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Abstract: The reflection amplitudes in non-affine Toda theories which possess extended conformal

symmetry are calculated. Considering affine Toda theories as perturbed non-affine Toda theories and

using reflection relations which relate different fields with the same conformal dimension, we deduce

the vacuum expectation values of local fields for all dual pairs of non-simply laced affine Toda field

theories. As an application, we calculate the leading term in the short and long distance predictions of

the two-point correlation functions in the massive phase of two coupled minimal models. The central

charge of the unperturbed models ranges from c = 1 to c = 2, where the perturbed models correspond

to two magnetically coupled Ising models and Heisenberg spin ladders, respectively.

1. Introduction

Among the family of known integrable quantum

field theories (QFT)s the affine Toda field the-

ories (ATFT)s have attracted much attention,

both classically and at the quantum level, due to

their remarkable properties and interesting alge-

braic structure. They are generally described by

the action in Euclidean space :

A =
∫
d2x
[ 1
8π
(∂µϕ)

2 +

r∑
i=0

µeie
bei·ϕ
]
, (1.1)

where {ei} ∈ Φs(G) (i = 1, ..., r) is the set of
simple roots of the finite Lie algebra G of rank
r and −e0 is a maximal root satisfying e0 +∑r
i=1 niei = 0. We also introduce the scale pa-

rameters µei . This class of models which can

be considered as perturbed conformal field the-

ories (CFT)s appears in various physical con-

texts. The ultraviolet (UV) behaviour of these

integrable theories is encoded in the CFT data
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while the large distance properties are defined

by the S-matrix data. In such models a rep-

resentation of the basic CFT primary fields is

generally provided in terms of exponential fields.

The CFT data also includes the “reflection am-

plitudes” (RA) [1] which define the linear trans-

formations between different exponential fields

possessing the same quantum numbers. In par-

ticular, these RA play a crucial role for the de-

scription of the zero-mode dynamics which de-

termines the UV asymptotics of the ground state

energy E(R) (or effective central charge ceff(R))

for the system on the circle of size R. In [2], we

compared this result at small R to one obtained

from the S-matrix data using the TBA method.

Both results agree which can be considered as a

non-trivial test for the S-matrix amplitudes pro-

posed in [3]. On the other hand, the RA are the

main objects for the calculation of the one-point

functions of local fields, i.e. vacuum expectation

values (VEV)s in the bulk. These latter quanti-

ties play an important role in QFT and statisti-

cal mechanics [4, 5]. In statistical mechanics the

“generalized susceptibilities” i.e. the linear re-
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sponse of the system to external fields, are deter-

mined by such quantities. In QFT defined as per-

turbed CFT, they also constitute the basic ingre-

dients for multipoint correlation functions, using

short-distance expansions [5, 6]. Over the past

four years, important progress has been made

in the calculations of the VEVs in two dimen-

sional integrable QFT [7, 8]. In particular, the

VEVs for ATFTs associated with simply laced

cases have been calculated in [8].

In this talk, I will present the method we

used in [2, 9] to get the VEVs for all non-simply

laced ATFTs :

G(a) =< exp(a · ϕ)(x) > (1.2)

from the RA of the Toda field theories (TFT)s

calculated in [2]. The VEVs proposed are checked

both non-perturbatively and perturbatively. Fi-

nally, by considering the specific case of C
(1)
2 and

its quantum group restriction, I calculate VEVs

of primary operators in two planar systems corre-

sponding to two coupled minimal modelsMp/p′ .

This provides a numerical estimation of the two-

point correlation function between operators be-

longing to different models [10].

2. Conformal field theory data : re-

flection amplitudes

The stress-energy tensor T (z), where z = x1 +

ix2, z = x1 − ix2 are complex coordinates,

T (z) = −1
2
(∂zϕ)

2 +Q · ∂2zϕ (2.1)

generates the conformal invariance of the action

(1.1) when the term with the zeroth root is omit-

ted. Here, we introduce a background charge :

Q = bρ+
1

b
ρ∨ (2.2)

where ρ = 1
2

∑
α>0α and ρ∨ = 1

2

∑
α>0α

∨

are respectively the Weyl and dual Weyl vec-

tors of G. The sums in their definitions run over
all positive roots {α} ∈ Φ+, dual positive roots
{α∨} ∈ Φ∨+. Defining a = (a1, ..., ar), the expo-
nential fields

Va(x) = exp(a ·ϕ)(x) (2.3)

are spinless conformal primary fields with dimen-

sions ∆(a) = Q2

2 − (a−Q)
2

2 . By analogy with the

Liouville field theory, the physical space of states

H in TFT consists of the continuum variety of
primary states associated with the exponential

fields (2.3) and their conformal descendents with

a = iP+Q and P ∈ Rr.
Besides the conformal invariance the TFTs

also possess an extended symmetry generated by

the W (G)-algebra [11]. The full chiral W (G)-
algebra contains r holomorphic fields Wj(z)

(W2(z) = T (z)) with spins j which follow the ex-

ponents of the Lie algebra G. The primary fields
Φw of the W (G) algebra are classified by r eigen-
values wj , j = 1, . . . , r, of the operatorWj,0 (the

zeroth Fourier component of the currentWj(z)):

Wj,0Φw = wjΦw, Wj,nΦw = 0, n > 0.

The fields Va are also primary with respect to the

full chiral algebra W (G) with the eigenvalues wj
depending on a. These functions wj(a), which

define the representation of the W (G)-algebra,
are invariant with respect to the Weyl groupW
of the Lie algebra G [11], i.e. wj(Q+ŝ(a−Q)) =
wj(a) where ŝ ∈ W is arbitrary.
Then one defines the primary operators Φa(x)

in the TFT in terms of (2.3) by introducing the

numerical factors N(a) :

Φa(x) = N
−1(a) exp(a ·ϕ)(x) (2.4)

such that the conformal normalization condition:

< Φa(x)Φa(y) >TFT =
1

|x− y|4∆(a)

is satisfied. Indeed, the fields VQ+ŝ(a−Q)(x) are
reflection images of each other and are related by

the linear transformation :

Va(x) = Rŝ(a)VQ+ŝ(a−Q)(x) (2.5)

where Rŝ(a) ≡ N(a)/N(Q+ ŝ(a−Q)) is called
the “reflection amplitude”, an important object

in CFT which defines the two-point functions of

the operator Va. In [2] we obtained the following

expression for the reflection amplitude Rŝ(a) in

non-simply laced TFT:

Rŝ(a) =
A(ŝP)

A(P)
(2.6)

2
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where

A(P) =

r∏
i=1

[πµeiγ(e
2
i b
2/2)]iω

∨
i ·P/b

×
∏
α>0

Γ(1− iP ·αb)Γ(1− iP ·α∨/b)

contains the fundamental dual weights ω∨i and
we denote γ(x) = Γ(x)/Γ(1 − x) as usual. We
accept eq. (2.6) as the proper analytical contin-

uation of the function Rŝ(a) for all a.

3. Vacuum expectation values in non-

simply laced ATFTs

In the conformal perturbation theory (CPT) ap-

proach to ATFT, one can formally rewrite any

N -point function of local operators Oa(x) as :

< Oa1(x1)...OaN (xN ) >=
Z−1λ < Oa1(x1)...OaN (xN )e−λ

∫
d2xΦpert(x) >0

where Zλ =< e−λ
∫
d2xΦpert(x) >0, Φpert is the

perturbing local field, λ is the CPT expansion

parameter which characterize the strength of the

perturbation, and < ... >0 denotes the expec-

tation value in the TFT. Whereas vertex opera-

tors (2.3) satisfy reflection relations (2.5) in the

CFT, the CPT framework provides similar rela-

tions among their one-point functions in the per-

turbed case. In other words, if dots stand for any

local insertion one has :

< Va(x)(...) >0= Rŝ(a) < VQ+ŝ(a−Q)(x)(...) >0 .

Indeed, using CPT one expects that similar re-

lations hold for G(a). It is then crucial to no-

tice that each ATFT Lagrangian representation

in (1.1), denoted Lb
[
Φs(G)

]
with coupling con-

stant b, can be rewritten as two different per-

turbed TFTs. Let us denote by η the extra-root

associated with the perturbation and let {εi} be

an orthogonal basis (εi.εj = δij) in R
r :

Lb
[
Φs(B

(1)
r )
] ≡ Lb[Φs(Br)⊕ η ≡ −ε1 − ε2],
≡ L−b

[
Φs(Dr)⊕ η ≡ −εr

]
;

Lb
[
Φs(C

(1)
r )
] ≡ Lb[Φs(Cr)⊕ η ≡ −2ε1],
≡ L−b

[
Φs(Cr)⊕ η ≡ −2εr

]
;

Lb
[
Φs(F

(1)
4 )
] ≡ Lb[Φs(F4)⊕ η ≡ −ε1 − ε2],
≡ L−b

[
Φs(B4)

⊕ η ≡ −1
2
(ε1 − ε2 − ε3 − ε4)

]
;

Lb
[
Φs(G

(1)
2 )
] ≡ Lb[Φs(G2)⊕ η ≡ −√2ε1],
≡ L−b

[
Φs(A2)⊕ η ≡ −

√
2/3ε2

]

where the different sets of simple roots can be

found in [12]. Here, we introduced also the nota-

tion

Φs(A2) = {
√
2ε2,

√
3/2ε1 − 1/

√
2ε2};

Φs(G2) = {
√
2/3ε2, 1/

√
2ε1 −

√
3/2ε2};

Φs(Cr) = Φs(Cr)|εi↔εr+1−i ;
Φs(Dr) = Φs(Dr)|εi↔εr+1−i ;
Φs(A2) = Φs(A2)|ε1↔ε2 ;
Φs(B4) = Φs(B4)|εi↔−εi, i∈{2,3,4}.
From the previous remarks, we conclude that

the VEV (1.2) must satisfy simultaneously two

irreducible systems of functional equations cor-

responding to two different sets Ws, i.e.

G(τa) = Rŝj (a)G(τ(Q + ŝj(a −Q))) (3.1)

for all ŝj ∈ Ws where
• B(1)r : (τ)ij = δij for G ≡ Br
and (τ)ij = −δi r+1−j for G ≡ Dr;
• C(1)r : (τ)ij = δij
and (τ)ij = −δi r+1−j for G ≡ Cr;
• F (1)4 : (τ)ij = δij for G ≡ F4
and (τ)ij = δij(δ2j + δ3j + δ4j − δ1j) for

G ≡ B4;
• G(1)2 : (τ)ij = δij for G ≡ G2
and (τ)ij = −δi 3−j for G ≡ A2.
The spectrum of real non-simply laced ATFTs

can be expressed in terms of one mass parameter

3
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m as :

B(1)r : Ma = 2m sin(πa/H), a = 1, 2, . . . , r − 1,
Mr = m ;

C(1)r : Ma = 2m sin(πa/H), a = 1, 2, . . . , r ;

G
(1)
2 : M1 = m, M2 = 2m cos(π(1/3− 1/H)) ;

F
(1)
4 : M1 = m, M2 = 2m cos(π(1/3− 1/H)),

M3 = 2m cos(π(1/6− 1/H)),
M4 = 2M2 cos(π/H)

with the “deformed” Coxeter number [3] H =

h(1−B)+h∨B for B = b2

1+b2 . For the non-simply

laced cases (except BCr ≡ A
(2)
2r - r ≥ 1 - for

which three different parameters are necessary),

we have only two different parameters : µ which

is associated with the set of standard roots of

length |ei|2 = 2 whereas µ′ is associated with
the set of non-standard roots of length |ei|2 =
l2 6= 2. Exact relations between these parameters
and the mass parameter m in the above spectra

were obtained in [2] using the Bethe ansatz (BA)

method :

(− πµγ(1 + b2))h−z(− πµ′γ(1 + b2l2/2))z
=
(
mk(G)κ(G))2H(1+b2) (3.2)

where we define z = 2(h−h∨)
(2−l2) . Also, we have :

k(B(1)r ) =
2−2/H

Γ(1/H)
, k(C(1)r ) =

22B/H

Γ(1/H)
,

k(F
(1)
4 ) = k(G

(1)
2 ) =

Γ(2/3)

2Γ(1/2)Γ(1/6+ 1/H)

and κ(G) = Γ((1−B)/H)Γ(1+B/H)
2 .

Finally, using (3.2) we proposed the “min-

imal” meromorphic solution of (3.1) for all un-

twisted ATFTs :

G(a) =
[
mk(G)κ(G)

]−a2

×
[ µγ(1 + b2)

µ′γ(1 + b2l2/2)

]d.a(1−B)
Hb

(3.3)

×
[(− πµγ(1 + b2))l2/2
−πµ′γ(1 + b2l2/2)

]d.aB
Hb

× exp
∫ ∞
0

dt

t

(
a2e−2t −

∑
α>0

sinh(aαbt)ψα(a, t)

sinh(t) sinh( b
2|α|2
2 t)

)

with

ψα(a, t) = sinh(
(b2|α|2
2
+ 1
)
t)

× sinh
(
(aαb− 2Qαb+H(1 + b2))t

)
sinh(H(1 + b2)t)

where we denote aα = a · α and define d =
ρ∨h∨−ρh
1−l2/2 . The integral in (3.3) is convergent iff :

α ·Q−H(b+ 1/b) < Re(α · a) < α ·Q

for all α ∈ Φ+ and is defined via analytic contin-
uation outside this domain.

It is straightforward to show that the VEV

associated with the twisted ATFTs is obtained

from (3.3) using the duality relation for the pa-

rameters µei and µ
∨
ei associated with the dual

pairs of ATFTs :

πµeiγ
(b2e2i
2

)
=
[
πµ∨eiγ

(e∨i 2
2b2
)]b2e2i /2

and the change b→ 1/b.
In [2], the bulk free energy for all non-simply

laced cases have been calculated using the BA

approach. On the other hand, VEVs (3.3) can

also be used to derive the bulk free energy in

ATFT fĜ = − lim
V→∞

1
V
lnZ, where V is the vol-

ume of the 2D space and Z is the singular part

of the partition function associated with the ac-

tion (1.1). For specific values a ∈ b{ei}, with
{ei} ∈ Φs (i = 1, ..., r) or e0, the integral in
(3.3) can be evaluated explicitly. Using (3.2) and

the obvious relations ∂µf(µ) =
∑
{i} < ebei·ϕ >

or ∂µ′f(µ
′) =

∑
{i′} < ebei′ ·ϕ > where {i} and

{i′} denote respectively the whole set of long and
short roots, we obtain the following bulk free en-

ergy :

fĜ =
m2 sin(π/H)

8 sin(πB/H) sin(π(1 −B)/H) ;

fĜ =
m2 cos(π(1/3− 1/H))

16 cos(π/6) sin(πB/H) sin(π(1 −B)/H)

for Ĝ = B
(1)
r , C

(1)
r and Ĝ = G

(1)
2 , F

(1)
4 , respec-

tively. With the change B → (1−B) one obtains
the dual cases. Both approach are in agreement.

One important check consists in expanding

the vacuum expectation value (3.3) in a power se-

ries in b and comparing each coefficient with the

4
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one obtained from standard Feynman perturba-

tion theory associated with the action (1.1). In

[9] we checked that < ϕ >= δ
δaG(a)|a=0 and the

composite operator << ϕaϕb >>≡< ϕaϕb >
− < ϕa >< ϕb >= 1

2
δ2 lnG(a)
δaaδab

|a=0 agreed in
both approaches.

4. Related perturbed CFTs : cou-

pled minimal models

The action (1.1) corresponding to the affine Lie

algebra C
(1)
2 with real coupling b is :

A =
∫
d2x
[ 1
8π
(∂µϕ)

2 + µ′e−2bϕ1 + µ′e2bϕ2

+ µeb(ϕ1−ϕ2)
]

(4.1)

where we have chosen the convention that the

length squared of the long roots is four. In the

ATFT approach to perturbed CFT, one usually

identifies the perturbation with the affine exten-

sion of the Lie algebra G. Instead, the pertur-
bation will be associated here with the standard

(length 2) root of C
(1)
2 . Removing the last term

in the action (4.1) leaves a model associated with

D2 = SO(4) = SU(2) ⊗ SU(2), i.e. two decou-
pled Liouville models. To associate the two first

terms of the C
(1)
2 Toda potential to two decou-

pled conformal field theories, we introduce for

each one a specific background charge at infin-

ity. Then, the exponential fields e−2bϕ1 and e2bϕ2

have conformal dimensions 1. As is well known,

the “minimal model”Mp/p′ with central charge

c = 1 − 6 (p−p′)2pp′ can be obtained from the Li-

ouville case. Consequently, the D2 CFT can be

identified with two decoupled minimal models by

the substitutions b → iβ, µ → −µ, µ′ → −µ′
and the choice (a) : β2 = β2+ = p/2p′ or
(b) : β2 = β2− = p′/2p with p < p′. We de-
fine {Φ(1)rs } and {Φ(2)r′s′} as the two sets of primary
fields with conformal dimensions :

∆rs =
(p′r − ps)2 − (p− p′)2

4pp′
(4.2)

for 1 ≤ r < p, 1 ≤ s < p′ and p < p′. They
are simply related to the vertex operators of each

minimal model through the relation :

Φ(i)rs (x) = N
(i)−1
rs exp(iηrsi ϕi(x)) (4.3)

with ηrs1 = −ηrs2 = (1−r)
2β −(1−s)β, and where we

have introduced the normalization factors N
(i)
rs

for each model. These numerical factors depend

on the normalization of the primary fields. Here,

they are chosen in such a way that they satisfy

the conformal normalization condition :

< Φ(i)rs (x)Φ
(i)
rs (y) >CFT =

1

|x− y|4∆rs
for i ∈ {1, 2}. For further convenience, we write
these coefficients N

(i)
rs = N (i)(ηrsi ) where :

N (1)(η) =
[− πµ′γ(−2β2)] η2β
×[ν(2β2 + 2ηβ)ν(1/2β2 − η/β)

ν(2β2)ν(1/2β2)

] 1
2

and we define ν(x) = Γ(x)/Γ(2−x). Notice that
N (2)(η) = N (1)(−η).
For imaginary values b = iβ the resulting

model is very different from the real C
(1)
2 ATFT

(4.1) in its physical content : it contains solitons,

breathers and excited solitons. However, there

are good reasons 1 to believe that the expectation

values obtained in the real coupling case (3.3)

provide also the expectation values for imaginary

coupling. In this latter case, after performing

the quantum group restriction of (4.1), the action

becomes :

Ã =Mp/p′ +Mp/p′ + λ

∫
d2x Φpert (4.4)

where we have respectively (a) : Φpert ≡ Φ(1)12 Φ(2)12
or (b) : Φpert = Φ

(1)
21 Φ

(2)
21 and the parameter λ

characterizes the strength of the interaction. To

express the final result for the VEV in terms of

the parameter λ in the action (1.1), we need the

exact relation between λ and the parameters µ, µ′

in the C
(1)
2 ATFT with imaginary coupling. We

obtain λ = πµµ′
(4β2−1)2 γ(4β

2)γ2(1− 2β2).
In case (a), using (3.3) and (4.3) the outcome

for the VEV of primary operators is :

< 0jj̃ |Φ(1)rs (x)Φ(2)r′s′(x)|0jj̃ >=

djj̃rs,r′s′
[−πλγ( 11+ξ )(1 + ξ) 4−2ξ1+ξ

γ(3ξ−11+ξ )γ(
1−ξ
1+ξ )

] (1+ξ)
2−ξ (∆rs+∆r′s′)

× expQ12((1 + ξ)r − 2ξs, (1 + ξ)r′ − 2ξs′)(4.5)
1The calculation of the VEVs in both cases (b real or

imaginary) within the standard perturbation theory agree

through the identification b = iβ.

5
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where djj̃rs,r′s′ =
sin(π(2j+1)p |p′r−ps|)
sin(π(2j+1)p (p′−p))

sin(π(2j̃+1)p |p′r′−ps′|)
sin(π(2j̃+1)p (p′−p)) .

Here, degenerate vacua, |0jj̃ > (j + j̃ ∈ Z), are
associated with the Uq(D2) ⊂ Uq(D(2)3 ) repre-
sentation where the spin-j(j̃) representation of

SU(2) has dimension 2j + 1 (2j̃ + 1). The in-

tegral Q12(θ, θ′) for |θ ± θ′| < 4ξ and ξ > 1
3

writes :

∫ ∞
0

dt

t

( Ψ12(θ, θ
′, t)

sinh((1 + ξ)t) sinh(2tξ) sinh((4− 2ξ)t)

−θ
2 + θ′2 − 2(1− ξ)2
4ξ(ξ + 1)

e−2t
)

with

Ψ12(θ, θ
′, t) =

[
cosh((θ + θ′)t) cosh((θ − θ′)t)

− cosh((2− 2ξ)t)
]
sinh((1− ξ)t) cosh((4 − 2ξ)t)

+
[
cosh((θ + θ′)t) + cosh((θ − θ′)t)
− cosh((2− 2ξ)t)− 1

]
sinh(t) cosh(tξ)

and defined by analytic continuation outside this

domain. The relation between M and λ is :

M =
2

ξ
2−ξΓ( ξ

4−2ξ )Γ(
1

4−2ξ )

πΓ( 1+ξ4−2ξ )

[ −πλγ( 11+ξ )
γ(3ξ−11+ξ )γ(

1−ξ
1+ξ )

] 1+ξ
4−2ξ

.

Consequently, provided β2 < 2/3, the perturbed

CFTs develop a massive spectrum for :

(i) λ > 0 i.e. 0 < p
p′ <

1
2 ,

(ii) λ < 0 i.e. 12 <
p
p′ < 1

where ξ = p
2p′−p .

In case (b) the outcome for the VEV is read-

ily obtained from (4.5) through the change p↔
p′, (r, r′)↔ (s, s′), ξ → 1+ξ

3ξ−1 .

The VEV< 0jj̃ |Φ(1)rs (x)Φ(2)r′s′(x)|0jj̃ >≡ Gjj̃rs,r′s′
controls both short and long distance of any two-

point correlation functions of primary operators:

< 0jj̃ |Φ(1)rs (x)Φ(2)r′s′(0)|0jj̃ > −→
|x|→0

Gjj̃rs,r′s′ ,

< 0jj̃ |Φ(1)rs (x)Φ(i)r′s′(0)|0jj̃ > −→
|x|→∞

Gjj̃rs,11Gjj̃11,r′s′

The case (a) with p = 4, p′ = 5 in (4.4) de-
scribes two tricritical Ising models which inter-

act through their leading energy density oper-

ators Φ
(i)
12 = ε(i) of conformal dimension ∆ε =

1/10. Among other primary operators, each min-

imal model also contains Φ
(i)
22 = σ(i) with ∆σ =

3/80. For instance, for any vacuum |jj̃ > (up to
djj̃rs,r′s′):

< σ(1)(0)σ(2)(0) >jj̃ ∼ 1.315726811...(−λ)3/32;
< σ(1)(0)σ(2)(∞) >jj̃ ∼ 1.310238901...(−λ)3/32;
< ε(1)(0)ε(2)(0) >jj̃ ∼ 2.419476973...(−λ)1/4;
< ε(1)(0)ε(2)(∞) >jj̃ ∼ 2.340491994...(−λ)1/4

where the parameter λ is related to the mass of

the lowest kink by λ = −0.2566343706...M8/5.

The case (b) with p = 5, p′ = 6 in (4.4) describes
two 3-state Potts models coupled [13] by their

energy density operator Φ
(i)
21 = ε(i) with confor-

mal dimension ∆21 = 2/5. Each minimal model

also contains the primary operator Φ
(i)
23 = σ(i) -

the spin operator - with ∆23 = 1/15. We obtain

for instance (up to djj̃23,23) :

< σ(1)(0)σ(2)(0) >jj̃ ∼ 4.50...(−λ)2/3;
< σ(1)(0)σ(2)(∞) >jj̃ ∼ 3.64...(−λ)2/3

where λ = −0.2612863655...M2/5. Other inte-

grable coupled models [13] can be worked out

along the same lines. For examples, four coupled

minimal models (restrictedD
(1)
4 ATFT), two cou-

pled WZNW SO(n) models (restrictedD
(1)
2n ATFT),

etc...

5. Concluding remarks

Although the non-simply laced BCr ATFT is dif-

ferent from all the other cases as it possesses

three parameters µ, µ′ and µ′′ it is clear that
the VEV can be obtained using the previous ap-

proach and it satisfies simultaneously Br and Cr
reflection relations. The mass-µ combination :

(− 2πµγ(1 + b2/2))2(− πµ′γ(1 + b2))2(r−1)
×(− πµ′′γ(1 + 2b2)) = (mκ(BCr)

Γ(1/H)

)2H(1+b2)
is proven to be very useful where the mass of

the particles in BCr are Ma = 2m sin(πa/H) for

a = 1, ..., r and H = 2r + 1. Using the exact

VEV, the self-dual bulk free energy follows,

fBCr =
m2 sin(π/H)

8 sin(πB/H) sin(π(1−B)/H) .
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To conclude, the calculation of VEVs using

RA appears to be a very powerful tool which can

also be applied to descendent fields [14, 15].
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