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Abstract:We report results of theoretical investigations on the effect of doping and quenched disor-

der on the occurrence of plateaux in the magnetization curve of 1D systems with periodic modulations

in the couplings. For single q-merized Hubbard chains, doping is shown to affect the position at which

plateaux appear, leading to the emergence of plateaux at irrational values of the magnetization. For

random bond antiferromagnetic Heisenberg chains with periodically modulated bond distributions,

disorder generically removes the plateau structure, except in the case of discrete probability distri-

butions. In the latter case, wide plateaux emerge at values of the magnetization dependent on the

strength of disorder.

1. Introduction

In the past few years the occurrence of plateaux

in the magnetization curve of quantum spin chains

and ladders has attracted considerable interest,

both theoretical and experimental.

From the theoretical side, it has been shown

that plateaux can occur at rational fractions of

the saturation magnetization. Such fractions are

subject to a quantization condition whose most

general form is the following:

qNS(1−m) = integer . (1.1)

In the above equation m is the magnetization

(normalized to 1 at saturation), S the spin, N

the number of legs (for ladders, for chainsN = 1)

and q the number of sites to which one–site trans-

lational invariance is explicitly or spontaneously

broken (see e.g. [1]–[5]). In particular, the con-

dition (1.1) with N = 1 applies to pure spin

chains with a q–periodic modulation in the cou-

pling constants, whose magnetization curve in-

deed exhibits plateaux (see [5] and refs. therein).

From the experimental side, some investi-

gations have indeed confirmed these predictions

∗Works done in collaboration with D.C. Cabra, M.
Grynberg, A. Honecker, S. Peysson, P. Pujol, P. Simon.

in few particular 1D cases, as for instance the

dimerized spin–1 chain studied in [6], which ex-

hibits a plateau at half the saturation magneti-

zation, or the material NH4CuCl3 [7], which ex-

hibits plateaux at 1/4 and 3/4 of the saturation

magnetization.

In the case of materials with a ladder struc-

ture [8], due to the large coupling constants, pla-

teaux with non–zero magnetization are predicted

for very high values of magnetic field, which makes

their observation very difficult with the present

experimental tools. An attractive mechanismmo-

ving plateaux at lower field values may be pro-

vided by doping, as we have shown in refs. [9],

[10] for the case of periodically modulated Hub-

bard chains and we expect to be the case for Hub-

bard ladders [11]. These models also provide the

opportunity to investigate the effect of charge

degrees of freedom on the physics of plateaux.

Interestingly, for such systems plateaux are also

predicted at irrational values of the magnetiza-

tion, which depend continuously on doping. We

review the results of refs. [9] and [10] in Sec. 2 .

A relevant question related to the appear-

ance of magnetization plateaux is whether they

survive or not in the presence of quenched di-

sorder, which is almost inevitably present in ex-
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periments. We studied this issue in a disordered

version of the periodically modulated XXZ anti-

ferromagnetic chain [12]. We found that generi-

cally randomness in the exchange couplings re-

moves the plateau structure. However, for some

particular probability distributions, disorder in-

stead of removing completely the plateaux, shifts

the position of some of them by a precise amount,

which depends on the strength of disorder. We

review this and other results in Sec. 3 .

2. Effect of doping

In order to gain insights on the effect of doping

on the occurrence of magnetization plateaux, we

studied the concrete example of a doped Hubbard

chain with a q–periodic modulation (q–merization

for short) in the hopping amplitude1 t(x). The

lattice hamiltonian is the following:

H = −
L∑
x=1

t(x)
∑
σ

(
c†x+1,σcx,σ + c

†
x,σcx+1,σ

)

+U

L∑
x=1

nx,↑nx,↓ + µ
L∑
x=1

(nx,↑ + nx,↓)

−h
2

L∑
x=1

(nx,↑ − nx,↓) , (2.1)

where t(x) = t if x 6= lq and t(lq) = t′ = t + δ
(l is a generic integer). In the above equation

c† and c are electron creation and annihilation
operators, nx,σ = c

†
x,σcx,σ the number opera-

tor and σ =↑, ↓ the two possible spin orienta-
tions. µ is the chemical potential and h an ex-

ternal magnetic field. There are various reasons

for the choice of this model. The first is that

at half–filling and in the limit of strong U it re-

duces exactly to the q–merized AF Heisenberg

chain, which is among the simplest pure spin sy-

stems exhibiting magnetization plateaux [5]. The

second reason is that it describes realistic situa-

tions, for instance the dimerized model is real-

ized in a number of real compounds like the or-

ganic (super)conductors [13] and the ferroelectric

perovskites [14]. There is finally a third, more

technical, motivation, related to the fact that

the uniform Hubbard chain is exactly solvable by

1Similar results are found in the case of modulated

on–site energy [10].
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Figure 1: Schematic ground state phase diagram of

a) the dimerized Hubbard chain (q = 2) and b) the

trimerized chain (q = 3). For explanations compare

the text.

means of the Bethe Ansatz [15]. The exact solu-

tion can be used to construct a non–perturbative

bosonic representation of the low–energy sector

of the Hubbard hamiltonian (even in non–zero

magnetic field) [16], [17], providing a very effi-

cient tool to study different generalizations of the

model.

We studied the magnetic properties of model

(2.1) by means of a variety of techniques: analyt-

ically, by means of abelian bosonization (which

is appropriate for small q–merization, i.e. t′ ∼ t)
and standard quantum mechanical perturbation

theory (for small U); and numerically, by means

of Lanczos diagonalization on finite size clusters.

All results conspired to give the following sce-

nario: There are several different phases in the

µ − h plane (see Fig. 1 for a schematic illustra-
tion of the cases q = 2 and q = 3, based on the

2
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numerical results; abbreviations refer to the cor-

responding regions of these figures):

1. If both quantization conditions2

q

2
(n±m) ∈ Z (2.2)

are simultaneously satisfied, both spin and charge

sectors are gapful (regions labeled by fixed n and

m in Fig. 1). In this case, plateaux are found

in the magnetization curve, since the presence of

a spin gap is equivalent to the appearance of a

plateau. Notice that (2.2) are simply the com-

mensurability conditions for spin–up and spin–

down electrons.

2. If only one of the conditions (2.2) is fulfilled

(solutions are indicated in the corresponding re-

gions of Fig. 1) and in addition the filling n is

kept fixed, a magnetization plateau opens, but

one mode remains gapless3. Thus, in contrast to

the gapful magnetic behavior, charge transport

remains metallic in this phase.

3. A charge gap (‘CG’) can open if the combi-

nation qn ∈ Z of the conditions (2.2) is satisfied.
This case includes the well-known charge gap at

half filling (n = 1) as well as the charge gap in

the quarter-filled (n = 1/2) dimerized Hubbard

chain (q = 2) [19].

4. In the remaining cases, both spin and charge

sectors are massless, leading to Luttinger liquid

(‘LL’) behaviour.

Notice that the plateaux predicted in 2. have

the particularly appealing aspect that they can

appear at low magnetization (and thus at small

magnetic field) if doping is suitably chosen. For

instance, for the dimerized chain (q = 2) 2. pre-

dicts a plateau at m = 1− n.
The conditions (2.2) are easily understood

in the limit of large q–merization, i.e. t′ = 0:
the chain decomposes into clusters of q sites, the

number of spin–up and spin–down electrons on

a q–sites cluster must both be integer, which is

equivalent to imposing both conditions (2.2). All

these states are clearly fully gapped and they will

remain fully gapped if one turns on a small per-

turbation t′ > 0, only the transitions will soften.
2The density of particle or filling n and the magne-

tization m are normalized such that 0 ≤ n ≤ 2 (n = 1
corresponds to half–filling) and |m| ≤ 1.
3Similar observations have been made in other systems

[4, 18].

As we mentioned above, in the opposite limit

of small q–merization, i.e. t′ ∼ t, one can use
abelian bosonization to analyze the model, as we

sketch in the following (for the full and detailed

discussion we refer the reader to ref. [10]).

The continuum low–energy effective hamil-

tonian of the uniform (i.e. t′ = t) Hubbard chain
in magnetic field is given by

∑
i=c,s

vi

2

∫
dx
[
(∂xφi)

2 + (∂xθi)
2
]
. (2.3)

The effective charge and spin fields φc,s are given

by(
φc
φs

)
=

1

det Z

(
Zss Zss − Zcs
Zsc Zsc − Zcc

)(
φ↑
φ↓

)
,

(2.4)

where φ↑,↓ are the bosonic fields introduced as
usual to bosonize the spin–up and spin–down

electron operators (see e.g. [20]), θc,s are the du-

als of φc,s and Zij (i, j = c, s) are the elements

of the so–called dressed charge matrix given in

ref. [16]. In zero magnetic field the transforma-

tion (2.4) simplifies and φc,s reduce to the usual

charge and spin fields: φc = (φ↑ + φ↓)/ξ and
φs = (φ↑ − φ↓)/

√
2, where ξ is related to the

standard Luttinger parameter Kc by ξ
2 = 2Kc.

In the presence of small q–merization, the

hamiltonian (2.3) is perturbed by the following

operators:

λ1 sin[k+/2 + qk+x−
√
π (Zccφc − Zcsφs)]×

× cos[k−/2 + qk−x−
−√π ((Zcc − 2Zsc)φc − (Zcs − 2Zss)φs)] +
+λ2 sin[k+ + 2qk+x−

√
4π(Zccφc − Zcsφs)] ,(2.5)

where k+ = kF↑ + kF↓ = πn and k− = kF↑ −
kF↓ = πm (kF↑,↓ are the Fermi momenta for
spin–up and spin–down electrons), and λ1, λ2 ∝
δ. If all operators in (2.5) are commensurate,

which is achieved when both conditions (2.2) are

simultaneously satisfied, both degrees of freedom

are massive, since the perturbing operators are

relevant. Thus one obtains magnetization pla-

teaux with a charge gap.

Furthermore, since the λ2 term in (2.5) con-

tains only the proper charge field φ↑ + φ↓, a
charge gap opens for all values of the magneti-

zation at the commensurate values of the filling,

i.e. when the condition qn ∈ Z is satisfied.

3
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When instead only one of the conditions (2.2)

is satisfied, say q (n+m) /2 ∈ Z, one can show
that the hamiltonian can be written as

H =

∫
dx
v↑
2

[
(∂xφ↑)

2
+ (∂xθ↑)

2
]
+ λ cos 2

√
πφ↑

+
v↓
2

[
(∂xφ↓)

2 + (∂xθ↓)
2
]
. (2.6)

Terms mixing derivatives of the up and down

fields, which come from the U interaction, can

be shown to be irrelevant. The massive field φ↑
can be integrated out and one obtains an effective

low–energy hamiltonian for φ↓, with an effective
Fermi velocity and Luttinger parameter K. This

field is apparently massless but if the total filling

is kept fixed, it is constrained to be in a particu-

lar topological sector. This global constraint can

be shown to imply that changing the magneti-

zation requires a finite amount of energy, which

corresponds to a gap in the spectrum of magnetic

excitations, i.e. a plateau. In order to support

this conclusion, one can also compute the mag-

netic susceptibility for a finite size chain. Tak-

ing into account the global constraint imposed

on the system, one finds a zero susceptibility, as

expected in the presence of a plateau. This situa-

tion is somewhat exotic, because it combines gap-

ful magnetic behavior (plateau at q(n+m)/2 ∈ Z
for arbitrary, but fixed, value of n) with the alge-

braic decay of some correlation functions (due to

the local massless dynamics of the down field).

A complementary derivation of the latter do-

ping–dependent plateaux can be given in the limit

of small on–site repulsion U by using quantum

mechanical perturbation theory: for this we re-

fer the reader to ref. [10].

3. Effect of disorder

We turn now to the issue of robustness of plateaux

with respect to quenched disorder. In order to

gain insights on this problem, we studied the

magnetic behavior of a q–periodic spin–1/2XXZ

antiferromagnetic chain with a random distribu-

tion of exchange couplings. The hamiltonian of

the model is

H =
∑
i

Ji
(
Sxi S

x
i+1 + S

y
i S
y
i+1 +∆S

z
i S
z
i+1

)
,

(3.1)

where Ji are randomly distributed bonds. The

occurrence of plateaux in this system turns out

to depend largely on the probability distribution

P [J ]. To be specific, we considered two types of

distributions: A binary distribution of strength

p 4:

P [Ji] = pδ(Ji−J ′)+(1−p)δ(Ji−J0−γiJ) , (3.2)

where γi ≡ γ, (−γ) if i/q ∈ Z, (i/q 6∈ Z ) and a
Gaussian distribution:

P [Ji] ∝ exp− (Ji − Ji)
2

2 σ2i
. (3.3)

Both these distributions enforce q-merization.

To analyze the model (3.1) we adapted to

our problem the arguments, based on the deci-

mation procedure and real space renormalization

group, used by Fisher to compute the low tem-

perature zero field magnetic susceptibility of the

AF XXZ chain in the random–singlet (strongly

disordered) phase [21]. We will not give here de-

tails and refer the reader to ref. [12]. There,

we essentially assume that all spins coupled by

bonds stronger than the magnetic field5 form sin-

glets and do not contribute to the magnetization,

whereas spins coupled by weaker bonds are com-

pletely polarized. Thus the magnetization at a

given energy scale (i.e. magnetic field) is pro-

portional to the fraction of spins remaining after

decimation of all singlets formed at that energy

scale. This argument happens to apply well to

the binary distribution and can be used to study

the magnetization process of (3.1). To start with,

we consider the case of a dimerized chain (q = 2)

with the binary distribution of bonds, and we

assume that J ′ is the smallest coupling and 0 <
γ < J0/J . At high enough magnetic field, all

spins are polarized (saturation, m = 1). If we

begin to decrease the magnetic field, the magne-

tization stays constant for a while, then decreases

abruptly at h ∼ J0+γJ and after that a plateau
occurs at m = p. The abrupt change happens

because at h ∼ J0 + γJ all spin pairs connected
by the strongest bonds J0+γJ form singlets and

do not contribute anymore to the magnetization.

4p = 0 corresponds to the pure q-merized case, while

p = 1 corresponds to the uniform chain.
5In our problem, which is at T = 0, the magnetic field

provides the energy scale.
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Figure 2: Magnetization curves of modulated XX spin chains with q = 2 (a), 3 (b), 4 (c) and 5 (d), immersed

in disordered binary backgrounds of strength p. Solid lines represent averages over 100 samples with 5× 104
sites, J ′/J0 = 0.2, γJ = 0.5 and p = 0.2, 0.4, 0.6, 0.8 in ascending order. The left and rightmost dotted lines
denote respectively the pure uniform and pure modulated cases p = 1 and p = 0 .

Since the number of remaining (completely po-

larized) spins is N − 2 × (1 − p)N/2 = pN , a
plateau occurs at

m = p . (3.4)

The appearance of this plateau, then, is due to

the fact that the remaining strongest bonds have

values J0 − γJ , and all spins left from the first
step remain polarized (and thus the magnetiza-

tion constant), until the magnetic field decreases

to h ∼ J0 − γJ 6. Following this reasoning, a
second plateau is found at magnetization

m = p− p2 + p3 . (3.5)

These arguments can be easily generalized to a

q-merized chain with a binary distribution. One

finds that the first plateau appears at

m = 1 +
2

q
(p− 1) . (3.6)

Notice that this result locates correctly the pla-

teaux appearing in a pure q-merized Heisenberg

chain (p = 0) [5].

Since the decimation procedure applies for

generic XXZ chains [21], we conclude that the

emergence of the plateaux predicted in (3.6) is a

generic feature, at least for discrete probability

distributions.

To support these assertions, we also studied

the model (3.1) by means of exact numerical di-

agonalization. For the sake of simplicity, we con-

sidered only the case ∆ = 0. In Figs. 2(a), 2(b),
6In fact, this depends on the values of J ′, J0, γJ . This

is generically true for J0 + γJ > J0 − γJ > J ′ which is
satisfied by the values used in the numerical diagonaliza-

tions.

2(c) and 2(d) we show respectively the magneti-

zation curves obtained for q = 2, 3, 4 and 5 after

averaging over 100 samples of N = 5× 104 sites
with binary distribution (3.2). The numerical

curves clearly exhibit robust plateaux, precisely

at the positions predicted by eq. (3.6). The sec-

ondary plateaux (the extension of (3.5) for ar-

bitrary q), though narrower, are still visible in

Figs. 2 .

It is important to stress that the derivation

of our results eqs. (3.4), (3.5), (3.6) relies strongly

on the discreteness of the binary probability dis-

tribution and would not apply to a continuous

distribution. Indeed, for the Gaussian case re-

ferred to above, it turns out that no traces of

plateaux can be observed in the numerical curves.

We also studied the behavior of the magnetic

susceptibility at low magnetic field. Without en-

tering here into the details, we found that the

susceptibility exhibits an interesting even–odd ef-

fect. In fact, for q odd we found the same kind of

universal singularity (independent of the proba-

bility distribution) as for the homogeneously dis-

ordered case (i.e. q = 1) [21], namely

χz ∝ 1

h(lnh2)3
, (3.7)

whereas the even q modulations yield a generic

non-universal power law behavior, as the one found

in [22] for q = 2,

χz ∝ hα−1 , (3.8)

where the non–universal exponent α turns out to

depend on the probability distribution parame-

ters [12]. The numerical data give further sup-

port to these results [12].

5



Nonperturbative Quantum Effects 2000 Alessandro De Martino

4. Conclusions

To conclude, the main results we want to em-

phasize are first, that plateaux can appear at

irrational values of the magnetization in doped

systems. Doping can indeed be used as a tool

to study experimentally irrational plateaux in

systems whose half-filled parent compounds ex-

hibit plateaux only at prohibitively high mag-

netic fields. A natural candidate are ladder sys-

tems, where doping can indeed be controlled. A

theoretical investigation on doping-dependent mag-

netization plateaux in Hubbard ladders is in progress

[11]. The second result is the observation that

disorder affects the plateau structure in a very

peculiar way, namely by shifting the position of

some of them with respect to the pure case by

an amount precisely related to the periodicity q

and the strength of disorder.
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