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Abstract: The correlation functions of a 2D rational conformal field theory, for an arbitrary number

of bulk and boundary fields and arbitrary world sheets, can be expressed in terms of Wilson graphs

in appropriate three-manifolds. We present a systematic approach to boundary conditions that break

bulk symmetries. It is based on the construction, by ‘α-induction’, of a fusion ring for the boundary

fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary

fields. Symmetry breaking boundary conditions correspond to solitonic sectors.

Conformal field theory in two dimensions plays

a fundamental role in the theory of two-dimen-

sional critical systems of classical statistical me-

chanics [1], in quasi one-dimensional condensed

matter physics [2] and in string theory [3]. The

study of defects in systems of condensed matter

physics [4], of percolation probabilities [5] and

of (open) string perturbation theory in the back-

ground of certain string solitons, the so-called D-

branes [6], forces one to analyze conformal field

theories on surfaces that may have boundaries

and / or can be non-orientable.

In this contribution, we present a system-

atic description of correlation functions of an ar-

bitrary number of bulk and boundary fields on

general surfaces. It is based on the fundamen-

tal fact [7, 8] that conformal blocks appear in

two different contexts: They are building blocks

for the correlators of two-dimensional conformal

field theories, and they are the spaces of physical

states in topological field theories, TFT, in three

dimensions.

For simplicity, we take the modular invariant

torus partition function that encodes the spec-

trum of bulk fields of the theory to be of charge

conjugation form, i.e. Zλ,µ= δλ,µ+ . We will, how-

ever, include in our discussion boundary condi-

tions that do not preserve all bulk symmetries.

We consider general cases of symmetry break-

ing by boundary conditions. In particular, we

do not have to require that left movers and right

movers are linked, at the boundary, by some au-

tomorphism of the chiral algebra. Put differently,

the subalgebra of chiral symmetries that is pre-

served by the boundary conditions is not nec-

essarily an orbifold subalgebra. Applications of

the theory include non-BPS branes in interacting

backgrounds and boundary conditions for excep-

tional modular invariants.

We will start with a brief review of TFT in

three dimensions, and then formulate the basic

problem that arises when one constructs a full

two-dimensional CFT from a chiral CFT. The

amplitudes in the presence of symmetry preserv-

ing boundary conditions will be discussed in Sec-

tion 3. Symmetry breaking boundary conditions

are the subject of Section 4.

1. Three-dimensional TFT

The basic feature of three-dimensional TFT is

that it provides a modular functor : To geomet-

ric data it associates algebraic structures. Con-

cretely, it associates vector spaces – the spaces

H(X̂) of conformal blocks – to two-dimensional
manifolds X̂, and to three-manifolds, endowed
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with somewhat more structure, it assigns an en-

domorphism of these vector spaces.

In thoses cases where the TFT can be de-

fined in terms of path integrals, e.g. for Chern-

Simons theories, the reader is invited to think

of the vector space H(X̂) as the space of (gauge
equivalence classes of) boundary conditions for

the fields appearing in the path integral and to

think of the endomorphisms as transition ampli-

tudes. We would like to stress, however, that

our approach does not rely on the existence of a

path integral description. In fact, the only nec-

essary input is the structure of a modular tensor

category [9], which is a formalization of Moore-

Seiberg data like fusing and braiding matrices

and conformal weights.

More precisely, conformal blocks are associ-

ated to extended surfaces: These are two-dimen-

sional, oriented manifolds with a finite collection

of small arcs. Each arc carries a label from a set

I. In our application, these are primary fields, or

equivalently, irreducible representations of a chi-

ral symmetry algebra. Moreover, it is necessary

to choose a Lagrangian subspace of H1(X̂,R).

We will sometimes suppress these auxiliary data

in our discussion.

The endomorphisms are associated to so-cal-

led cobordisms (M,∂−M,∂+M). Here M is a

three-manifold whose boundary ∂M has been de-

composed in two disjoint subsets ∂±M , each of
which can be empty. Moreover, a ribbon graph

has to be chosen inM . After choosing Lagrangian

subspaces in H1(∂±M,R), the two spaces ∂±M
become extended surfaces. The endomorphism

associated to the cobordism is then a linear map

Z(M,∂−M,∂+M) : H(∂−M)→ H(∂+M) .

In the application of our interest, we always choo-

se ∂−M to be empty. Using the fact thatH(∅)=C ,
we then obtain a map

Z(M,∂M) : C→ H(∂M) ,

in other words, a line in the vector spaceH(∂M).
The image Z(M,∂M)1 of the number 1 under

this map then specifies a vector in the vector

space H(∂M) of conformal blocks.
Topological field theory thus provides a man-

ageable way to describe explicitly elements in the

spaces of conformal blocks, a task that is very

difficult in other approaches to these spaces.

2. 2-d CFT and chiral blocks

It is important (not only in our present context)

to be aware of the fact that the common use

of the words “conformal field theory” refers to

two rather different types of physical situations.

Chiral conformal field theories are defined on ori-

ented manifolds X̂ without boundaries. They ap-

pear, e.g., in the analysis of the universality class

of the edge system of a quantum Hall sample.

Indeed, the magnetic field selects a chirality and

thereby provides an orientation of the boundary

of the sample. The main objects of chiral con-

formal field theory are the spaces of conformal

blocks. It is chiral CFT rather than full confor-

mal field theory that is the boundary theory for

a topological field theory.

Full conformal field theory appears in the

world sheet formulation of string theory and in

the description of universality classes of critical

phenomena. It can be defined on surfacesX with

boundary and on unoriented surfaces. It is im-

portant to realize that even when the surface X

is orientable, no orientation is preferred.

Chiral and full CFT are related [10, 11] by

a generalization of the mirror trick that is famil-

iar from the treatment of boundaries in classical

electrodynamics. Given a surface X , one consid-

ers the double X̂, a surface that is naturally ori-

ented. For example, the double of a disk is the

sphere, and the double of a crosscap (the real

projective space RP2) is a sphere as well. For

general surfaces without boundary, the double is

the total space of the orientation bundle. In all

cases, there is an orientation reversing involution

σ: X̂ → X̂ such that X = X̂/σ.
The idea is now to construct correlators for

full CFT on X in terms of conformal blocks for

the chiral CFT on its double X̂ [11]:

The correlators of full CFT on X are

specific vectors in the spaces H(X̂).
The central task of constructing a full CFT from

a given chiral CFT is to specify these vectors.

These vectors must obey various consistency

constraints. They encode factorization proper-
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ties as well as locality of the correlation func-

tions as functions of the insertion points and of

the moduli of the two-dimensional surface.

To conclude this section, we indicate how

this formulation of the problem of constructing

a full CFT is related to more conventional de-

scriptions of correlators. If X is closed and ori-

entable, the cover X̂ consists of two copies of

X , but with opposite orientation. Symbolically,

X̂ = (+X)∪(−X). Correlators are blocks on X̂,
and hence bi linear combinations of blocks on X .

3. The connecting manifold

Combining the insights outlined in the sections

1 and 2, it is natural to use TFT to describe the

vectors in the spaces of conformal blocks that

correspond to correlators. More precisely, for ev-

ery world sheet X , we construct [12] a three man-

ifold MX such that its boundary is the double,

∂MX = X̂ .

The manifoldMX will be called connecting man-

ifold . For any choice of insertion points on X , we

will construct a Wilson graph in MX such that

Z(MX , X̂) : C→ H(X̂)
gives the correlator of the full CFT.

Let us start with two examples. When X is

the disk, then the double X̂ is the sphere S2. The

orientation-reversing map σ is reflection about

the equatorial plane. The connecting manifold

MX is the full ball. Note that the intervals per-

pendicular to the equatorial plane provide natu-

ral connecting lines between the two pre-images

of a bulk point, and that these connections for

two different bulk points never intersect. These

connecting intervals are a general feature; they

motivate the name “connecting manifold”. Our

second example is the sphere, X =S2, for which

the double consists of two disjoint copies of S2.

The connecting manifold is then the space be-

tween two concentric spheres.

In general, MX can be constructed as the

total space of an interval bundle over the orien-

tation bundle, seen as a Z2-bundle. A contrac-

tion over the boundary points ensures thatMX is

smooth (in this respectMX differs from a similar

manifold introduced in [13]).

The next task is to describe the Wilson graph.

In this section, we restrict ourselves to boundary

conditions that preserve all bulk symmetries. For

the topology of the disk our prescription is illus-

trated in the following picture:
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First we join the two pre-images of a bulk point

by a Wilson line along the connecting interval.

Since we work with the charge conjugation mod-

ular invariant, the two insertions on X̂ are la-

belled by conjugate labels λ, λ+, and we attach

to the Wilson line running from the pre-image

with λ to the preimage labelled with λ+ the la-

bel λ.

The components of the boundary ∂X of X

correspond to circles on the cover X̂ . (E.g. in the

case of a disk, the single boundary corresponds to

the equator of the disk.) In the next step, we put

a circular Wilson line ‘close’ to every such bound-

ary circle. The qualification ‘close’ needs some

explanation in a topological theory: It means

here that none of the Wilson lines for bulk fields

runs between the boundary Wilson line and the

boundary circle.

The boundary insertions are then joined with

little Wilson lines to the corresponding boundary

Wilson line. For each boundary insertion this

introduces a trivalent vertex. We finally must

attach labels to the boundary part of the Wil-

son graph as well. For the short Wilson lines

which join the boundary insertions to the bound-

ary Wilson line, we take the chiral label of the

corresponding boundary field. The trivalent ver-

tices partition the circular Wilson line into line

segments. To each such segment we must as-

sign a label as well. This label is interpreted as

specifying a boundary condition. Indeed, it is

known for a long time [14] that under our hy-

potheses boundary conditions and primary fields

are in one-to-one correspondence.

Finally we have to deal with the trivalent

vertices. One should assign a coupling to them,
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i.e. an element in the space of three-point blocks

on the sphere. The dimension of that space is

given by the fusion rules. Indeed, the partition

function for boundary operators Ψabµ is nothing

but the annulus amplitude,

Aab(t) =
∑

ν

Aνab χν(it/2) .

Under our hypotheses, the annulus multiplicities

Aνab are known [14] to be equal to the fusion rules.

We have now specified a Wilson graph in the

connecting manifoldMX which, according to the

general rules, provides us with a specific element

in the space of conformal blocksH(∂M)=H(X̂).
This element is the correlator we are looking for:

C(X) = Z(MX , X̂)1 .

(In the present discussion, we have suppressed

several technical details like the framing of the

Wilson lines or the appropriate choice of Lagran-

gian subspaces inH1(X̂,R). All those details can

be found in [15].)

Our ansatz provides a description of corre-

lation functions of a conformal field theory in a

mathematically rigorous framework (cf. e.g. [9]).

As a consequence, we are in a position to prove

various theorems about correlation functions. The

first statement concerns modular invariance. Con-

sider the group Aut(X̂, σ) of arc-preserving home-

omorphisms of X̂ of degree 1 that commute with

the action of the involution σ on X̂. When X

is the two-torus, this group reduces to the ordi-

nary modular group; in the case of surfaces with

boundaries it has been called the relative modu-

lar group [16]. One can show that this group acts

on the spaces of conformal blocksH(X̂), that the
action is genuine (rather than only projective),

and that the correlators are invariant under this

action. This establishes modular invariance at

all genera.

A second collection of theorems shows that

our ansatz is consistent with factorization both

in the bulk and on the boundary. At the level

of chiral CFT, we have the following structure:

Given two arcs in X̂, one can cut out little disks

around these arcs and glue together the bound-

aries of the two disks so as to obtain a new surface

X̂ ′ with two insertion points less. We label the
two arcs in X̂ by conjugate labels λ, λ+ and call

the corresponding labelled surface X̂λ. It follows

from the axioms of TFT that for each such glu-

ing there is an isomorphism at the level of spaces

of conformal blocks:

gX̂′,X̂ :
⊕

λ

H(X̂λ)→ H(X̂ ′) .

The correlation functions are compatible with

this structure for the double. On a world sheet

X we can glue together two bulk insertions. On

the double, this amounts to a simultaneous glu-

ing of two pairs of insertions. For the correlation

functions, one finds

C(X ′) =
∑

λ

Sλ,Ω gX̂′,X̂C(Xλ) .

This is exactly the usual consistency constraint

in full CFT, if one takes into account the fact

that in our approach the two-point function of

bulk fields is normalized to the element Sλ,Ω of

the modular matrix S.

Similarly, one can glue two boundary inser-

tions. In this case, one deals with a single gluing

on the double. One finds

C(X ′) =
∑

λ

(Sλ,Ω/SΩ,Ω) gX̂′,X̂C(Xλ) ◦ γ ,

which is again compatible with the normaliza-

tion of the two-point functions of boundary fields.

(The map γ is a natural contraction on the space

of annulus multiplicities.)

Finally one can recover the amplitudes for

one bulk insertion on a disk, for three boundary

fields on a disk, and for one bulk insertion on

the crosscap, as well as the amplitudes for an-

nulus, Klein bottle and Möbius strip. Complete

agreement with known results is found.

As an illustrative example, we consider the

case of a single bulk insertion Φλ,λ+ on a disk

with boundary condition a. In this case the space

of blocks is one-dimensional. Our task is then

to compare the Wilson graph of figure 1 with

the standard basis that is displayed in figure 2.

(In the present context, this particular conformal

block B(S2;λ, λ+) is often called an ‘Ishibashi

state’). We now obtain S3 by gluing with a single

three-ball. When applied to figure 2, we get the

unknot with label λ in S3, for which the link

invariant is S0,λ. In the case of figure 1 we get a

4
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pair of linked Wilson lines with labels a and λ in

S3; the value of the link invariant for this graph

is Sa,λ.
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Figure 1: C(Da;λ)

Figure 2: B(S2;λ, λ+)

Comparison thus shows that the correlation

function is Sa,λ/S0,λ times the standard two-point

block on the sphere,

C(Da;λ) = (Sa,λ/S0,λ) · B(S2;λ, λ+) .
Taking into account the normalization of bulk

fields, we recover the known result that the corre-

lator for a canonically normalized bulk field λ on

a disk with boundary condition a is Sa,λ/
√
S0,λ

times the standard two-point block on the sphere.

(This relation forms the basis of the so-called

boundary state formalism [14].)

4. Symmetry breaking boundary

conditions

We now study the more general case of boundary

conditions that break part of the bulk symme-

tries: We only require that some subalgebra Ā of
the algebra A of chiral symmetries is preserved
by the boundary conditions.

A particularly simple realization of this situ-

ation arises when Ā is an orbifold subalgebra ofA:
Fix a group G of automorphisms of A and define
Ā to be the subalgebra of elements of A that are
left pointwise fixed by all automorphisms in G.

In case G is a finite abelian group, many aspects

of boundary conditions that preserve only Ā are
known [17]. The two most important insights in

our present context are the following:

Bulk and boundary fields carry labels from two

distinct sets.

Boundary conditions that break bulk symme-

tries correspond to twisted representations of the

chiral algebra A.
There is a notion of fusion for such representa-

tions [18], and the annulus coefficients can be ex-

pected [19, 20] to coincide with the fusion rules

of twisted representations.

Together with the observation that in our

Wilson graphs bulk and boundary fields always

lie in different connected components of a graph,

the first point suggests the description in terms

of a new fusion ring for the boundary fields. We

stress that this fusion ring cannot be expected to

be modular. Indeed, for twisted representations

the conformal weight does not have the same

fractional part for all states in the module, so

there is no ‘twist’. Since every braided tensor

∗-category with conjugates automatically has a
twist, one cannot expect a braiding either.

We now concentrate on the boundary fusion

ring. Its structure constants are the annulus mul-

tiplicities. It can be obtained from the fusion ring

of the Ā-theory by the following general recipe
[21]: 1 The vacuum module HΩ of the A-theory
decomposes into Ā-modules with certain multi-
plicities:

HΩ =
⊕

µ̄

nµ̄H̄µ̄ .

The non-negative integers nµ̄ define an element

θ̄ of the fusion ring of Ā:
θ̄ =
∑

µ̄

nµ̄Φµ̄ .

To every element Φλ̄ of the fusion ring for Ā
one now associates an element αλ̄ in a new fusion

ring A′. This operation preserves multiplication,
addition and conjugates:

αλ̄?αµ̄=αλ̄?µ̄ , αλ̄+αµ̄=αλ̄+µ̄ , (αλ̄)
+
=α+

λ̄
1 This recipe can be put on a firmer mathematical basis

in thoses cases where a description of the CFT in terms

of nets of factors is known. In this case, it amounts to

α-induction; for a review and references see [22]. For our

present purposes, it is sufficient to consider the structure

at the level of TFT only.

5
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This would not lead to anything new, were it not

for another definition, namely of the spaces of

homomorphisms: We set

HomA′(αλ̄, αµ̄) := HomĀ(Φλ̄, θ̄ ? Φµ̄) .

This relation implies that even when λ̄ is sim-

ple, i.e. corresponds to an irreducible representa-

tion of the chiral algebra Ā, the induced object
αλ̄ is not necessarily simple. It may even happen

that the category A′ does not contain enough
simple objects to decompose every object into a

direct sum of simple objects. This is a general-

ization of the problem of fixed point resolution in

simple current extensions. A general construc-

tion in tensor ∗-categories guarantees the exis-
tence of a bigger category Abound in which the
fixed points are resolved. Unfortunately, this pre-

scription cannot (yet) be made as explicit as [23]

in the simple current case.

We take this resolved tensor categoryAbound
as the boundary category. Its simple objects

correspond to (elementary) boundary conditions.

The structure constants in the tensor product

correspond to the annulus multiplicities. The

sectors actually come in two classes, solitonic or

local. Local sectors correspond to symmetry pre-

serving boundary conditions. The solitonic sec-

tors correspond, in the case of simple current ex-

tensions, to boundary conditions with non-vani-

shing monodromy charge, which implies a non-

trivial automorphism type (or, equivalently, a

non-trivial gluing automorphism on the bound-

ary). More generally, symmetry breaking bound-

ary conditions are in one-to-one correspondence

to solitonic representations of the chiral symme-

try A. The resolved tensor category Abound is
associative and closed under subobjects. Thus

one can define 6j-symbols; the same arguments

as in the Cardy case [20, 24] then show that the

OPE of two boundary fields coincides with these

6j-symbols. 2

2 Note that in our approach all 6 indices of the 6j-

symbols take their values in the same label set, namely

the one for the simple objects of the boundary cate-

gory Abound, just like all 3 indices of the annulus coeffi-
cients do. For a different approach to symmetry breaking

boundary conditions we refer to [20] and Zuber’s contri-

bution to these proceedings. In that setting, the bound-

ary OPE is described by generalized fusing matrices with

To conclude this contribution, let us empha-

size that the space of boundary conditions car-

ries a surprising amount of beautiful structure.

The presence of this structure makes us confi-

dent that many more problems can be tackled

than one could have hoped for some time ago.
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