two of
these fields (denoted ψ and ψ†) interpolate dif-
ferent boundary conditions, while the third (φ)

lives on the Φ boundary:

ψ ≡ φ(11Φ)−1/5 , ψ† ≡ φ(Φ11)−1/5 , φ ≡ φ(ΦΦ)−1/5 . (1.1)

2. The perturbed CFT

We shall discuss a perturbation of this CFT, the
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scaling Lee-Yang model. On a cylinder of width

R and circumference L, this has the action

ABLY = ABCFT + λ
∫ R

0

dx

∫ L

0

dy ϕ(x, y)

+hl

∫ L

0

dy φ(0, y) + hr

∫ L

0

dy φ(R, y) , (2.1)

with coordinates 0≤x≤R across the cylinder,
and 0≤ y <L around it. The parameter λ deter-
mines the bulk mass and we have allowed the pos-

sibility of boundary-perturbing fields on the left

and right ends of the cylinder, with couplings hl
and hr. ABCFT is the conformally-invariant ac-
tion on the cylinder with (conformal) boundary

conditions (Φ,Φ). We shall also consider (11,Φ)

and (11, 11) boundary conditions which have a sim-

ilar expression for ABLY , but lack one or both
perturbing boundary fields.

There are two possible Hamiltonian descrip-

tions of the cylinder partition function. In the so-

called L-channel representation the rôle of time

is taken by L:

Zαβ = TrH(α,β)e
−LHstrip

αβ
(M,R) (2.2)

=
∑

En∈ spec(Hstripαβ
)

e−LE
strip
n (M,R) ,

while in the R-channel representation the rôle of

time is taken by R:

Zαβ = 〈α| e−RHcirc(M,L) |β 〉 (2.3)

=
∑

En∈ spec(Hcirc)

〈α|ψn 〉〈ψn|β 〉
〈ψn|ψn 〉 e−RE

circ
n (M,L).

In equation (2.3) we have used boundary states

|α〉,|β〉 ∈ {|11〉, |Φ〉} and the eigenbasis {|ψn〉} of
the Hamiltonian Hcirc , which propagates states

living on a circle of circumference L. By contrast,

Hstripαβ in (2.2) propagates states along a strip of

width R, and acts on the Hilbert space H(α,β) of
states on an interval with boundary conditions α

and β imposed on the two ends.

R

L

(space)

(time)

α β

Figure 1: The L-channel decomposition: states |χn〉 live
on the dotted line segment across the cylinder.

R

(time)

L

(space)

α β

Figure 2: The R-channel decomposition: states |ψn〉 live
on the dotted circle around the cylinder.

The two decompositions are illustrated in figures

1 and 2.

Conformal field theory provides the following

useful representations for Hcirc and Hstrip:

Hcirc =
2π

L

(
L0+L0− c

12+λ
∣∣ L
2π

∣∣ 125
2π∫

θ=0

ϕ(eiθ) dθ
)
,

(2.4)

Hstrip =
π

R

(
L0 − c

24 + λ
∣∣R
π

∣∣ 125
π∫

θ=0

ϕ(eiθ) dθ

+hl
∣∣R
π

∣∣ 65 φl(−1) + hr ∣∣Rπ
∣∣ 65 φr(1)

)
.(2.5)

The truncated conformal space approximation,

or TCSA, gives numerical estimates for the low-

lying eigenvalues of the Hamiltonians (2.4) [11]

and (2.5) [7] via a diagonalisation of the ma-

trix 〈 i|H |j 〉, where |i〉 and |j〉 are states in a
finite-dimensional subspace of the relevant CFT

Hilbert space.

If the bulk coupling λ is set to zero in (2.5),

then a purely boundary flow can be studied using

the TCSA [7].
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Figure 3: The boundary spectral flow.

The gaps for the excited state scaling functions

Fn(h
5/6R) = REstripn (h,R)/π are plotted in fig-

ure 3 as a function of log(h6/5R) for the model
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on a strip with (11,Φ(h)) boundary conditions.

Note how the multiplicities (written in parenthe-

ses) reorganise themselves to give a smooth flow

between the conformal (11,Φ) and (11, 11) spectra,

as encoded in the χ−1/5 and χ0 Virasoro charac-
ters ofM2,5 .

In more complicated models the structure

of the boundary flows can be much richer; see,

for example, Gerard Watts’ talk at this confer-

ence [12].

3. The scaling Lee-Yang model

Turning now to non-zero values of λ, the scaling

Lee-Yang model can also be described by a mas-

sive scattering theory consisting of a single self-

conjugate particle species (A = A) with 2 → 2
S–matrix [13]

SAAAA(θ) = S(θ) = −(1)(2) , (x) =
sinh

(
θ
2+

iπx
6

)

sinh

(
θ
2−

iπx
6

) .

The physical strip pole at θ = 2πi/3 in S(θ) cor-

responds to the on-shell tree diagram involving a

non-vanishing “ϕ3” coupling represented in fig-

ure 5, while the pole at θ = iπ/3 describes the

same process seen from the crossed channel. The

massM of the particle is related to the bulk per-

turbation parameter λ by M = κλ5/12. The ex-

act value of the constant κ was found in [14].

θ

θ θ

 S(θ − θ
1 2

) =

2

21θ

1

2π/3

π/3

Figure 4: The the 2→ 2
S-matrix.

Figure 5: The “ϕ3”

property.

Placing an impenetrable wall at the coordinate

position x = 0, the theory must be supplemented

by a reflection factor describing how the particle

bounces off the boundary. The reflection ampli-

tudes corresponding to the two integrable bound-

ary conditions 11 and Φ were found in [7]. They

are

R11(θ) =
(
1
2

) (
3
2

) (
4
2

)−1
, (3.1)

and RΦ(h)(θ) = Rb(θ), where

Rb(θ) = R11(θ)
(
S(θ + iπ b+36 )S(θ − iπ b+36 )

)−1
(3.2)

and

h(b) = −|ĥcrit|M6/5 sin(π(b+ 1/2)/5) . (3.3)

The exact value of ĥcrit was determined in [9].

Notice that the reflection factors for the 11 and

Φ(h(0)) boundaries are identical. However the

particle – boundary interaction properties differ:

the type 11 boundary is particle repelling while

Φ(h(0)) is attractive [8, 10]. We shall consider

cases where b is real and restrict b to the range

[−3, 3]. The physical poles of R11(θ) and Rb(θ) at
θ = iπ/6 and θ = iπ/2 can be explained by pos-

tulating a non-vanishing boundary-particle cou-

pling, while the poles at −iθ = V10 = π(b+ 1)/6
and at −iθ = V20 = π(b − 1)/6 in Rb(θ) lie in
the physical strip for b ∈ [−1, 2] and b ∈ [1, 2]
respectively. It is natural to associate the lat-

ter poles to boundary bound states. The ener-

gies e1 and e2 of these states are given by ej −
e0 =M cos(Vj0), with e0 being the energy of the

boundary ground-state. Notice that the differ-

ence e1− e0 is negative for b ∈ [2, 3] and the first
boundary bound state becomes, in this range, the

true vacuum state. The other poles in the reflec-

tion amplitude Rb also have field theoretic ex-

planations, but only when a boundary analogue

of the Coleman-Thun mechanism is invoked [8].

Further discussion of this aspect of boundary scat-

tering can be found in [15, 16].

) =

θ

−θ

θ R(

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

Figure 6: The reflection

matrix.

Figure 7: Formation of a

boundary bound state.

4. The thermodynamic Bethe ansatz

The Thermodynamic Bethe Ansatz (TBA) [17]

has proved to be a powerful tool in the study

of the ground-state energy of integrable quan-

tum field theories on a infinite cylinder. More

recently, a variant of the method (the BTBA)
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has been proposed to describe boundary situa-

tions [18]. In [7], a detailed analysis of these

equations for the case of the Lee-Yang model was

performed. The analysis revealed, for the (11,Φ)

boundary conditions, that the equations of [18]

correctly describe the ground-state energy in the

range b ∈ [−3,−1] but need to be modified for
b ∈ [−1, 2] by the inclusion of extra ‘active singu-
larity’ terms (see [19, 20, 21, 22, 7] and eq. (4.1)

below). Moreover, excited state energies Estripn

can also be computed, using similar generalisa-

tions. For the scaling Lee-Yang model the analy-

sis of [18, 7] led to a non-linear integral equation

for a single function ε(θ):

ε(θ) = ν(θ)+
∑
p

log
S(θ − θp)
S(θ − θp)

−K∗L(θ) , (4.1)

plus an associated set of equations for the finite

(and possibly empty) set {θp, θp} of ‘active’ sin-
gularities: exp(ε(θp)) = exp(ε(θp)) = −1 ∀p. In
(4.1), L(θ) = log

(
1+e−ε(θ)

)
, the symbol “∗” in-

dicates the standard convolution, and

ν(θ) = 2RM cosh θ − logλαβ(θ) , (4.2)

λαβ(θ) = Rα(i
π
2 − θ)Rβ(iπ2 + θ) , (4.3)

K(θ) = −i ∂
∂θ
logS(θ). (4.4)

The number of active singularities depends on

the particular energy level considered and, as

mentioned above, for some pairs of boundary con-

ditions on the strip it is nonzero even for the

ground state [7]. The solution to (4.1) for a given

value of r = RM determines a function cn(r):

cn(r) =
6

π2

∫ ∞
−∞

dθ r cosh θL(θ)

+i
12r

π

∑
p

(sinh θp − sinh θp) , (4.5)

in terms of which Estripn (M,R) = EbulkR + fα +
fβ − π

24R cn(r), where the f ’s are R-independent

contributions to the energy from the boundaries

and Ebulk is the bulk energy per unit length. Ex-
act expressions for these quantities can be found,

for example, in [10]. In figure 8 we compare

the numerical diagonalisation (TCSA) of Hstrip

with boundary condition (11,Φ|b=−1.5) with the
numerical solution of the BTBA. No boundary

bound states are present. Figure 9 shows in-

stead the situation for (11,Φ|b=0.8): the first ex-
cited state now corresponds to a boundary bound

state with an energy gap tending, as R→∞, to
∆e = e1 − e0 = cos(V10|b=0.8). Note that the
finite-size data has allowed us to confirm the ex-

istence of the boundary bound state, inferred at

the end of the last section by a completely inde-

pendent calculation based on the pole structure

of the proposed reflection factor.
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Figure 8: TCSA (lines) versus BTBA (dots).
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Figure 9: TCSA result: the first boundary bound state.

5. The partition function identities

Let us now consider the R-channel decomposi-

tion of the partition function (2.3). The follow-

ing identification was made in [5, 9] for the coef-

ficients of the weights exp(−REcircn ):

〈Φ(h(b))|ψn 〉 = Yn(iπ b+36 )〈 11|ψn 〉 , (5.1)

where Yn(θ) = e
εn(θ), and εn(θ) is the solution of

the nth excited-state TBA equation with periodic

boundary conditions. These equations are simply

recovered by setting ν(θ) = LM cosh θ and r =

LM in (4.1) and (4.5). Relation (5.1) can be then

4
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used to write the partition function as

ZΦ(h(br)),Φ(h(bl)) =
∑
n

(
〈 11|ψn 〉〈ψn|11 〉
〈ψn|ψn 〉

Yn(iπ
br+3
6 )Yn(iπ

bl+3
6 )e

−REcircn (M,L)
)
.

Recalling that the Y’s satisfy the functional re-

lation [23] 1

Yn(θ + iπ/3)Yn(θ − iπ/3) = 1 + Yn(θ) , (5.2)

we quickly obtain the following identity

ZΦ(h(−b)),Φ(h(b)) = Z11,11 + Z11,Φ(h(2−b)) . (5.3)

Eq. (5.3), being valid for arbitrary R and L, is

equivalent to the following relation between the

spectra of models on strips of equal widths but

different boundary conditions:

{Estripn }Φ(h(−b)),Φ(h(b)) =
{Estripn }11,11 ∪ {Estripn }11,Φ(h(2−b)) . (5.4)

This rather surprising relationship has been nu-

merically checked using the TCSA approach and

it can be considered as a first off-critical exten-

sion of identities between conformal partition func-

tions provided in, for example, [24]. We shall now

discuss a simple application of (5.4) [10].

There are regions in which the model with

(Φ(hl),Φ(hr)) boundary conditions develops a

boundary-induced vacuum instability: an exam-

ple situation is represented in figure 10. (The

dashes correspond to complex-conjugate pairs of

spectral lines.)

2 4 6 8 10 12

-1

1

2

3

4

5

6

Figure 10: Example of vacuum instability (bl = br =
1
2
).

(Axes as on figures 8 and 9.)
1Note, the ‘ground-state’ Y0 at λ=0 coincides with the

Stokes multiplier of a Schrödinger equation with x3 po-

tential [6]

These regions are shaded on the (hl, hr) plane

in figure 11. The inner dashed line delimits the

values of hl and hr covered for real values of bl
and br, while on the ellipse the identity (5.4)

holds. On the ellipse, in the small R region,

the energy levels E0|11,Φ(h(2−b)) and E0|11,11 cor-
respond, respectively, to the ground state and to

the first excited state in the (Φ(h(−b)),Φ(h(b)))
model. In the opposite, large-R, limit, the energy

gap ∆E = E0|11,11−E0|11,Φ(h(2−b)) tends for b > 0
to f11 − fΦ(h(2−b) = sin (b− 2)π/6 and becomes
negative for |b| < 2. This simple fact signals
the presence of a level crossing at some interme-

diate value of R. The RHS of (5.4) prohibits

the mixing of the two states and ensures that

the crossing will be exact. The set of b-values

with ∆E < 0 corresponds to the portion of the

ellipse on figure 11 which touches the shaded re-

gion. Once the line ∆b = bl + br = 0 is left,

the identity (5.4) can no longer be invoked and

the level crossing it lost. As ∆b decreases the

two levels repel, while in the opposite direction

the boundary fields are stronger suggesting the

presence of a vacuum instability. Finally in the

region hl < −|ĥcrit|M6/5 (hr < −|ĥcrit|M6/5) the

reflection factor Rb(hl)(θ) is not a pure phase for

real θ and, consequently, the vacuum is already

unstable in the infinite volume [7]. Shading the

region(s) within which, for at least one value of

the strip width, the model exhibits a boundary-

induced instability, we end up with the phase-

diagram represented in figure 11. The conjec-

tured scenario has been checked using the TCSA

method.

l

h r

h

Figure 11: The phase diagram.

6. Conclusions

In this note we have given a brief account of re-
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sults on boundary quantum field theory obtained

in the last few years in a series of collaborative

papers. Some of the observed phenomena, such

as the partition function identities, are expected

to be common features of integrable boundary

models defined on a cylinder geometry.

Constraints of space and time prevent us from

describing two other important topics that can

be studied using the example of the boundary

scaling Lee-Yang model. In [9], a detailed exam-

ination of the flow of the ground-state degeneracy

function g was made. It was found that the TBA

equations proposed in [18] do not quite capture

the variation of g with changes of the bulk mass

scale, though if this scale is held fixed, they cor-

rectly describe its behaviour as a function of the

boundary parameters.

Then the main theme of the recent work [10]

was the computation of correlation functions in

a semi-infinite geometry. We refer the interested

reader to the original papers for a detailed dis-

cussion of these and other issues.
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