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Abstract: The scaling form of the free–energy near a critical point allows for the definition of various

universal ratios of thermodynamical amplitudes. Together with the critical exponents they character-

ize the universality classes and may be useful experimental quantities. We show how these universal

quantities can be computed for a particular class of universality by using several Quantum Field Theory

methods

1. Introduction

One of the most important successes of Quantum

Field Theory (QFT) in recent years consists of

the quantitative analysis of the universality classes

of two–dimensional statistical mechanics models

near their second order phase transition points.

Right at criticality, where the correlation length

ξ diverges, Conformal Field Theory (CFT) allows

the exact determination of the spectrum of anoma-

lous dimensions, the structure constants of the

OPE algebra, the multi–point correlation func-

tions etc. [1]. However, the CFT data do not ex-

haust all physical information relative to the phase

transitions. From a theoretical point of view, a

perturbation of the conformal action is required

in order to investigate the space of the coupling

constants and its topology consisting of the loca-

tion of the fixed points and the Renormalization

Group flows which connect them. This rich and

interesting subject has been deeply investigated

by several authors in the last ten years (see, for

instance, [3] and references therein for a review).

From a practical point of view, one has to take

into account that in a real sample, conformal in-

variance may be broken by the presence of impu-

rities or, simply, by an imperfect fine–tuning of

the experimental knobs. Hence, to control these

effects it becomes important to study the dynam-

ics of the systems slightly away from criticality, in

particular their responses to external fields. The

most ambitious goal would be the determination

of both the scaling function which fixes the equa-

tion of state and the off–critical correlators of the

various order parameters. Although the exact de-

termination of the equation of state of a given uni-

versality class may often be a difficult task, the

scaling property alone of the free–energy is never-

theless sufficient to extract numerous predictions

on universal combinations of critical amplitudes.

As will be discussed below, these universal combi-

nations are pure numbers which can be extremely

useful for the experimental identification of the

universality classes.

2. Universal Amplitude Ratios

Consider a statistical model with n relevant fields

ϕi(x) at criticality. Near the critical point, its

action can be parameterised as

A = ACFT + gi
∫
ϕi(x)d

Dx . (2.1)

The scaling property of the order parameters is

encoded into the asymptotic form of their two–

point functions 〈ϕi(x)ϕi(0)〉 ' 1
|x|4∆i for |x| → 0

so that ∆i is identified with the conformal dimen-

sion of the fields. Correspondingly the conjugate

coupling constants gi behave as gi ∼ ΛD−2∆i ,
where Λ is a mass scale. Therefore, away from

criticality there will be generally a finite correla-

tion length ξ which in the thermodynamical limit

scales as ξ ∼ a (Kigi)−
1

D−2∆i , where a ∼ Λ−1
may be regarded as a microscopic length scale.

The terms Ki are non–universal metric factors

which depend on the unit chosen for measuring
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the external sources gi, alias on the particular re-

alization selected for representing the universality

class. In the presence of several deformations of

the conformal action, the most general expression

for the scaling form of the correlation length may

be written as

ξ = ξi ≡ a (Kigi)−
1

D−2∆i Li
(
Kjgj

(Kigi)φji

)
,

(2.2)

where φji ≡ D−2∆j
D−2∆i are the so–called crossover

exponents whereas Li are universal homogeneous
scaling functions of the ratios

Kjgj

(Kigi)
φji
. There are

of course several (but equivalent) ways of writing

these scaling forms, depending on which coupling

constant is selected as a prefactor. In the limit

where gl → 0 (l 6= i) but gi 6= 0, equation (2.2)
becomes

ξi = a ξ
0
i g
− 1
D−2∆i

i , ξ0i ∼ K
− 1
D−2∆i

i . (2.3)

Consider now the free–energy f̂ [g1, . . . , gn]. This

is a dimensionless quantity defined by

e−f̂(g1,...,gn) =
∫
Dφ e−

[
ACFT+

∑
n

i=1
gi
∫
ϕi(x)d

Dx
]
.

(2.4)

Assuming the validity of the hyperscaling hypoth-

esis, in the thermodynamical limit its singular part

(per unit of volume) will be proportional to the D

power of the correlation length. Let us denote the

singular part of the free–energy for unit volume by

f [g1, . . . , gn]. Depending on which scaling form is

adopted for the correlation length, we have cor-

respondingly several (but equivalent) ways of pa-

rameterizing this quantity

fi[g1, . . . , gn] ≡ (Kigi)
D

D−2∆i Fi
(
Kjgj

(Kigi)φji

)
.

(2.5)

The functions Fi are universal homogeneous scal-
ing functions of the ratios

Kjgj

(Kigi)
φji
.

Let us consider now the definition of the ther-

modynamical quantities related to the various deriva-

tives of the free–energy. We will adopt the nota-

tion 〈...〉i to denote expectation values computed
in the off–critical theory obtained by keeping (at

the end) only the coupling constant gi different

from zero. The first quantities to consider are the

vacuum expectation values (VEV) of the fields ϕj
which can be parameterized as

〈ϕj〉i = − ∂fi
∂gj

∣∣∣∣
gl=0

≡ Bjig
2∆j

D−2∆i
i , (2.6)

with

Bji ∼ KjK
2∆j

D−2∆i
i . (2.7)

The above relations can be equivalently expressed

as

gi = Dij (〈ϕj〉i)
D−2∆i
2∆j , (2.8)

with

Dij ∼ 1

KiK

D−2∆i
2∆j

j

. (2.9)

The generalized susceptibilities of the model are

defined by

Γ̂ijk =
∂

∂gk
〈ϕj〉i = − ∂

2fi

∂gk∂gj

∣∣∣∣
gl=0

. (2.10)

They are obviously symmetrical in the two lower

indices. By extracting their dependence on the

coupling constant gi, they can be expressed as

Γ̂ijk = Γ
i
jk g

2∆j+2∆k−D
D−2∆i

i , (2.11)

with

Γijk ∼ KjKkK
2∆j+2∆k−D
D−2∆i

i . (2.12)

The various quantities obtained by taking the

derivatives of the free–energy obviously contain

metric factors (the quantitiesKi) which make their

values not universal. However, it is always pos-

sible to consider special combinations thereof in

such a way to cancel out all metric factors. Here

we propose the consideration of the following uni-

versal ratios

(Rc)
i
jk =

ΓiiiΓ
i
jk

BjiBki
; (2.13)

(Rχ)
i
j = Γ

i
jjDjjB

D−4∆j
2∆j

ji ; (2.14)

Riξ =
(
Γiii
)1/D

ξ0i ; (2.15)

(RA)
i
j = Γ

i
jj D

4∆j+2∆i−2D
D−2∆i

ii B

2∆j−D
∆i

ij ; (2.16)

(Q2)
i
jk =

Γijj
Γkjj

(
ξ0k
ξ0j

)D−4∆j
. (2.17)

From their definition, these quantities are pure

numbers attached to the universality classes and

can be used to characterize them. In fact, the am-

plitude ratios are numbers which typically present

significant variations between different classes of

2
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universality, whereas the critical exponents usu-

ally assume small values which only vary by a

small percent by changing the universality classes.

Hence the universal ratios may be ideal marks of

the critical scaling regime [4]. It is also worth

emphasizing that, from an experimental point of

view, it should be simpler to measure universal

amplitude ratios rather than critical exponents: to

determine the former quantities one needs to per-

form several measurements at a single, fixed value

of the coupling which drives the system away from

criticality whereas to determine the latter, one

needs to make measurements over several decades

along the axes of the off–critical couplings. More-

over, although not all of them are independent,

the universal ratios are a larger set of numbers

than the critical exponents and therefore permit

a more precise determination of the class of uni-

versality.

3. Tricritical Ising Model

The universal ratios of the two–dimensional Tri-

critical Ising Model (TIM) were computed in refs.[5,

6]. We refer the reader to these articles for a de-

tailed discussion of their evaluation. There are

several reasons for considering the class of uni-

versality associated to this model. First of all,

from the experimental point of view, a number of

physical systems exhibit a tricritical Ising behav-

ior, among them fluid mixtures, metamagnets or

order–disorder transitions in absorbed systems [7]

(for a review on the theory of tricritical points, see

[8]). Secondly, from a theoretical point of view,

the TIM is still sufficiently simple to be solved

but at the same time it presents an extremely

rich and fascinating structure of excitations away

from criticality. In a Landau–Ginzburg approach,

the TIM is associated to a Φ6–theory near its

tricritical point [9], although this approach is of-

ten too elementary for the understanding of some

of its remarkable symmetries. Depending on the

direction in the phase space in which the sys-

tem is moved away from criticality, one can ob-

serve, for instance, a behavior ruled by the excep-

tional root system E7 [10, 11] or by supersymme-

try [12, 13, 14, 15] (in its exact or broken phase

realization) or by an asymmetrical pair of kinks

[16, 17, 18]. In addition, the description of its

low–temperature phase is easily obtained from the

one of its high–temperature phase because of the

self–duality of the model.

A convenient way to determine the universal

ratios of the TIM consists of adopting a Quantum

Field Theory (QFT) approach, as it was done in

the original references [5, 6]. It would be obviously

interesting to compute and to compare them by

using a lattice formulation as, for instance, the one

studied in [19]. In a QFT approach, one takes ini-

tially advantage of the exact solution of the model

at criticality. The bidimensional TIM is described

by the second representative of the unitary series

of minimal models of CFT [1, 2]: its central charge

is equal to c = 7
10 and the exact conformal weights

of the scaling fields are given by

∆l,k =
(5l− 4k)2 − 1

80
,
1 ≤ l ≤ 3
1 ≤ k ≤ 4 (3.1)

There are six primary scalar fields φ∆,∆, which

close an algebra under the Operator Product Ex-

pansion

φi(z1, z1)φj(z2, z2) ∼ (3.2)

∼
∑
k

cijk | z1 − z2 |−2(∆i+∆j−∆k) φk(z2, z2) .

The skeleton form of this OPE algebra and the

relative structure constants of the Fusion Rules

of the TIM were given in ref. [16]. The six pri-

mary fields can be identified with the normal or-

dered composite LG fields [9]. With respect to

their properties under the Z2 spin–reversal trans-

formation Q : Φ→ −Φ we have:
1. two odd fields: the leading magnetization

operator σ = φ 3
80 ,

3
80
≡ Φ and the subleading

magnetization operator σ′ = φ 7
16 ,

7
16
≡: Φ3 :

2. four even fields: the identity operator 1 =

φ0,0, the leading energy density ε = φ 1
10 ,

1
10
≡:

Φ2 :, the subleading energy density t = φ 6
10 ,

6
10
≡:

Φ4 :, which in metamagnets assumes the

meaning of the density of the annealed va-

cancies, and the field ε” = φ 3
2 ,
3
2
. The OPE

of the even fields form a subalgebra of the

Fusion Rules.

In the TIM there is another Z2 transformation –

the Kramers–Wannier duality D – under which

the fields transform as follows:

3
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• the order magnetization operators are mapped
onto their corresponding disorder operators

µ = D−1σD , µ′ = D−1σ′D . (3.3)

• the even fields are mapped onto themselves,
D−1εD = −ε , D−1tD = t , (3.4)

Given the Z2–spin odd parity of the two magnetic

fields, the off–critical theories obtained by their

perturbation are independent of the sign of their

associate couplings. The odd parity of the energy

field under the other Z2 symmetry is responsable

for the duality mapping between the high and low

temperature phases. On the other hand, two dif-

ferent physical situations arise depending on the

sign of the coupling relative to the perturbation of

the vacancy density field t(x). It is important to

notice that, excluding the leading magnetic per-

turbation, all the others give rise to integrable

QFT away from criticality. To simplify the formu-

lae below, it is convenient to adopt the compact

notation ϕi (i = 1, 2, 3, 4) to denote collectively

all these fields, so that ϕ1 = σ , ϕ2 = ε, ϕ3 = σ
′

and ϕ4 = t. Let us discuss now some aspects of

QFT which make possible the determination of

the universal ratios and the strategy we have used

to achieve these results.

4. Quantum Field Theory Approach

Each coupling constant gi (i = 1, . . . , 4) relative

to the relevant operator ϕi(x) of the TIM is a di-

mensional quantity which can be related to the

lowest mass–gap mi = ξ
−1
i of the off–critical the-

ory according to the formula

mi = Ci g
1

2−2∆i
i . (4.1)

When the QFT associated to the action (2.1) is in-

tegrable, the pure number Ci can be exactly deter-
mined by means of the Thermodynamical Bethe

Ansatz [20, 21]. When the theory is not integrable

(this is the case for the magnetic deformation of

the TIM), the constant Ci can be nevertheless de-
termined by a numerical method, based on the so–

called Truncated Conformal Space Approach [22].

In conclusion, for all individual deformations of

the TIM we are able to completely set the rela-

tionship which links the coupling constant to the

mass–gap of the theory and therefore to switch

freely between these two variables.

Another set of quantities which can be fixed

by QFT are the matrix elements of the order pa-

rameters, the simplest ones being the vacuum ex-

pectation values (VEV). In this case we have

〈ϕj〉i = Bji g
∆j
1−∆i
i . (4.2)

When the theory is integrable, the constant Bji
can be fixed exactly, thanks to the results of a

remarkable series of papers [23, 24]. When it is

not integrable, the constant Bji can be neverthe-

less estimated by means of a numerical approach,

as firstly shown in [25]. Hence, also in this case,

we are able to determine completely these quan-

tities. Moreover, as shown in [6], a generaliza-

tion of the numerical approach of ref. [25] often

leads to a reasonable estimation of the matrix ele-

ments of the order parameters between the vac-

uum states and some of the excited states, as

for instance 〈0|ϕj |Ak〉i where Ak is a one–particle
state of massMk. These quantities turn out to be

useful for obtaining sensible approximation of the

large–distance behavior of several correlators.

Another useful piece of information on the off–

critical dynamics can be obtained by exploiting

the properties of the stress–energy tensor Tµν(x).

In the presence of the perturbing field ϕi, the trace

of the stress–energy tensor is different from zero

and can be expressed as

Θ(x) = 2πgi(2− 2∆i)ϕi . (4.3)

The trace of the stress–energy tensor enters a use-

ful sum rule – called the ∆–theorem sum rule [31]

– which reads

∆j = − 1

4π〈ϕj〉i
∫
d2x 〈Θ(x)ϕj(0)〉ci , (4.4)

i.e. it relates the conformal dimension ∆j of the

field ϕj to its VEV and to the integral of its con-

nected off–critical correlator with Θ(x). It is easy

to see that the above formula simply expresses

the content of the fluctuation–dissipation theo-

rem and when the above integral diverges, so does

the VEV in the denominator, in such a way that

eq. (4.4) always keeps its validity [6].

Basic quantities in the universal ratios are the

generalized susceptibilities Γijk which, by using the

4
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fluctuation–dissipation theorem, can be expressed

as

Γ̂ijk =

∫
d2x〈ϕj(x)ϕk(0)〉ic . (4.5)

By extracting their dependence on the coupling

constant gi, we have Γ̂
i
jk = Γ

i
jk g

∆j+∆k−1
1−∆i

i with

Γijk = C2∆j+2∆k−2i

∫
dτ

1

τ2∆j+2∆k
Qjk(τ) .

(4.6)

Some of the above susceptibilities can be deter-

mined exactly, such as the components Γiik, whose

values are provided by the ∆–theorem sum rule

Γiik = −
∆k
1−∆kBki . (4.7)

In all other cases, when an exact formula is not

available, the strategy to evaluate the generalized

susceptibilities relies on two different representa-

tions of the correlators. These representations

have the advantage to converge very fast in two

distinct regions.

The first representation is based on Conformal

Perturbation Theory (with the employment of the

non–analytic expression of the VEV) [32]. In this

approach the two–point correlators are expressed

as

〈ϕi(x)ϕj(0)〉 =
∑
i

Cpij(g;x)〈Ap(0)〉 (4.8)

where the off–critical structure constantsCpjk(g;x)

admit the expansion

Cpij(g;x) = r
2(∆p−∆i−∆j)

∞∑
n=0

C
p(n)
i,j (gr

2−2∆Φ)n ,

(4.9)

(r =| x |) and can be computed perturbatively in
g. Their first order contribution is given by [32]

C
p(1)
i,j = −

∫ ′
d2w 〈Ãp(∞)Φ̃(w)ϕ̃i(1)ϕ̃j(0)〉CFT ,

(4.10)

where the prime indicates a suitable infrared (large

distance) regularization of the integral. This rep-

resentation allows a very efficient estimation of the

correlation function in its short distance regime

r � ξ.
The second representation is based on the Form

Factors and allows an efficient control of its large

distance behavior, i.e. when r � ξ. In this second
representation, one makes use of the knowledge of

the off–critical mass spectrum of the theory to ex-

press the correlators as

〈ϕi(x)ϕj(0)〉 =
∞∑
n=0

gn(r) , (4.11)

where

gn(r) =

∫
θ1>θ2...>θn

dθ1

2π
. . .
dθn

2π
e−r

∑n

k=1
mk cosh θk

×〈0|ϕi(0)| . . . Aan(θn)〉〈. . . Aan(θn)|ϕj(0)|0〉 .

|Aa1(θ1) . . . Aan(θn)〉 are the multi–particle states
relative to the excitations of mass mk, with rela-

tivistic dispersion relations given by E = mk cosh θ,

p = mk sinh θ, where θ is the rapidity variable.

The spectral representation (4.12) is obviously an

expansion in the parameter e−
r
ξ , where ξ−1 = m1

is the lowest mass–gap.

Basic quantities of the large distance approach

are the Form Factors (FF), i.e. the matrix ele-

ments of the operators ϕi on the physical asymp-

totic states [26, 27]

Fϕia1,...,an(θ1, . . . , θn) = 〈0|ϕi(0)|Aa1(θ1) . . . Aan(θn)〉 .
(4.12)

It is worth emphasizing that the above quanti-

ties are unaffected by renormalization effects since

physical excitations are employed in their defini-

tions. For scalar operators, relativistic invariance

requires that the FF only depend on the rapid-

ity differences θi − θj . In our calculation we have
only insert into the spectral representations the

one–particle and two–particle FF, computed ac-

cording to the analysis of ref. [28, 29].

Both the representations (4.8) and (4.11) are

known to converge very fast (see, for instance [30,

32] and therefore they are efficiently approximated

by their lowest terms, which therefore can be eval-

uated with a relatively little analytical effort. These

considerations obviously lead to the estimation of

the integral (4.5) according to the following steps:

1. Express the integral in polar coordinates as

Γ̂ijk = 2π

∫ +∞
0

dr r 〈ϕj(r)ϕk(0)〉ic , (4.13)

and split the radial integral into two pieces

as

I =

∫ +∞
0

dr r 〈ϕj(r)ϕk(0)〉ic

5
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=

∫ R
0

dr r 〈. . .〉ic +
∫ +∞
R

dr r 〈. . .〉ic
≡ I1(R) + I2(R) . (4.14)

2. Use the best available short–distance repre-

sentation of the correlator to evaluate I1(R)

as well as the best available estimate of its

large–distance representation to evaluate I2(R).

3. Optimize the choice of the parameter R in

such a way to obtain the best evaluation of

the whole integral. In practice, this means

looking at that value ofR for which a plateau

is obtained for the sum of I1(R) and I2(R).

Say in another way, R belongs to that in-

terval where there is an overlap between the

short–distance and the long–distance expan-

sion of the correlator (see, for instance, Fig-

ure 1, relative to the correlator 〈ϕ1(x)ϕ1(0)〉1
in the high–temperature phase).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5

mr

UV
IR

Figure 1: Continuous line = UV approximation,

dashed line = IR approximation. An overlap of the

curves is observed around mr ∼ 1.

Gathering all the results relative to the above quan-

tities, a set of universal ratios for the TIM have

been obtained. Some of them are exact, like (Rc)
1
1,k =

240
5929∆k, (Rc)

2
2,k =

10
81∆k (k = 1, . . . , 4). Those rel-

ative to the low and high temperature phase of the

model denoted by an upper index ∓ respectively,
are in Table 1. An interesting universal ratio is

provided in this case by the correlation lengths

ξ±, measured at the same displacement above and
below the critical temperature (as extracted from

the correlation function of the magnetic operator

using its duality properties)

ξ+

ξ−
= 2 cos

(
5π

18

)
≈ 1.28557... (4.15)

which can be inferred by the exact mass spectrum

of the model and the parity properties of the ex-

citations [10, 16]. Other universal ratios are pre-

sented in Tables 2–5 and a more complete set of

them can be found in ref.[6].

In view of the predictivity showed by the the-

oretical approach, it would be interesting to have

their experimental confirmation. It would be equally

useful to apply the methods discussed here to other

models in such a way to bridge a closer contact be-

tween theoretical and experimental results in two–

dimensional physics.
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Table 1: Amplitude ratios R2jk =
Γ2+
jk

Γ2−
jk

.

R211 = 3.54 R213 = −2.06
R222 = 1 R224 = −1
R233 = 1.30 R244 = 1

Table 2: Universal ratios (Rc)
1
jk and (Rc)

2−
jk .

(Rc)
1
22 = 1.05 10−2 (Rc)

1
23 = 4.85 10−2

(Rc)
1
24 = 6.7 10−2 (Rc)

1
33 = 3.8 10−1

(Rc)
2−
11 = 2.0 10−3 (Rc)

2−
14 = −2.34 10−2

(Rc)
2−
13 = 1.79 10−2 (Rc)

2−
33 = 3.4 10−1

Table 3: Universal ratio (Rχ)
i
j for i, j = 1, 2.

(Rχ)
1
1 = 3.897 10−2 (Rχ)

2+
2 = 0.1111

(Rχ)
1
2 = 0.116 (Rχ)

2−
1 = 0.040

(Rχ)
2+
1 = 0 (Rχ)

2−
2 = 0.1111

Table 4: Universal ratios Riξ and (RA)
i
j for i, j =

1, 2−, 2+.

R1ξ = 7.557 10−2

R2+ξ = 1.0784 10−1 R2−ξ = 8.389 10−1

(RA)
1
2+ = 0 (RA)

1
2− = 3.918 10−2

(RA)
2+
1 = 2.958 10−1 (RA)

2−
1 = 8.260 10−1

Table 5: Universal ratios (Q2)
i
jk for i, j, k = 1, 2

+, 2−.

(Q2)
1
2+1 = 1.260 (Q2)

1
2−1 = 1.884

(Q2)
1
2+2+ = 1.973 (Q2)

1
2+2− = 1.320

(Q2)
2+
11 = 1.56 (Q2)

2−
11 = 0.442

(Q2)
2+
12− = 1.70
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