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Abstract: The wave functions corresponding to the zero-energy eigenvalue of a one-dimensional

quantum chain Hamiltonian can be written in a simple way using quadratic algebras. We describe

here two applications. The non-hermitian Hamiltonians related to one-dimensional stochastic processes

have always zero-energy eigenvalues corresponding to the stationary states. A class of quadratic

algebras corresponding to diffusion processes was classified. As a second application, for a class of

q-deformedO(N) symmetric antiferromagnetic quantum chains, we give the zero-energy wavefunctions

for periodic boundary conditions corresponding to momentum zero and for zone boundary states. We

also consider free and various non-diagonal boundary conditions. All correlation lengths are derived.

1. Introduction

We will bring together two objects: one in math-

ematics (quadratic algebras), and one in physics

(quantum chains). Let us start with the first one.

A quadratic associative algebra with N gen-

erators xα (α = 1, 2, . . . , N) is defined by M re-

lations:

N∑
α,β=1

ciα,β xα xβ +

N∑
α=1

diα xα = 0 (1.1)

where i = 1, 2, . . . ,M . Here ciα,β and d
i
α are com-

plex numbers [1] - [3]. Special cases of quadratic

algebras are Lie algebras and superalgebras. An

algebra is of PBW (Poincaré-Birkhoff-Witt) type

if one can order the generators xα (through rela-

beling) such that the monomials

xm11 xm22 . . . x
mN
N (1.2)

form a basis in the algebra. If the algebra is of

PBW type, the number of relations M is related

to the number of generators N [2]:

M = N(N − 1)/2 (1.3)
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We now discuss quantum chains. The most

general Hamiltonian for a one-dimensional sys-

tem with N states, L sites and nearest-neighbor

interactions has the following expression:

H =

L−1∑
k=1

Hk + L+R . (1.4)

The bulk terms (k = 1, . . . , L − 1) and the left
and right boundary terms are

Hk =

N∑
α,β,γ,δ=1

Γα,βγ,δE
γα
k E

δβ
k+1 (1.5)

L =
N∑

α,β=1

LαβE
βα
1 , R =

N∑
α,β=1

RαβE
βα
L . (1.6)

Here Eαβk are a basis for N ×N matrices on the
k-th site:

(
Eαβ
)
γδ
= δαγδβδ (α, β, γ, δ = 1, . . . , N) .

(1.7)

We will assume thatH has at least one eigenstate

of energy zero

H |0 >= 0 (1.8)

Our aim is to describe the wavefunction |0 >
in a simple way. In order to do so , we consider
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the associative algebra defined by the bulk inter-

action:

N∑
α,β=1

Γαβγδ xαxβ = xγXδ −Xγxδ (1.9)

This algebra has 2N generators xα and Xα(α =

1, . . . , N). One can show that the quadratic al-

gebra (1.9) exists [4]. This is remarkable since it

is not simple to get associative algebras and it is

a puzzle how the relation (1.8) (for any number

of sites!) knows to produce associative algebras.

Consider now a Fock-like representation of the

algebra (1.9) defined by the relations:

< VK |

Xα − N∑

β=1

Lβαxβ


 = 0


Xα + N∑

β=1

Rβαxβ


 |WK >= 0 (1.10)

Here the < VK | and |WK > are the bra and ket
reference states defined by the equations (1.10) in

AUXILIARY spaces. The basis in the ket vector

space in which the Hamiltonian acts is:

|α1, α2, . . . , αL > (αk = 1, 2, . . . , N) (1.11)

One can prove [4] that the unnormalized vacuum

has the expression:

|0 > =
N∑

α1,...,αL=1

< VK |xα1 . . . xaL |WK > ·

|α1, α2, . . . αL > (1.12)

Notice that the generators X(α) don’t appear in

the expression of the wavefunction.. One can also

show [4] that all energy-zero wavefunctions can

be obtained in this way. In the case of periodic

boundary conditions, and translationally invari-

ant zero-energy eigenfunctions, one can use the

expression (1.12) making the substitution:

< VK | . . . |WK >→ Tr(. . .) (1.13)

provided that the algebra (1.9) has the trace op-

eration. Ground-state wavefunctions can corre-

spond to zone-boundary states (momentum π).

One can show [5] that if the algebra has the Str

operation with the properties:

Str (xα1xα2 . . . xαL) =

−Str (xαLxα1xα2 . . . xαL−1) (1.14)

Str (Xα1xα2 . . . xαL) =

−Str (xαLXα1xα2 . . . xαL−1) (1.15)

than the ket vector

|0 >=
L∑

α1,...αL=1

Str (xα1 . . . xαL) |α1, α2, . . . αL >

(1.16)

is a zero-energy wavefunction of momentum π.

We are going to give now two applications.

One to non-equilibrium problems and a second

one to antiferromagnetic systems.

2. ”Diffusion” algebras

As stressed in the introduction, in order to apply

the quadratic algebras as described above, the

Hamiltonian of the quantum chain has to have

at least one zero-energy eigenvalue. This is al-

ways the case for stochastic processes when the

Hamiltonian gives the continuous time evolution

of the probability distribution. The matrices ap-

pearing in equations (1.5) and (1.6) are intensity

matrices [6, 7]. For these matrices, the diagonal

element on a given column is given by the non-

diagonal matrix elements on the same column.

For example:

Rββ = −
N∑
γ=1
γ 6=β

Rβγ (2.1)

and the non-diagonal matrix elements are non-

negative numbers representing rates. For exam-

ple, Rαβ is the probability that in the time interval

dt a particle on the site L changes from the state

α to the state β. The fact that the Hamiltonian

has eigenvalues zero and that therefore the alge-

bra (1.9) exists does not imply that we know to

compute explicitly the matrix elements appear-

ing in equation (1.12) or the traces respectively

the supertraces in equations (1.13) or (1.15). To

do that we need explicit representations. Our

strategy is therefore a different one. We will con-

sider quadratic algebras of a simpler form assum-

ing that the generators Xα are c-numbers. We
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will look also for quadratic algebras of PBW type

for which at least one representation is known

(the adjoint one). Moreover we consider only

processes where the N species of particles are con-

served (”diffusion” processes). In this case, the

only non-diagonal matrix elements which don’t

vanish are:

Γαββα = gαβ (2.2)

With these assumptions, the algebra (1.9)

becomes:

gαβxαxβ − gβαxβxα = Xβxα −Xαxβ (2.3)

where Xα’s are c-numbers. Notice that the re-

lation (1.3) is satisfied. The question is which

conditions have to be satisfied by the physical

parameters gαβ such that the algebra (2.3) ex-

ists. Requiring the algebra to be of PBW type

one obtains the equivalent of Jacobi identities:

Xα1gα3α2 (Aα1α3 −Aα1α2) = 0
Xα2gα3α1 (Aα2α3 +Aα1α2) = 0

Xα3gα2α1 (Aα1α3 −Aα2α3) = 0 (2.4)
Xα2Xα3 (Aα2α3 + gα1α2 − gα1α3) = 0

Xα1Xα3 (gα2α1 − gα3α2) = 0
Xα1Xα2 (Aα2α2 + gα2α3 − gα1α3) = 0

where we have taken the convention:

α1 < α2 < α3 (2.5)

and have denoted

Aαβ = gαβ − gβα (2.6)

We call the algebras satisfying the identi-

ties (2.4), ”diffusion” algebras. They have been

classified [8]. Not much is still know about the

representation theory of these algebras (see Ref.

[5]) but the way was opened to many applica-

tions (see Ref. [6]), like for example the study of

phase transitions in stationary states. We would

like to mention that in stochastic processes the

zero-energy ket eigenfunctions give directly the

probability distributions [6] unlike quantum me-

chanics.

3. q-deformed O(N) symmetric, N-

state quantum chains

We are going to describe a class of N-state models

for which one can write the ground-states wave-

functions using quadratic algebras. Unlike the

Hamiltonians considered in the last section, in

the present case, the Hamiltonians are hermi-

tians. The quadratic algebras will have a very

simple form: in the equations (1.9) we will be

able to take all the Xα = 0.

Reading the paper of Reshetikhin et. al. [9]

one can notice that there are several expressions

of the form (1.9) with the generators Xα = 0.

We will choose the ones where Γαβγδ are projec-

tor operators of rank N(N + 1)/2 − 1 for the
q-deformed B(n) series (N = 2n + 1) and D(n)

series (N = 2n). The xα are the generators of the

non-commutative algebra of the manifold where

the quantum groups act. The projector operators

are going to give the bulk terms of equation (1.5).

(Similar expressions for the Sp(n) and Osp(m/n)

series can also be obtained [10]). We present the

results for N even only, the case N odd can be

found in Ref. [5].

Hk =
N∑

α,β,γ,δ=1

Γαβγδ E
γα
k E

δβ
k+1 =

1

q + q−1[
q
∑
α6=α′

Eααk E
αα
k+1 + (q − q−1)

∑
α>β

Eββk E
αα
k+1

+δN,2n+1E
N+1
2

N+1
2

k E
N+1
2

N+1
2

k+1

+q−1
N∑

α,β=1

Eααk E
ββ
k+1 +

∑
α6=β,β′

Eβαk E
αβ
k+1

+q−1
∑
α6=α′

Eαα
′

k E
α′α
k+1

− q
−N2[
N
2

]
q

N∑
α,β=1

Eα
′β
k E

αβ′
k+1q

ρα−ρβ −

(q − q−1)
∑
α>β

Eα
′β
k E

αβ′
k+1q

ρα−ρβ
]

(3.1)

where q is the deformation parameter (taken real

which makes Hk hermitian) and we use the no-

tations:

[n]q =
qn − q−n
q − q−1 and α

′ = N+1−α (α = 1, . . . , N) .
(3.2)

(ρ,1 . . . , ρN ) = (n−1, n−2, . . . , 1, 0, 0,−1, . . . ,−n+1)
(3.3)
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Using (3.1) and

N∑
α,β=1

Γαβγδ xαxβ = 0 (3.4)

with

x1 = an, x2 = an−1, . . . ,

xn = a1, xn+1 = a
+
1 ,

xn+2 = a
+
2 , . . . , x2n = a

+
n (3.5)

one finds:

qaβaα + aαaβ = 0 (β > α)

qaβa
+
α + a

+
αaβ = 0 (β > α)

a2α = 0 (α = 1, . . . , n)

aαa
+
α + a

+
αaα = qaα+1a

+
α+1 + q

−1a+α+1aα+1
(1 ≤ α ≤ n− 1)

(3.6)

The above algebra has a central element

ζ = ana
+
n + a

+
n an (3.7)

and an obvious representations is:

ak = 1⊗ 1⊗ · · · ⊗ a⊗ sσzσz ⊗
sσ
z

σz ⊗ · · · ⊗ sσzσz , (k = 1, . . . , n),
(3.8)

with

a =

(
0 1

0 0

)
, a+ =

(
0 0

1 0

)
, σz =

(
0 1

0 −1
)
.

(3.9)

where s =
√
q.

In the first line of (3.8) the operator a is in

the k-position. Obviously, for q = 1 one obtains

the definition of fermionic creation and annihila-

tion operators. The algebra (3.6) has the trace

operation (the representation (3.8) is finite di-

mensional). In order to define the Str operation,

define the matrix

J = σz ⊗ σz ⊗ · · · ⊗ σz . (3.10)

and another matrix A:

A = A1 ⊗A2 ⊗ · · · ⊗An . (3.11)

then

Str(A) = Tr(JA) (3.12)

We can now discuss the expression of the

ground-state wavefunctions for various bound-

ary conditions. For periodic boundary condi-

tions, using (1.12) and (1.13), one finds a unique

ground-state of momentum zero for L even and

none for L odd. Similarly, using (1.16) and (3.12)

one finds for L even, zone-boundary states. If

we consider free boundary conditions, equation

(1.10) is automatically satisfied therefore the

ground-state is highly degenerated and its multi-

plicity is simply given by the number of indepen-

dent words in the algebra [5]. If one considers

various boundary conditions (diagonal or non-

diagonal in respect to the O(N) symmetry of the

problem), one has to find which hermitian matri-

ces L and R are compatible with the equations

(1.10) in which we have taken Xα=0 and used the

representation (3.5) with (3.8). This problem is

discussed in detail in Ref. [5].

Before showing how to compute the corre-

lation functions of the quantum chains we de-

scribed, let us discuss what the latter can be

good for. First let us observed that for N = 3

and q = 1 we recover the quantum chain of Af-

fleck et. al. [11] where the expression ”valence

bond ground state” was used for the first time.

For N = 4 the chain can be mapped [5] into an

extended Hubbard model [12]. For all values of

N one can map our quantum chains into various

ladder models [13] writing the on-rung interac-

tion as a two-site interaction. Finally, the wave-

functions we obtain can be used as trial ground-

state for more realistic models [11].

4. Correlation functions

Since the bulk Hamiltonian (3.1) is hermitian

and the boundary matrices L and R in (1.6) are

chosen hermitian, once the ket zero-energy wave-

function is known, so is the bra wavefunction (it

comes from the same algebra (3.4).

Consider now two local operators P (r) and

Q(s) acting on the sites r and s:

Pr|α1, α2, . . . , αL >=
N∑
βr=1

Pβr,αr |α1, . . . , βr, . . . , αL >

Qs|α1, α2, . . . , αL >=

4
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N∑
βs=1

Qβs,αs |α1, . . . , βs, . . . , αL > (4.1)

We want to compute the expression:

Gr,s =
< 0|PrQs|0 >

Z
(4.2)

where Z is a normalization factor coming from

the fact that the wavefunctions (1.12) are unnor-

malized. It is useful to define the following quan-

tities, all related to the auxiliary spaces. There

are two of them, one corresponding to the ket

wavefunction (K) and one to the bra wavefunc-

tion (B),

C =

N∑
α=1

xα ⊗ xα (4.3)

P =

N∑
α,β=1

Pαβxβ ⊗ xα,

Q =
N∑

α,β=1

Qαβxβ ⊗ xα (4.4)

and

< VB|⊗ < VK | =< V |; |W >= |WK > ⊗|WB > .
(4.5)

Using equations (1.12) and (4.2), we obtain:

Gr,s =
1

Z
< V |Cr−1PCs−r−1QCL−s|W >

(4.6)

where

Z =< V |CL|W > (4.7)

For periodic boundary conditions, we have to

make the following substitutions:

< V | . . . |W >→ Tr(. . .)
< V | . . . |W >→ Str(. . .) (4.8)

for translationally invariant states or for zone-

boundary states, in equations (4.6) and (4.7).

Notice that C plays the role of a space evolu-

tion operator in the auxiliary space but the anal-

ogy with a quantum mechanical problem can’t

be pushed further since < V | and |W > are not
eigenfunctions of C. Nevertheless the spectrum

of C gives all the correlation lengths.

The spectrum of C was derived in Ref. [5].

For N = 2n it is:

[n−m]q (M = 0, . . . , N) (4.9)

with a degeneracy

CN−mN , (4.10)

Similar expressions are obtained for N=2n+1.

It is easy to see that for q = 1 and large N ,

the correlation lengths become proportional to

N and therefore diverge in the large N limit.
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