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Abstract: It is discussed how averaging over quenched disorder leads to field theories on supersym-

metric manifolds.

Supersymmetric (SUSY) field theories in gen-

eral and SUSY sigma models in particular appear

in condensed matter physics in the context of the-

ory of quenched disorder.

In general any many-body system is charac-

terized by its observables which correlation func-

tions. Whenever randomness is present in the

Hamiltonian (for example, in a form of a ran-

dom potential V (x)), the correlation functions

G(x1, ...xN ; [V ]) depend on the randomness. In

many cases when these functions are not self-

averaging, it is not sufficient to only consider the

Green functions averaged over disorder, but one

needs to study the complete distribution func-

tions of G(x1, ...xN ; [V ]). This occurs when the

Green’s function averaged over disorder is not

equal to the typical Green’s function:

G(x1, ...xN ; [V ]) 6= exp[lnG(x1, ...xN ; [V ])] (1)

Distribution functions are usually character-

ized by their moments, that is in theory of dis-

order one is concerned with studying averages of

various powers of G.

In order to understand the origin of SUSY

let us consider a simplest system when particles

are non-interacting. The technical difficulty one

encounters in dealing with quenched disorder, is

that one has to average Green functions which,

being derivatives of logarithm of the generating

functional, contain randomness both in the nu-

merator and the denominator. Indeed, let us take

a look at the path integral representation of the

N -point Green’s function:

G(1, ..., 2N) =

∫
Dψ̄Dψψ(1)...ψ̄(2N)e−iψ̄Ĥψ∫

Dψ̄Dψ exp[−iψ̄Ĥψ]

(here ψ̄, ψ are Grassmann fields). It is awkward

to average this expression over V . To deal with

this problem one can employ a trick of rewriting

the denominator as a path integral over c-number

fields β̄, β. Then we obtain

G(1, ..., 2N) =

∫
Dψ̄ Dψψ(1)...ψ̄(2N) e−iψ̄Ĥψ

×
∫
Dβ̄Dβ exp[−iβ̄Ĥβ]

Now the disorder is only in the numerator (the

denominator is equal to one!) and one can avarage

over it for a price of having a path integral over

c-number and Grassmann fields (this is what is

called SUSY in condensed matter!). Details of

this approach one can find in the book by Efetov

[1]. An excellent review on the SUSY approach

belongs to Mirlin [2].

Thus a simultaneous presence of c-number

and Grassmann fields is a characteristic feature

of field theories describing disordered systems.

Needless to say these theories are non-unitary

(the partition function is equal to one!).

Another characteristic feature of field theory

of disordered systems is that the same system is

described not by one, but by an entire set of field

theories. Everything depends of what quantity

one wants to calculate. Indeed, as I have said,

one is interested in distribution functions of G’s.
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To calculate moments of such distribution func-

tions one has to calculate averages of powers Gp.

To do this it is necessary to introduce several

copies of the fields. Hence different moments of

the same distribution function are described by

SUSY theories with different number of fields!

An interesting family of theories of disor-

der consists of critical two-dimensional models.

Among those there are models which are described

by field theories with local Lagrangians. Here one

can apply powerful machinery of conformal field

theory ( CFT) to get a complete and essentially

non-perturbative description.

An alternative of the SUSY approach is the

replica approach. Here before performing disor-

der average one introduces r copies of the Hamil-

tonian and uses the identity

lnZ = lim
r→0

Zr − 1
r

(2)

Such limiting procedure requires a careful defi-

nition and its status remains controvercial. The

replica approach faithfully reproduces perturba-

tion theory results, but outside of the perturba-

tion theory limits it has often been questioned

(see, for example, [1], [3]). There have been at-

tempts to repair the deficiencies of replica trick

by adopting various symmetry breaking schemes.

Recently such a scheme has been successfully used

to reproduce the level-level correlation functions

in the random matrix theory [4]. The question

is whether one can formulate general principles

of replica symmetry breaking. To get an insight

to develop such principles one needs to have as

many non-perturbative results as possible.

Whether in SUSY or in replica representa-

tion, critical models of disorder share certain gen-

eral features.

•All these models are non-unitary CFTs with
central charge C = 0. This is related to the fact

that the partition functions of all these models is

equal to one by construction.

• All these theories are logarithmic, that is
the corresponding Hamiltonian cannot be com-

pletely diagonalized; the best one can do is to

reduce it to the Jourdan cell form. The general

properties of logarithmic CFTs were described by

Gurarie [5], Caux et al.[7] and Gurarie and Lud-

wig [8]. As has been recently demonstrated by

Gurarie [6] and Cardy [9], the presence of loga-

rithms looks completely natural and unavoidable

both in SUSY and in the replica representation.

The most famous example of the critical model

of disorder is the model describing the plateau

transition in Integer Quantum Hall (IQH) effect.

The corresponding field theoretical formulation

is given either by the Pruisken’s model [10] or by

the superspin model derived from the Chalker-

Coddington network model [11],[12],[13]. The

SUSY formulation of Pruisken’s model is a sigma

model on the manifold SU(1, 1|2)/U(1|1)×U(1|1).
The action may be written in the following form:

S =

∫
d2xStr

[
− 1
8α
(∂µQ)

2

+
1

8
σ0xy (Q [∂xQ, ∂yQ]) +

1

2
πρ0ηΣ

3Q

]
,

where Q is a 4 × 4 supermatrix satisfying the
conditions,

StrQ = 0, Q2 = 1, (3)

Σ3 = diag(1,−1, 1,−1) (in the boson-fermion
supermatrix representation), σ0xy(E) is the bare

Hall conductance at energy E, ρ0 is the aver-

age density of states at energy E, and η is the

imaginary frequency which serves as a symmetry

breaking field. The coupling constant α is related

to the disorder strength.

The second term appearing in (3) is topo-

logical, and despite the fact that its presence is

crucial for the critical behaviour, its effect cannot

be spotted in a perturbative expansion in powers

of α; it does not contribute to the equations of

motion and hence does not contribute to the loop

expansion of the beta function. The effects of the

topological term become visible only for samples

of size greater than ξ ∼ l exp[πσ0xx
2
], where l is

the electron mean free path. In the model (3),

with σ0xy = 0, the length scale ξ corresponds to

the localization length; with σ0xy = 1/2, this scale

is the transmutation length (in field-theoretic jar-

gon) and signifies a crossover to the regime of

universal critical fluctuations.

Thus the effective field theory for the plateau

transition is not known at present, but there is

a plausible hypothesis made by Zirnbauer that
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such theory is PSL(2/2) principal chiral model

[3]. In our paper [14] we have shown that this

idea is indeed very promising and can explain

some known facts about the transition.

Other examples of disordered critical points

are the Ising model with a weak bond disorder

(this problem can also be formulated as a prob-

lem of 2D Majorana fermions with a random

mass) [15] and the model of electrons with spin-

orbit scattering (the simplectic random ensam-

ble). In both these cases the disorder renormal-

izes to zero and can be treated perturbatively.

For the Ising model the disorder average of the

n-th power of the spin-spin correlation function

is given by [16],[17]

G(R)n ≡ < σ(R)σ(0) >n

= (a/R)n/4[ln(R/a)]n(n−1)/8

which is compatible with the following distribu-

tion function:

P [G(R)] ∼ [G(R)]−1 exp
[
−4 ln

2[G(R)/G0(R)]

ln ln(R/a)

]

G0(R) = (a/R)
1/4[ln(R/a)]−1/8

Here the Green’s function is self-averaging:

G(R) = (a/R)1/4Gtypical(R)

= (a/R)1/4
exp[2

√
ln ln(R/a)/π]

ln1/8(R/a)

For a long time these three problems had re-

mained the only known examples of the disor-

dered critical systems; in recent years the list of

such models has extended. Among the new ad-

ditions to the list of critical models are (i) the

model of Dirac electrons in a random gauge po-

tential (DRGP problem), (ii) the random XY

model, (iii) the model of plateau transiton in

Spin Hall effect and (iv) the field theory describ-

ing the vicinity of the so-called Nishimori line in

the random-bond Ising model. In all these mod-

els the critical points are non-perturbative and

are described by non-trivial field theories. The

amount of information about critical behaviour

available in each case is rather different for each

of these theories. Ideally CFT is capable of giv-

ing a complete information about all correlation

functions together with a complete basis of all

primary fields. In principle one can use this in-

formation to describe the vicinity of the critical

point. In problems of disorder related to local-

ization of quantum particles one needs to depart

from the critical point to calculate the diffusion

propagator or (for problems with a singular den-

sity of states) the energy dependence of the den-

sity of states. This program has been fulfilled

only for the random XY model. The SUSY ver-

sion of the random XY model has been solved

by Guruswamy et. al [24] who constructed the

free-field representation of the model and even

calculated the frequency dependence of the aver-

age density of states. Quite an advanced level of

understanding has also been achieved for DRGP

model, especially in the Abelian case. The model

was formulated in [18] for the Abelian case and

for the non-Abelian case in [19]. The various as-

pects of the solution have been subsequently re-

fined in [7],[20],[21],[22]. The problem of the Spin

Hall plateau transition has been proven to be

equivalent to the critical percolation by Gruzberg

et. al. These authors have also found the exact

exponents [25]. The universal conductance has

been obtained by Cardy [26]. The work on the

correlation functions and operator expansion for

this model is still in progress [27]. The field the-

ory for the Nishimori line in the random bond

Ising model has recently been suggested in [28].

No results are available for the critical region.

Only in the DRGP model the replica solu-

tion has been compared with solutions obtained

by other means. The action of the non-Abelian

DRGP problem contains N species of massless

Dirac fermions subject to a random static SU(N)-

symmetric gauge potential. In this most inter-

esting case of non-Abelian disorder we have a

luxury to compare several non-perturbative so-

lutions obtained by three (!) different methods.

Thus the replica version of the model was solved

exactly by Caux et al. [7].

Another approach to the problem was for-

mulated in [22],[20]. It is based on the fact that

for zero energy the Dirac equation can be solved

explicitely for an arbitrary gauge potential. The

corresponding Green’s functions (or normalized

wave functions) can (at least in principle) be av-

eraged over the disorder. A comparison with the

replicas is overshadowed by the fact that the av-
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erage has been performed only in the limit of

infinite disorder strength. In this case the distri-

bution function of disorder potentials is equal to

one. Though the solution obtained in this way

differs from the replica result [22], one may won-

der whether it is legitimate to compare solutions

obtained for qualitatively different disorder dis-

tributions.

Recently Bernard and LeClair have suggested

a solution of the DRGP problem based on the

SUSY approach [29]. This solution is derived

in the limit of weak bare disorder strength and

therefore can be directly compared with the repli-

cas. All three solutions turn out to be different

[31], though the difference between the SUSY so-

lution and the infinite disorder limit is less pro-

found than the difference between these two and

the replica solution.
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